O P-S F N E T - Volume 29, Number 2 - March 15, 2022

The Electronic News Net of the SIAM Activity Group on Orthogonal Polynomials and Special Functions http://math.nist.gov/opsf

OP-SF Net is distributed to OPSF Activity Group members and non-members alike through the OP-SF Talk listserv.
If you are interested in subscribing to the Newsletter and/or OP-SF Talk, or if you would like to submit a topic to the Newsletter or a contribution to OP-SF Talk, please send an email to the OP-SF Net Editors.

Editors:
Howard S. Cohl howard.cohl@nist.gov
Sarah Post spost@hawaii.edu

Topics:

1. Announcement: OPSFA-16 to be held online June 13-17, 2022
2. Paul A. Martin: One Hundred Years of Watson's treatise on Bessel Functions
3. A U.S.S.R. travel diary of Liz and Dick Askey, September 1987
4. Preprints in arXiv.org
5. Submitting contributions to OP-SF Talk
6. Thought of the Month by Dick Askey

Calendar of Events:

April 21-23, 2022
International Conference on Orthogonal Polynomials, Celebrating Francisco Marcellán's $70^{\text {th }}$ birthday
Cádiz, Spain
https://www.marcellanfest.es/
May 23-27, 2022
Baylor Analysis Fest: From Operator Theory to Orthogonal Polynomials, Combinatorics, and Number Theory
Baylor University, Waco, TX, USA
https://tinyurl.com/BAFconference

May - November, 2022

Symmetries: Algebras and Physics
Thematic Semester, includes the following workshops:
May 23-June 10, 2022
Non-commutative algebras, representation theory and special functions
July 25-August 19, 2022
Graph theory, algebraic combinatorics and mathematical physics
September 12-October 7, 2022
Integrable systems, exactly solvable models and algebras
Centre de Recherches Mathématiques, Montréal, Quebec, Canada
http://www.crm.umontreal.ca/2022/Symmetries22/index_e.php
June 13-17, 2022-now virtual due to coronavirus pandemic.
OPSFA-16
Centre de Recherches Mathématiques, Montréal, Quebec, Canada
http://www.crm.umontreal.ca/2022/OPSFA22/index_e.php
July 5-8, 2022-new dates due to coronavirus pandemic.
Functional Analysis, Approximation Theory and Numerical Analysis (FAATNA) Matera, Italy
http://web.unibas.it/faatna20/

August 8-12, 2022

OPSF-S9: Radboud OPSFA Summer School
Nijmegen, The Netherlands
https://www.ru.nl/radboudsummerschool/courses/2022/opsfa-summer-school/

Topic \#1

OP - SF Net 29.2
March 15, 2022

From: Josée Savard josee.savard@umontreal.ca and Luc Vinet (luc.vinet@umontreal.ca) Subject: Announcement: OPSFA-16 to be held online June 13-17, 2022

The $16^{\text {th }}$ International Symposium on Orthogonal polynomials, Special Functions and Applications (OPSFA16), organized by the Centre de Recherches Mathématiques (CRM) will be online from June 13-17, 2022. This conference will be dedicated to the memory of Richard Askey, who died at the age of 86 on October 9, 2019. A special day will be held to remember his legacy.

The registration period is now open until June $17^{\text {th }}$. The cost of registration is $20 \$$ CAN. To register, navigate to the following link:
https://www.crm.umontreal.ca/act/form/inscr_opsfa22_e.shtml.

The event will host several internationally renowned plenary speakers as well as minisymposia. The themes of the minisymposia will be posted online shortly as well as the preliminary schedule.

Two contributed talks proposals are currently open. The first is for calls open to all and a second specific to a minisymposium organized for doctoral students and postdoctoral fellows. The deadline to submit your proposal is May 1st.

The activity group also awards the Gábor Szegő Prize every two years to an early-career researcher for outstanding research contributions in the area of orthogonal polynomials and special functions. The Gabor Szegő prize 2021 is awarded to Dr. Atul Dixit for his impressive scientific work solving problems related to number theory using special functions, in particular related to the work of Ramanujan.

Finally, take note that OPSFA16 is part of a thematic semester, Symmetries: Algebras and Physics, organized by the CRM from May to December 2022. It will consist of six 1-month concentration periods devoted to ongoing research in cutting edge topics; each will involve 1 - or 2 -week workshops that will be preceded by several preparatory mini-courses.

You can find all the details on this website.
We hope to see many of you!
The organizing committee
OPSFA16

Topic \#2 OP - SF Net 29.2 \qquad March 15, 2022

From: Paul Martin (pamartin@mines.edu)
Subject: Paul A. Martin: One Hundred Years of Watson's treatise on Bessel Functions

One hundred years of Watson's "Bessel Functions" ${ }^{1}$ Paul A. Martin (pamartin@mines.edu)

 Department of Applied Mathematics and Statistics, Colorado School of Mines, Golden, Colorado, USAGeorge Neville Watson (1886-1965) was born in Westward Ho!, a seaside village in the west of England. He became a student at Trinity College, Cambridge, in 1904; Fellows there included E. T. Whittaker, G. H. Hardy and E. W. Barnes. Watson stayed in Cambridge for ten years. Then, after four years at University College London (UCL), he moved to the University of Birmingham, where he spent the rest of his career, from 1918 until he retired in 1951 as the Mason Professor of Pure Mathematics. The photograph of Watson in Figure 1 is reproduced in several places, including [7, 8, 14].

Watson is perhaps best known as one half of "Whittaker and Watson"; they co-authored what became a standard book on mathematical analysis and special functions [13]. Whittaker wrote the first edition alone in 1902 (378 pages) but Watson contributed much to later editions, including new material and much more rigour [9, p. 553], [14, p. 524]: the fourth edition [13] has 608 pages. After he retired, Watson envisaged a much expanded

[^0]

Figure 1: G. N. Watson, with winged collar
edition, but he did not complete it [9, p. 553], [11, p. 256]; after his death, numerous manuscript pages were deposited in the archives of the University of Birmingham.

Watson is well known to applied mathematicians for several contributions:

- The Watson transform, which is a method for replacing a slowly convergent infinite series by another that converges rapidly. He used this method in two papers on the propagation of electromagnetic waves around the Earth, including calculations showing that the postulated Heaviside layer was consistent with experimental results [14, p. 522].
- Watson's lemma, which gives the asymptotic expansion of Laplace-type integrals. He proved this useful result in the context of his study of parabolic cylinder functions [9, p. 554].
- Watson integrals, which are certain triple integrals of trigonometric functions [14, p. 527], [15].

These can be seen as examples of Watson's skill as a "problem solver": he was "most ready to help a colleague in difficulties and was willing to go to great trouble over problems of applied mathematics in which he was not basically interested" [14, p. 527].

However, it is Watson's Treatise on the Theory of Bessel Functions (WBF) that stands out as a singular scholarly achievement (Figure 2).
WBF was first published in 1922, with a second edition in 1944 [12]. From the Preface:
This book has been designed with two objects in view. The first is the development of applications of the fundamental processes of the theory of functions of complex variables. ...The second object is the compilation of a collection of results which would be of value to the increasing number of Mathematicians and Physicists who encounter Bessel functions in the course of their researches.

Both objects were achieved: WBF is still in print, and it has been cited about 20,000 times. (Some reviews of both editions have been collected in [8].) Nowadays, one might consult the NIST Digital Library of Mathematical Functions for a quick summary of relevant formulae, but WBF remains as the prime resource for serious study of Bessel functions and their many relatives.

Watson is clear that he is aiming for a complete survey of everything known about Bessel functions: there is an extensive bibliography. (For more on the history of Bessel functions, see [6].) However, in many cases, he supplies new proofs of known results. He fixes definitions and notations. For example, he uses $J_{\nu}(z)$ and $Y_{\nu}(z)$ for Bessel functions of the first and second kinds, where z and ν are arbitrary complex variables. "The book contains not only formulae and theoretical investigations, but also extensive tables, some of which Watson had himself calculated. Throughout his life he found relaxation in numerical work, for which he used a Brunsviga calculating machine" [9, p. 555]. That may be true, but we also know that Watson declined a request to do ballistics calculations in Karl Pearson's laboratory at UCL during World War I; see the letter from A. V. Hill to Pearson quoted by Barrow-Green [4, p. 97], where some indication of Watson's character in 1917 may be gleaned: "I have known Watson these last 12 years [Hill and Watson were exact contemporaries at Trinity College], and am interested (and distressed) to hear he is exactly like he used to be. I didn't know that the War, and coming to London, had not made him more humble and human, but from what you say it obviously has not."

Figure 2: Blue plaque at the University of Birmingham

After publication of the first edition of WBF in 1922, Watson completed his work on the fourth edition of Whittaker and Watson in 1927 [13]. The following decade "might be described as Watson's 'Ramanujan period’" [14, p. 525]. "He had received from G. H. Hardy copies of Ramanujan's famous note books" [9, p. 555] and he then endeavoured to supply proofs: this generated about 30 papers. (For a complete list of Watson's papers, up to 1962, see [9]; he also coauthored a long paper 20 years after his death [2].) According to B. C. Berndt, "Watson invested at least ten years to the editing of Ramanujan's notebooks. He never completed his task, but fortunately his efforts have been preserved" and many proofs in Berndt's book are due to Watson [5, p. vi]. Rankin [10] has given a detailed description of Watson's involvement with Ramanujan's notebooks.

A second edition of WBF was published in 1944: why? Rankin notes that, during World War II, WBF "was in great demand in government scientific establishments, both in [the UK] and abroad. It became difficult to acquire and unofficial copies were circulated in some quarters. It was no doubt largely for this reason that a second edition appeared in 1944" [9, p. 555]. R. A. Askey offers an American perspective, stating that he had "been told that when the work on the first successful atomic pile was being done at the University of Chicago, a copy of [WBF] was chained to a table and always open" [3]. Bessel functions arise in various problems of applied mathematics, and many of these had to be solved quickly. However, in the preface to the second edition, Watson famously admits that his "interest in Bessel functions has waned since 1922", and so his revisions are confined to the "correction of minor errors and misprints and to the emendation of a few assertions". He does not even cite his own occasional papers from the 1930s on Bessel functions.

In his lectures at the University of Manchester on asymptotic methods, Fritz Ursell [1] liked to remark that he knew of only two light-hearted remarks in WBF [12]. One concerns the Stokes phenomenon and its discovery: on p. 202, Watson notes that "it was apparently one of those which are made at three o'clock in the morning". Ursell did not identify the second remark, but the author is fond of this one on p. 523: "The construction of the Neumann series when the Maclaurin series is given is consequently now merely a matter of analytical ingenuity".

Concerning Watson the man, there are some evocative remarks in [9] and [11]; see also [8]. For example, in "manner and appearance (he always wore a wing collar) he recalled the professors of an earlier generation" (see Figure 1) and he "did not like telephones and regarded them as 'an invention of the devil'" [11, p. 256]. He had similar strong aversions to motor-cars and fountain pens [8]. Although he "had a great admiration for his friend and co-author, Sir Edmund Whittaker [who was Professor in Edinburgh], he only
visited Scotland twice, once in June 1939 to receive his Honorary LL. D. from Edinburgh University, and in July 1914 to attend the Napier Tercentenary Congress. He used to say that he feared to make a third visit ...as each of his two previous visits had precipitated a major European catastrophe" [9, p. 552]. Evidently, Watson had a sense of humour!

Figure 3: George Neville Watson's signature

Acknowledgements. I thank Tony Rawlins for permission to use his picture of the blue plaque in Figure 2 and June Barrow-Green for pointing out the letter about Watson in [4]. I thank them, David Abrahams and Stefan Llewellyn Smith for comments and encouragement.

Bibliography.

[1] I. D. Abrahams, P. A. Martin. Fritz Joseph Ursell, 28 April 1923-11 May 2012, Biographical Memoirs of Fellows of the Royal Society 59 (2013) 407-421.
[2] C. Adiga, B. C. Berndt, S. Bhargava, G. N. Watson. Chapter 16 of Ramanujan's second notebook: theta-functions and q-series, Memoirs Amer. Math. Soc. 53, no. 315, 1985.
[3] R. A. Askey. Review of 1995 reprint of the second (1944) edition of "A treatise on the theory of Bessel functions" [12], Math. Reviews MR1349110, 1996.
[4] J. Barrow-Green. Cambridge mathematicians' responses to the First World War, in: The War of Guns and Mathematics: Mathematical Practices and Communities in France and Its Western Allies around World War I (ed. D. Aubin, C. Goldstein), American Mathematical Society, 2014, pp. 59-124.
[5] B. C. Berndt. Ramanujan's Notebooks, Part III, Springer, New York, 1991.
[6] J. Dutka. On the early history of Bessel functions, Arch. Hist. Exact Sci. 49 (1995) 105-134.
[7] S. Oakes, A. Pears, A. Rice. The Book of Presidents, 1865-1965, London Mathematical Society, 2005.
[8] J. J. O'Connor, E. F. Robertson. George Neville Watson, MacTutor History of Mathematics, University of St Andrews, Scotland, Sept. 2020. The book reviews are collected at "Additional Resources".
[9] R. A. Rankin. George Neville Watson, J. London Math. Soc. 41 (1966) 551-565.
[10] R. A. Rankin. Ramanujan's manuscripts and notebooks, Bull. London Math. Soc. 14 (1982) 81-97. Reprinted in: Ramanujan: Essays and Surveys (ed. B. C. Berndt, R. A. Rankin), American Mathematical Society, 2001, pp. 117-128.
[11] K. L. Wardle, W. A. Cooke. Obituary: George Neville Watson. Honorary Member and Vice-President, President 1932-3, Mathematical Gazette 49 (1965) 253-258.
[12] G. N. Watson. A Treatise on the theory of Bessel Functions, 2nd edition, Cambridge University Press, Cambridge, 1944.
[13] E. T. Whittaker, G. N. Watson. A Course of Modern Analysis, 4th edition, Cambridge University Press, Cambridge, 1927.
[14] J. M. Whittaker. George Neville Watson, 1886-1965, Biographical Memoirs of Fellows of the Royal Society 12 (1966) 520-530.
[15] I. J. Zucker. 70+ years of the Watson integrals, J. Statistical Physics 145 (2011) 591-612.

Topic \#3 _ OP - SF Net 29.2 _ March 15, 2022
From: Tom Koornwinder (thkmath@xs4all.nl)
Subject: A U.S.S.R. travel diary of Liz and Dick Askey, September 1987

On February 1, Howard Cohl posted the sad message that Liz Askey, the widow of Dick Askey, had passed away on January 29, 2022, at the age of 85 . One can read about her life in the Liz Askey Obituary, which was mostly written by her daughter Suzanne. She also took the accompanying photo of Liz, in May 2007.

Many of us who have been in touch with Dick Askey, will also have met Liz, since she often accompanied Dick during his travels and conference visits. I have met Liz for the first time in the academic year 1979-1980 during Dick's sabbatical in Amsterdam. She was a cordial woman, made funny observations, and was very interested in art and handicraft. She was specialized in children's literature.

Liz was also a good writer. She wrote travel diaries of the longer mathematical trips she made with Dick. During September 1987 - January 1988 they made a world trip to the U.S.S.R., Japan, Australia and India. I own a copy of a typewritten diary written by Liz. I will make scans of these, apply OCR to them, and make the corrected OCR output available on the web. I have done this already for the first part of the diary, about the trip to the U.S.S.R. in September 1987. See https://staff.fnwi.uva.nl/t.h.koornwinder/specfun/AskeyDiary_USSR1987.pdf.

This was a three-week trip based in Moscow, but with ourse, Liz does not write about mathematics, but there is much about the musueums visited, the walks made, the impression she got of the people and the communist system, the (sometimes delicious but often mean) quality of the food and the bad service, and the Academy Hotel in Moscow where they were terrorized by bedbugs. Some names of well-known mathematicians pass: Gelfand, Zelevinsky and Levitan. They brought a hearing aid for Gelfand, which caused problems at customs. On their first day in Moscow:
"Our guide found us a taxi and took us to the apartment building in which Gelfand and his family lived. We were only going to stay fifteen minutes since Gelfand's wife was ill. He was delighted
to see Dick and the conversation went on much longer than 15 minutes. He was interrupted constantly to answer the telephone and we eventually learned that it was his $74^{\text {th }}$ birthday."

About the bed bugs: "Dick was up at 2:30 a.m. with six new bites and he wasn't about to crawl back in there with the beasties who were making a meal out of him. Can't blame him. However he just left to give his presentation at the Gelfand seminar and that's a strenuous evening ahead for him with only three hours of sleep last night. Since talking mathematics is what he's here for, that may be enough to keep him going."

Is anyone reading this able to give a testimony about how Dick performed at the Gelfand seminar?
How could one have predicted in those days that visiting Moscow then during the cold war was easier than right now.

Topic \#4 __ OP - SF Net 29.2 __ March 15, 2022

From: OP-SF Net Editors
Subject: Preprints in arXiv.org

The following preprints related to the fields of orthogonal polynomials and special functions were posted or cross-listed to one of the subcategories of arXiv.org during January and February 2022. This list has been separated into two categories.

OP-SF Net Subscriber E-Prints

http://arxiv.org/abs/2201.00215
On the Parity of the Generalized Frobenius Partition Functions $\varphi_{k}(n)$
George E. Andrews, James A. Sellers, Fares Soufan
http://arxiv.org/abs/2201.00474
Asymptotics of k-nearest neighbor Riesz energies
Douglas P. Hardin, Edward B. Saff, Oleksandr Vlasiuk
http://arxiv.org/abs/2201.01352
Turán inequalities for the plane partition function
Ken Ono, Sudhir Pujahari, Larry Rolen
http://arxiv.org/abs/2201.01451
On the tau function of the hypergeometric equation
Marco Bertola, Dmitry Korotkin
http://arxiv.org/abs/2201.02267
Schwarzian derivative, Painlevé XXV-Ermakov equation and Bäcklund transformations
Sandra Carillo, Alexander Chichurin, Galina Filipuk, Federico Zullo
http://arxiv.org/abs/2201.02337
Classical and quantum walks on paths associated with exceptional Krawtchouk polynomials Hiroshi Miki, Satoshi Tsujimoto, Luc Vinet
http://arxiv.org/abs/2201.02399
An extension of an asymptotic result of Tricomi concerning a definite integral R. B. Paris
http://arxiv.org/abs/2201.03047
Weighted cylindric partitions
Walter Bridges, Ali Uncu
http://arxiv.org/abs/2201.03086
An elegant Multi-Integral that implies an even more elegant determinant identity of Dougherty and McCammond
Tewodros Amdeberhan, Doron Zeilberger
http://arxiv.org/abs/2201.03646
An explanation of the commuting operator "miracle" in time and band limiting
Pierre-Antoine Bernard, Nicolas Crampé, Luc Vinet
http://arxiv.org/abs/2201.04589
Time and band limiting operator and Bethe ansatz
Pierre-Antoine Bernard, Nicolas Crampé, Luc Vinet
http://arxiv.org/abs/2201.05422
Rational spectral transformation of continued fractions associated to a perturbed R_{I} type recurrence relations
Vinay Shukla, A. Swaminathan
http://arxiv.org/abs/2201.05948
Strict domain monotonicity of the principal eigenvalue and a characterization of lower boundedness for the Friedrichs extension of four-coefficient Sturm-Liouville operators
Fritz Gesztesy, Roger Nichols
http://arxiv.org/abs/2201.06630
Distributions of Hook lengths in integer partitions
Michael Griffin, Ken Ono, Wei-Lun Tsai
http://arxiv.org/abs/2201.06746
Combinatorial identities associated with a bivariate generating function for overpartition pairs Atul Dixit, Ankush Goswami
http://arxiv.org/abs/2201.06942
Further q-supercongruences from a transformation of Rahman
Victor J. W. Guo
http://arxiv.org/abs/2201.07049
Gauss q-ed from Heine cubed
P. L. Robinson
http://arxiv.org/abs/2201.07326
Automated Counting and Statistical Analysis of Labeled Trees with Degree Restrictions
Shalosh B. Ekhad, Doron Zeilberger
http://arxiv.org/abs/2201.09301
A_{n} extensions of some expansion formulas of Liu
Bing He
http://arxiv.org/abs/2201.09409
Chain sequences and Zeros of a perturbed $R_{I I}$ type recurrence relation
Vinay Shukla, A. Swaminathan
http://arxiv.org/abs/2201.10117
Generalized q-Bernoulli polynomials generated by Jackson q-Bessel functions
S. Z. Eweis, Zeinab S. I. Mansour
http://arxiv.org/abs/2201.11820
On the number of p-hypergeometric solutions of $K Z$ equations
Alexander Varchenko
http://arxiv.org/abs/2201.12359
The single-indexed exceptional Krawtchouk polynomials
Hiroshi Miki, Satoshi Tsujimoto, Luc Vinet
http://arxiv.org/abs/2201.12415
An asymptotic approach to Borwein-type sign pattern theorems
Chen Wang, Christian Krattenthaler
http://arxiv.org/abs/2201.12699
The B-B-G Transfer Principle for signature four
P. L. Robinson
http://arxiv.org/abs/2201.12871
Investigation of the two-cut phase region in the complex cubic ensemble of random matrices Ahmad Barhoumi, Pavel M. Bleher, Alfredo Deaño, Maxim L. Yattselev
http://arxiv.org/abs/2201.12941
Universality for multiplicative statistics of Hermitian random matrices and the integro-differential Painlevé II equation
Promit Ghosal, Guilherme L. F. Silva
http://arxiv.org/abs/2201.13315
Some definite integrals involving Jacobi polynomials
Enno Diekema
http://arxiv.org/abs/2201.13337
Higher regularity of homeomorphisms in the Hartman-Grobman theorem for semilinear evolution equations
Weijie Lu, Manuel Pinto, Y. H Xia
http://arxiv.org/abs/2202.00214
The combinatorics of hopping particles and positivity in Markov chains
Lauren K. Williams
http://arxiv.org/abs/2202.00635
A Simple Proof of Siegel's Theorem Using Mellin Transform
Zihao Liu
http://arxiv.org/abs/2202.00800
On $L_{\mathbb{R}}^{2}$-best rational approximants to Markov functions on several intervals
Maxim L. Yattselev
http://arxiv.org/abs/2202.00943
Laguerre Unitary Ensembles with Jump Discontinuities, PDEs and the Coupled Painlevé V System Shulin Lyu, Yang Chen, Shuai-Xia Xu
http://arxiv.org/abs/2202.01278
Determinantal Formulas for Exceptional Orthogonal Polynomials
Brian Simanek
http://arxiv.org/abs/2202.01392
The Madelung Constant in N Dimensions
Antony Burrows, Shaun Cooper, Peter Schwerdtfeger
http://arxiv.org/abs/2202.02049
The asymptotic expansion of the Humbert hyper-Bessel function
R. B. Paris
http://arxiv.org/abs/2202.02485
Sharp regularity of the Hartman-Grobman theorem in C^{0} linearization
Weijie Lu, Manuel Pinto, Y-H. Xia
http://arxiv.org/abs/2202.02637
Proof of two conjectures on Askey-Wilson polynomials
K. Castillo, D. Mbouna
http://arxiv.org/abs/2202.02678
The Existence of Dyon Solutions for Generalized Weinberg-Salam Model Shouxin Chen, Yilu Xu
http://arxiv.org/abs/2202.03139
Free boson realization of the Dunkl intertwining operator in one dimension
Luc Vinet, Alexei Zhedanov
http://arxiv.org/abs/2202.03145
Jensen-type inequalities for convex and m-convex functions via fractional calculus
Yamilet Quintana, José M. Rodríguez, José M. Sigarreta Almira
http://arxiv.org/abs/2202.03340
The q-Lidstone series involving q-Bernoulli and q-Euler polynomials generated by the third Jackson q-Bessel function
Z. S. I. Mansour, M. AI-Towailb
http://arxiv.org/abs/2202.03827
Universality for random matrices with equi-spaced external source: a case study of a biorthogonal ensemble
Tom Claeys, Dong Wang
http://arxiv.org/abs/2202.04116
Asymptotic spectral properties of the Hilbert L-matrix
František Štampach
http://arxiv.org/abs/2202.04217
On the algebraic solutions of the Painlevé-III (D7) equation
Robert J. Buckingham, Peter D. Miller
http://arxiv.org/abs/2202.04388
Hypergeometric ${ }_{4} F_{3}(1)$ with integral parameter differences
Dmitrii Karp, Elena Prilepkina
http://arxiv.org/abs/2202.04819
Some formulas for fully degenerate Bernoulli numbers and polynomials
Taekyun Kim, Dae San Kim
http://arxiv.org/abs/2202.04843
A Stieltjes algorithm for generating multivariate orthogonal polynomials
Zexin Liu, Akil Narayan
http://arxiv.org/abs/2202.05925
Bispectrality and biorthogonality of the rational functions of q-Hahn type Ismaël Bussière, Julien Gaboriaud, Luc Vinet, Alexei Zhedanov
http://arxiv.org/abs/2202.06020
Colored vertex models and k-tilings of the Aztec diamond
Sylvie Corteel, Andrew Gitlin, David Keating
http://arxiv.org/abs/2202.06456
Discrete orthogonality of hypergeometric polynomial sequences on linear and quadratic lattices Luis Verde-Star
http://arxiv.org/abs/2202.07298
Some observations about Hankel determinants of the columns of Pascal triangle and related topics
Johann Cigler
http://arxiv.org/abs/2202.07763
Combinatorial formula for arithmetic density
Robert Schneider, Andrew V. Sills
http://arxiv.org/abs/2202.07769
Bohemian Matrix Geometry
Robert M. Corless, George Labahn, Dan Piponi, Leili Rafiee Sevyeri
http://arxiv.org/abs/2202.08911
Symmetry of terminating series representations of the Askey-Wilson polynomials
Howard S. Cohl, Roberto S. Costas-Santos
http://arxiv.org/abs/2202.08918
Expansion for a fundamental solution of Laplace's equation in flat-ring cyclide coordinates
Lijuan Bi, Howard S. Cohl, Hans Volkmer
http://arxiv.org/abs/2202.08923
Peanut harmonic expansion for a fundamental solution of Laplace's equation in flat-ring coordinates
Lijuan Bi, Howard S. Cohl, Hans Volkmer
http://arxiv.org/abs/2202.09575
Quadratic decomposition of bivariate orthogonal polynomials
Amílcar Branquinho, Ana Foulquié Moreno, Teresa E. Pérez
http://arxiv.org/abs/2202.09900
A Linear Time, and Constant Space, Algorithm to Compute the Mixed Moments of the Multivariate Normal Distributions
Shalosh B. Ekhad, Doron Zeilberger
http://arxiv.org/abs/2202.10167
On another characterization of Askey-Wilson polynomials
D. Mbouna, A. Suzuki
http://arxiv.org/abs/2202.10374
On Smooth Perturbations of Chebyshëv Polynomials and $\bar{\partial}$-Riemann-Hilbert Method Maxim L. Yattselev
http://arxiv.org/abs/2202.10597
On the monodromy manifold of q-Painlevé VI and its Riemann-Hilbert problem Nalini Joshi, Pieter Roffelsen
http://arxiv.org/abs/2202.11017
Orthogonal polynomials, Toda lattices and Painlevé equations
Walter Van Assche
http://arxiv.org/abs/2202.12164
The Dunkl-Laplace transform and Macdonald's hypergeometric series
Dominik Brennecken, Margit Rösler
http://arxiv.org/abs/2202.12857
Asymptotic expansions of Kummer hypergeometric functions with three asymptotic parameters a, b and z
N. M. Temme, E. J. M. Veling
http://arxiv.org/abs/2202.13281
Polynomial algebras of superintegrable systems separating in Cartesian coordinates from higher order ladder operators
Danilo Latini, Ian Marquette, Yao-Zhong Zhang

Other Relevant OP-SF E-Prints

http://arxiv.org/abs/2201.00127
On a weighted zero-sum constant related to the Jacobi symbol
Santanu Mondal, Krishnendu Paul, Shameek Paul
http://arxiv.org/abs/2201.00342
High Precision Computation of Riemann's Zeta Function by the Riemann-Siegel Formula, II Juan Arias de Reyna
http://arxiv.org/abs/2201.00630
A Generalized Lerche-Newberger Formula
Parker Kuklinski, Michael Warnock, David A. Hague
http://arxiv.org/abs/2201.00867
Modified Special Functions Defined by Generalized M-Series and Their Properties Enes Ata
http://arxiv.org/abs/2201.01124
Euler's integral, multiple cosine function and zeta values
Su Hu, Min-Soo Kim
http://arxiv.org/abs/2201.01189
Olsson.wl : a Mathematica package for the computation of linear transformations of multivariable hypergeometric functions
B. Ananthanarayan, Souvik Bera, S. Friot, Tanay Pathak
http://arxiv.org/abs/2201.01402
Shuffle product formula of the Schur multiple zeta values of hook type
Maki Nakasuji, Wataru Takeda
http://arxiv.org/abs/2201.01676
Iterated Integrals and Special Values of Multiple Polylogarithm at Algebraic Arguments
Kam Cheong Au
http://arxiv.org/abs/2201.01678
Comparison of methods for the calculation of the real dilogarithm regarding instruction-level parallelism
Alexander Voigt
http://arxiv.org/abs/2201.02027
Weighted sum formulas for finite alternating multiple zeta values with some parameters
Takumi Anzawa
http://arxiv.org/abs/2201.02371
The Green's function of the Lax-Wendroff and Beam-Warming schemes
Jean-François Coulombel
http://arxiv.org/abs/2201.02376
Proving some conjectures on Kekulé numbers for certain benzenoids by using Chebyshev polynomials
Guoce Xin, Yueming Zhong
http://arxiv.org/abs/2201.02617
A Sextuple Integral Containing the Product of Associated Legendre polynomials $P_{v}^{u}(x) P_{\nu}^{\mu}(y)$: Derivation and Evaluation
Robert Reynolds, Allan Stauffer
http://arxiv.org/abs/2201.02663
Remainder in Modified Mertens Formula and Ramanujan Inequality
Gennadiy Kalyabin
http://arxiv.org/abs/2201.03379
Smooth and polyhedral norms via fundamental biorthogonal systems
Sheldon Dantas, Petr Hájek, Tommaso Russo
http://arxiv.org/abs/2201.03703
Riemann Hypothesis for Non-Abelian Zeta Functions of Curves over Finite Fields Lin Weng
http://arxiv.org/abs/2201.03922
Continuant, Chebyshev polynomials, and Riley polynomials
Kyeonghee Jo, Hyuk Kim
http://arxiv.org/abs/2201.03974
Fourier Series and Transforms via Convolution
Francisco Mota
http://arxiv.org/abs/2201.03986
Theta Series for Quadratic Forms of Signature $(n-1,1)$ with (Spherical) Polynomials II Christina Roehrig, Sander Zwegers
http://arxiv.org/abs/2201.03990
Elementary methods in the study of Deuring-Heilbronn Phenomenon
Chiara Bellotti, Giuseppe Puglisi
http://arxiv.org/abs/2201.04491
Irregular Liouville correlators and connection formulae for Heun functions Giulio Bonelli, Cristoforo Iossa, Daniel Panea Lichtig, Alessandro Tanzini
http://arxiv.org/abs/2201.04743
A Green's function for the source-free Maxwell equations on $A d S^{5} \times \mathbb{S}^{2} \times \mathbb{S}^{3}$
Damien Gobin, Niky Kamran
http://arxiv.org/abs/2201.04842
Systematic construction of non-autonomous Hamiltonian equations of Painlevé-type. II. Isomonodromic Lax representation
Maciej Błaszak, Ziemowit Domański, Krzysztof Marciniak
http://arxiv.org/abs/2201.05084
A new representation of the Stieltjes constants
Donal F. Connon
http://arxiv.org/abs/2201.05201
A Tight Reverse Minkowski Inequality for the Epstein Zeta Function
Yael Eisenberg, Oded Regev, Noah Stephens-Davidowitz
http://arxiv.org/abs/2201.05447
Non-linear periodic waves on the Einstein cylinder
Athanasios Chatzikaleas, Jacques Smulevici
http://arxiv.org/abs/2201.05785
New q-supercongruences related to Ramanujan-type supercongruences
Xiaoxia Wang, Chang Xu
http://arxiv.org/abs/2201.05808
Sharp bounds of third Hankel determinant for a class of starlike functions and a subclass of q starlike functions
Shagun Banga, S. Sivaprasad Kumar
http://arxiv.org/abs/2201.05822
The functional equation for ζ
Keith Ball
http://arxiv.org/abs/2201.06191
Kohler-Jobin meets Ehrhard: the sharp lower bound for the Gaussian principal frequency while the Gaussian torsional rigidity is fixed, via rearrangements
Orli Herscovici, Galyna V. Livshyts
http://arxiv.org/abs/2201.06829
Hermite-Padé approximation and integrability
Adam Doliwa, Artur Siemaszko
http://arxiv.org/abs/2201.06895
Algebraic construction of Weyl invariant E_{8} Jacobi forms
Kazuhiro Sakai
http://arxiv.org/abs/2201.06970
Increasing property and logarithmic convexity of functions involving Riemann zeta function
Bai-Ni Guo, Feng Qi
http://arxiv.org/abs/2201.06976
Classes of exact solutions for the massless Dirac particle in the C-metric
Priyasri Kar
http://arxiv.org/abs/2201.07327
Hermite-based, One-step, Variational and Galerkin Time Integrators for Mechanical Systems Harsh Sharma, Mayuresh Patil, Craig Woolsey
http://arxiv.org/abs/2201.07392
K-theoretic descendent series for Hilbert schemes of points on surfaces
Noah Arbesfeld
http://arxiv.org/abs/2201.07582
Elliptic families of solutions to constrained Toda hierarchy
A. Zabrodin
http://arxiv.org/abs/2201.08063
Hypergeometric sheaves for classical groups via geometric Langlands
Masoud Kamgarpour, Daxin Xu, Lingfei Yi
http://arxiv.org/abs/2201.08128
Analytic Adjoint Solutions for the 2D Incompressible Euler Equations Using the Green's Function Approach
Carlos Lozano, Jorge Ponsin
http://arxiv.org/abs/2201.08490
Tridiagonal real symmetric matrices with a connection to Pascal's triangle and the Fibonacci sequence
Emily Gullerud, aBa Mbirika, Rita Post
http://arxiv.org/abs/2201.08493
Some new results for subsequences of Nörlund logarithmic means of Walsh-Fourier series
D. Baramidze, L.-E. Persson, H. Singh, G. Tephnadze
http://arxiv.org/abs/2201.08586
Arithmeticity of Some Hypergeometric Groups
Jitendra Bajpai, Sandip Singh, Shashank Vikram Singh
http://arxiv.org/abs/2201.08599
On a positivity property of the real part of logarithmic derivative of the Riemann ξ-function Edvinas Goldštein, Andrius Grigutis
http://arxiv.org/abs/2201.09262
Elementary proofs of Zagier's formula for multiple zeta values and its odd variant
Li Lai, Cezar Lupu, Derek Orr
http://arxiv.org/abs/2201.09674
Euler's transformation, zeta functions and generalizations of Wallis' formula
Qianqian Cai, Su Hu, Min-Soo Kim
http://arxiv.org/abs/2201.09843
Constant sign Green's function of a second order perturbed periodic problem Alberto Cabada, Lucía López-Somoza, Mouhcine Yousfi
http://arxiv.org/abs/2201.10124
Asymptotic expansions for a class of generalized holomorphic Eisenstein series, Ramanujan's formula for $\zeta(2 k+1)$, Weierstrass' elliptic and allied functions
Masanori Katsurada, Takumi Noda
http://arxiv.org/abs/2201.10624
Rational Points of Bounded Height on Genus Zero Modular Curves and Average Analytic Ranks of Elliptic Curves over Number Fields
Tristan Phillips
http://arxiv.org/abs/2201.10676
A limitation on proving the existence of small gaps between zeta-zeros
Daniel A. Goldston, Timothy S. Trudgian, Caroline L. Turnage-Butterbaugh
http://arxiv.org/abs/2201.11057
Translation of Mathieu's On the five-fold transitive function of 24 quantities
Yiming Bing, Bright Hu, Ronni Hu, Rhianna Kho, Max Lau, Rhianna Li, Stefan Lu, Finn Mcdonald, Michael Sun, Gavin Trann, Nicholas Wolfe, Joshua Yao, Leon Zhou, Nathan Zhou
http://arxiv.org/abs/2201.11076
On a series of Ramanujan, dilogarithm values, and solitons
Khristo Boyadzhiev, Steven Manns
http://arxiv.org/abs/2201.11344
Negative moments of orthogonal polynomials
Jihyeug Jang, Donghyun Kim, Jang Soo Kim, Minho Song, U-Keun Song
http://arxiv.org/abs/2201.11411
Restarted Nonconvex Accelerated Gradient Descent: No More Polylogarithmic Factor in the $O\left(\varepsilon^{-7 / 4}\right)$ Complexity
Huan Li, Zhouchen Lin
http://arxiv.org/abs/2201.12968
A note on log-type GCD sums and derivatives of the Riemann zeta function
Daodao Yang
http://arxiv.org/abs/2201.13381
HMS symmetries and hypergeometric systems
Špela Špenko
http://arxiv.org/abs/2201.13397
Asymptotic behaviors of convolution powers of the Riemann zeta distribution
Takahiro Aoyama, Ryuya Namba, Koki Ota
http://arxiv.org/abs/2202.00611
Series representation of arborified zeta values
Pierre J. Clavier
http://arxiv.org/abs/2202.00782
Non-commutative Hermite-Padé approximation and integrability
Adam Doliwa
http://arxiv.org/abs/2202.00873
On the sum of the twisted Fourier coefficients of Maass forms by Möbius function
K. Venkatasubbareddy, Amrinder Kaur, Ayyadurai Sankaranarayanan
http://arxiv.org/abs/2202.01064
A Dynamical Systems Framework for Generating the Riemann Zeta Function and Dirichlet Lfunctions
Shantanu Chakrabartty
http://arxiv.org/abs/2202.01138
On Igusa local zeta functions of Hauser hybrid polynomials
Shaofang Hong, Qiuyu Yin
http://arxiv.org/abs/2202.01177
Elliptic generalization of integrable q-deformed Haldane-Shastry long-range spin chain
M. Matushko, A. Zotov
http://arxiv.org/abs/2202.01283
Multivariate nonparametric regression by least squares Jacobi polynomials approximations
Asma BenSaber, Sophie Dabo-Niang, Abderrazek Karoui
http://arxiv.org/abs/2202.01621
Infinitely Divisible Distributions and Commutative Diagrams
Nomvelo Sibisi
http://arxiv.org/abs/2202.01801
Double Inequalities for Complete Monotonicity Degrees of Remainders of Asymptotic Expansions of the Gamma and Digamma Functions
Mohamed Bouali
http://arxiv.org/abs/2202.01837
Oscillation of the remainder term in the prime number theorem of Beurling, "caused by a given zeta-zero"
Szilárd Gy. Révész
http://arxiv.org/abs/2202.02087
Spectral analysis of Jacobi operators and asymptotic behavior of orthogonal polynomials
D. R. Yafaev
http://arxiv.org/abs/2202.02100
A Divisor problem for polynomials
Benjamin Klahn
http://arxiv.org/abs/2202.02160
Heat coefficients for magnetic Laplacians on the complex projective space $\mathbf{P}^{n}(\mathbb{C})$
K. Ahbli, A. Hafoud, Z. Mouayn
http://arxiv.org/abs/2202.02420
Spectral zeta function on discrete tori and Epstein-Riemann conjecture
Alexander Meiners, Boris Vertman
http://arxiv.org/abs/2202.02555
Bogoyavlensky lattices and generalized Catalan numbers
V. E. Adler
http://arxiv.org/abs/2202.02714
Painlevé-type asymptotics for the defocusing Hirota equation in transition region Weikang Xun, Luman Ju, Engui Fan
http://arxiv.org/abs/2202.03010
On the non-vanishing of modular I-values and fourier coefficients of cusp forms Jun Hwi Min
http://arxiv.org/abs/2202.03098
Mock theta functions and characters of $\mathrm{N}=3$ superconformal modules
Minoru Wakimoto
http://arxiv.org/abs/2202.03329
Mock theta functions and related combinatorics
Cristina Ballantine, Hannah E. Burson, Amanda Folsom, Chi-Yun Hsu, Isabella Negrini, Boya Wen
http://arxiv.org/abs/2202.03387
Generalized Pell-Fermat equations and Pascal triangle
Daniel Gandolfo, Michel Rouleux
http://arxiv.org/abs/2202.03603
The Restricted Partition and q-Partial Fractions
N. Uday Kiran
http://arxiv.org/abs/2202.03783
An inverse problem for Hankel operators and turbulent solutions of the cubic Szegő equation on the line
Patrick Gérard, Alexander Pushnitski
http://arxiv.org/abs/2202.03839
On three general forms of multiple zeta(-star) values
Kwang-Wu Chen, Minking Eie
http://arxiv.org/abs/2202.03992
Coprimality of Fourier coefficients of eigenforms
Satadal Ganguly, Arvind Kumar, Moni Kumari
http://arxiv.org/abs/2202.04247
On geometric properties of ratio of two hypergeometric functions
Toshiyuki Sugawa, Li-Mei Wang
http://arxiv.org/abs/2202.04317
On \mathbb{F}_{p}-roots of the Hilbert class polynomial modulo p
Mingjie Chen, Jiangwei Xue
http://arxiv.org/abs/2202.04739
A generalisation of quasi-shuffle algebras and an application to multiple zeta values
Adam Keilthy
http://arxiv.org/abs/2202.05304
Spin conductivity of the XXZ chain in the antiferromagnetic massive regime
Frank Göhmann, Karol K. Kozlowski, Jesko Sirker, Junji Suzuki
http://arxiv.org/abs/2202.05408
On Some Hypergeometric Supercongruence Conjectures of Long Michael Allen
http://arxiv.org/abs/2202.05966
Mahler/Zeta Correspondence
Takashi Komatsu, Norio Konno, Iwao Sato, Shunya Tamura
http://arxiv.org/abs/2202.06119
Remarks on the L^{p} convergence of Bessel-Fourier series on the disc
Ryan L. Acosta Babb
http://arxiv.org/abs/2202.06195
Apéry-Type Series with Summation Indices of Mixed Parities and Colored Multiple Zeta Values, I Ce Xu, Jianqiang Zhao
http://arxiv.org/abs/2202.06408
Lorentzian spectral zeta functions on asymptotically Minkowski spacetimes
Nguyen Viet Dang, Michał Wrochna
http://arxiv.org/abs/2202.06506
E-Polynomials of Generic $\mathrm{GL}_{n} \rtimes\langle\sigma\rangle$-Character Varieties: Branched Case
Cheng Shu
http://arxiv.org/abs/2202.06676
On the Computation of General Vector-valued Modular Forms
Tobias Magnusson, Martin Raum
http://arxiv.org/abs/2202.07416
The Membership Problem for Hypergeometric Sequences with Rational Parameters Klara Nosan, Amaury Pouly, Mahsa Shirmohammadi, James Worrell
http://arxiv.org/abs/2202.08054
On the connection formula of a higher rank analog of Painlevé VI
Xiaomeng Xu
http://arxiv.org/abs/2202.08122
Irreducibility of generalized Fibonacci polynomials
Rigoberto Florez, J. C. Saunders
http://arxiv.org/abs/2202.08189
Inversion Formulas for the j-function Around Elliptic Points
Alejandro De Las Penas Castano, Badri Vishal Pandey
http://arxiv.org/abs/2202.08783
On the Northcott property of zeta functions over function fields
Xavier Généreux, Matilde Lalín, Wanlin Li
http://arxiv.org/abs/2202.09114
Infinite Product Representation for the Szegő Kernel for an Annulus
Nuraddeen S. Gafai, Ali H. M. Murid, Nur H. A. A. Wahid
http://arxiv.org/abs/2202.09169
Colored HOMFLY-PT polynomials of quasi-alternating 3-braid knots
Nafaa Chbili, Vivek Kumar Singh
http://arxiv.org/abs/2202.10334
Theorems of Szegő-Verblunsky type in the multivariate and almost periodic settings Peter C. Gibson
http://arxiv.org/abs/2202.10654
M2-branes and \mathfrak{q}-Painlevé equations
Giulio Bonelli, Fran Globlek, Naotaka Kubo, Tomoki Nosaka, Alessandro Tanzini
http://arxiv.org/abs/2202.10759
On some estimates involving Fourier coefficients of Maass cusp forms
Qingfeng Sun, Hui Wang
http://arxiv.org/abs/2202.10782
Padé approximation for a class of hypergeometric functions and parametric geometry of numbers Makoto Kawashima, Anthony Poëls
http://arxiv.org/abs/2202.10839
Stable approximation of functions from equispaced samples via Jacobi frames Xianru Chen
http://arxiv.org/abs/2202.11137
Harmonic analysis operators associated with Laguerre polynomial expansions on variable Lebesgue spaces
Jorge J. Betancor, Estefanía Dalmasso, Pablo Quijano, Roberto Scotto
http://arxiv.org/abs/2202.11166
Generalized Fubini transform with two variable
Madjid Sebaoui, Diffalah Laissaoui, Ghania Guettai, Mourad Rahmani
http://arxiv.org/abs/2202.11835
Values of zeta-one functions at positive even integers
Masato Kobayashi, Shunji Sasaki
http://arxiv.org/abs/2202.11856
An analogy of Jacobi's formula and its applications
Jun Chiba, Keiji Matsumoto
http://arxiv.org/abs/2202.12141
Bilateral series and Ramanujan's radial limits
Jitendra Bajpai, Susie Kimport, Jie Liang, Ding Ma, James Ricci
http://arxiv.org/abs/2202.12454
Chebyshev Polynomials, Sliding Columns, and the k-step Fibonacci Numbers
Greg Dresden
http://arxiv.org/abs/2202.12697
On Bibasic Humbert hypergeometric function Φ_{1}
Ayman Shehata
http://arxiv.org/abs/2202.12995
Near Optimal Reconstruction of Spherical Harmonic Expansions
Amir Zandieh, Insu Han, Haim Avron
http://arxiv.org/abs/2202.13161
Higher order Hermite-Fejér Interpolation on the unit circle
Swarnima Bahadur, Varun
http://arxiv.org/abs/2202.13253
Generalized Ramanujan-Sato Series Arising from Modular Forms
Angelica Babei, Lea Beneish, Manami Roy, Holly Swisher, Bella Tobin, Fang-Ting Tu
http://arxiv.org/abs/2202.13584
Fractional integration with singularity on Light-cone
Zipeng Wang
http://arxiv.org/abs/2202.13931
Linear independence criteria for generalized polylogarithms with distinct shifts
Sinnou David, Noriko Hirata-Kohno, Makoto Kawashima
http://arxiv.org/abs/2202.13962
Incompressible active phases at an interface. I. Formulation and axisymmetric odd flows Leroy L. Jia, William T. M. Irvine, Michael J. Shelley

Topic \#5 —— OP - SF Net 29.2 —— March 15, 2022

From: OP-SF Net Editors
Subject: Submitting contributions to OP-SF Talk
To contribute a news item to OP-SF NET, send e-mail to one of the OP-SF Editors howard.cohl@nist.gov, or spost@hawaii.edu.

Contributions to OP-SF NET 29.3 should be sent by May 1, 2022.
OP-SF NET is the electronic newsletter of the SIAM Activity Group on Special Functions and Orthogonal Polynomials (SIAG/OPSF). We disseminate your contributions on anything of interest to the special functions and orthogonal polynomials community. This includes announcements of conferences, forthcoming books, new software, electronic archives, research questions, and job openings as well as news about new appointments, promotions, research visitors, awards and prizes. OP-SF Net is transmitted periodically through a post to OP-SF Talk which is currently managed and moderated by Howard Cohl (howard.cohl@nist.gov). Anyone wishing to be included in the mailing list (SIAG/OPSF members and non-members alike) should send an email expressing interest to him.

OP-SF Talk is a listserv associated with SIAG/OPSF which facilitates communication among members, non-members and friends of the Activity Group. To post an item to the listserv, send email to howard.cohl@nist.gov.

WWW home page of this Activity Group:
http://math.nist.gov/opsf
Information on joining SIAM and this activity group: service@siam.org
The elected Officers of the Activity Group (2020-2022) are:
Peter Alan Clarkson, Chair
Luc Vinet, Vice Chair
Andrei Martínez-Finkelshtein, Program Director
Teresa E. Pérez, Secretary
The appointed officers are:
Howard Cohl, OP-SF NET co-editor
Sarah Post, OP-SF NET co-editor
Bonita Saunders, Webmaster

From: OP-SF Net Editors
Subject: Thought of the Month by Dick Askey
"Part of the secret of success in studying and using special functions is to try to remember exactly what is necessary, and nothing more."

Dick Askey (1933-2019), in p. 9, Orthogonal Polynomials and Special Functions, Society for Industrial and Applied Mathematics, Philadelphia, 1975.

Contributed by Paul A. Martin

Comment by Charles DunkI (03/11/2022)
This quote by Dick Askey is amusing—but Dick had the reputation "Askey knows the literature" which was said at an analysis seminar at Wisconsin (by Walter Rudin (1921-2010), my Ph.D. advisor, when I was a grad student 63-65). Maybe he didn't memorize every important formula but he evidently knew where to find stuff he needed.

[^0]: ${ }^{1}$ This is a slightly edited version of an article published in the London Mathematical Society Newsletter in March 2022.

