O P-S F N E T - Volume 26, Number 2 - March 15, 2019

The Electronic News Net of the
SIAM Activity Group on Orthogonal Polynomials and Special Functions http://math.nist.gov/opsf

OP-SF Net is distributed through OP-SF Talk.
Subscribe to OP-SF Talk at http://lists.siam.org/mailman/listinfo/siam-OPSF. Please send contributions to the OP-SF Net editors.

Editors:
Howard S.Cohl howard.cohl@nist.gov Sarah Post spost@hawaii.edu

Topics:

1. Announcement: Thomas Bothner as 2019 Gábor Szegő prize winner
2. Announcement: OPSFA-15 (July 2019) in Hagenberg, Austria
3. Announcement: Special Session on OPSF at Symmetry in Benasque, Spain
4. Public Request from Barry Simon to OPUC Workers for AMS Volume Update
5. Table of Contents for Special Volume 50 in ETNA dedicated to Walter Gautschi
6. Report on: AMS Special Session on Continued Fractions by James McLaughlin
7. Preprints in arXiv.org
8. Submitting contributions to OP-SF NET and SIAM-OPSF (OP-SF Talk)
9. Thought of the Month by Robert A. Heinlein

Calendar of Events:

March 28-29 2019
Fifth Orthonet Meeting
(V Congreso de la Red de Polinomios Ortogonales y Teoría de Aproximación) Universidad Pública de Navarra, Pamplona, Spain
http://www.unavarra.es/congreso-orthonet
May 27-29, 2019
Recent Advances in Scientific Computation
On the $25^{\text {th }}$ anniversary of the Electronic Transactions on Numerical Analysis (ETNA)
Santa Margherita di Pula outside Cagliari, Sardinia, Italy
http://bugs.unica.it/ETNA25/
June 16-20, 2019
Elliptic integrable systems, special functions and quantum field theory Nordic Institute for Theoretical Physics (NORDITA), Stockholm, Sweden http://www.nordita.org/elliptic2019

July 15-19, 2019
International Congress on Industrial and Applied Mathematics (ICIAM 2019)
Minisymposium on "Multivariate Orthogonal Polynomials: Theory and Applications",
Organized by Paco Marcellán, Maite Pérez and Yuan Xu,
Campus de Blasco Ibáñez, Universitat de València, València, Spain
https://iciam2019.org
July 22-26, 2019
International Symposium on Orthogonal Polynomials, Special Functions \& Applications (OPSFA-15)
RISC, Johannes Kepler University, Linz, Austria
http://www.risc.jku.at/conferences/opsfa2019/

September 1-7, 2019

The $2^{\text {nd }}$ International Conference on Symmetry Special Session on "Special Functions and Orthogonal Polynomials", Organized by Howard S. Cohl and Roberto S. Costas-Santos, Centro de Ciencias de Benasque Pedro Pascual, Benasque, Spain http://benasque.org/2019symmetry

September 14-15, 2019

AMS Fall Central Sectional Meeting
Special Session on "Special Functions and Orthogonal Polynomials"
University of Wisconsin-Madison, Madison, Wisconsin, USA
http://www.ams.org/meetings/sectional/2267_program.html
July 6-10, 2020
SIAM Annual Meeting, held jointly with CAIMS
(Canadian Applied and Industrial Mathematics Society)
Sheraton Centre Toronto Hotel, Toronto, Ontario, Canada
https://www.siam.org/Conferences/CM/Main/an20

Topic \#1 _ OP - SF Net 26.2 _ March 15, 2019

From: Walter Van Assche (walter.vanassche@kuleuven.be)
Subject: Announcement: Thomas Bothner as 2019 Gábor Szegő prize winner
Gábor Szegő prize 2019
The selection committee of the Gábor Szegő prize 2019 has decided unanimously to award the Gábor Szegő prize 2019 to Thomas Bothner for his paper, Transition asymptotics for the Painlevé II transcendent, Duke Math. J. 166 (2017), no. 2, 205-324. He deserves the prize for "his truly brilliant contributions to the recent advances in Riemann-Hilbert techniques at the boundary between the theory of special functions and applications to mathematical physics".

The selection committee was impressed with his list of 18 publications in very good to top journals. Other works of Thomas Bothner which deserve to be mentioned are his paper with Marco Bertola, Zeros of large degree Vorob'ev-Yablonski polynomials via a Hankel determinant identity, Internat. Math. Res. Notices 2015, no. 19, 9330-9399, and his joint paper with Alexander Its and I. Krasovsky, On the asymptotic behavior of a log gas in the bulk scaling limit in the presence of a varying external potential I, Comm. Math. Phys. 337 (2015), 1397-1463.

Thomas Bothner received his PhD in Mathematics in May 2013 from Purdue University under the supervision of Alexander Its. After that he held post-doctoral positions at the Centre de Recherches Mathématiques Montréal working with Marco Bertola and at the University of Michigan, Ann Arbor, where he was a James Van Loo post-doctoral fellow working with Jinho Baik and Peter Miller. He joined King's College London as a Lecturer in Analysis in the Department of Mathematics in September 2018.

The prize will be awarded at the upcoming OPSFA conference in Hagenberg, Austria, July 22-26, where Thomas Bothner will give a plenary talk.

Gábor Szegő (1895-1985)

Thomas Bothner

Selection Committee:
Walter Van Assche, chair SIAG/OPSF, University of Leuven, Belgium
Sarah Post, University of Hawaii at Manoa, Hawaii, USA
Bonita Saunders, NIST, Gaithersburg, Maryland, USA
David Gómez-Ullate, Universidad de Cádiz, Spain
Andrei Martínez Finkelshtein, Baylor University, Texas, USA, and Universidad de Almería, Almería, Spain.

Topic \#2 OP - SF Net 26.2
 March 15, 2019

From: Christoph Koutschan (christoph.koutschan@ricam.oeaw.ac.at)
Subject: Announcement: OPSFA-15 (July 2019) in Hagenberg, Austria
The $15^{\text {th }}$ Symposium on Orthogonal Polynomials and Special Functions and Applications (OPSFA-15) will take place in Hagenberg, Austria, from July 22 to July 26, 2019. It is organized by the Research Institute for Symbolic Computation (RISC). The conference venue is the campus of the University of Applied Sciences in Hagenberg. Hagenberg (im Muehlkreis) is a small town in Upper Austria, surrounded by green hills and located halfway between Salzburg and Vienna. We cordially invite all interested colleagues to come to Austria and attend this meeting!

The conference features plenary lectures given by Peter Clarkson, Christian Krattenthaler, Irina Nenciu, Veronika Pillwein, Mikhail Sodin, Alan Sokal, Armin Straub, Luc Vinet, and the Gábor Szegő Prize winner, Thomas Bothner.

The contributed talks will be organized in topical sessions ("mini-symposia"). For those who are interested in giving a talk, please check the list of mini-symposia which topic
fits best and contact the respective organizers. If none of the topics is suitable, the talk can also be presented in the general session for contributed talks. We are also accepting posters for display at the meeting. In both cases, contact the conference chair. In any case, submissions should be sent until May 15, 2019.

The early registration fee (until June 30) is 300 EUR. A reduced registration fee of 190 EUR is available for students and for participants from developing countries. In addition, they are eligible to apply to have their registration fee waived (this selection is made by the scientific committee). If you would like to apply, please send a CV, a recommendation letter, and a short statement describing your situation to the conference chair, no later than April 30, 2019.

The registration fee covers lunches, coffee breaks, and a welcome reception on Sunday evening, since participants are expected to arrive on Sunday. It also includes the excursion on Wednesday afternoon to the lovely medieval city of Freistadt, and the conference dinner. Moreover, we organize a complimentary shuttle service from Linz airport / Linz train station to the conference hotel on Sunday (July 21), and in the opposite direction on Friday afternoon (July 26) and Saturday morning (July 27). The accommodation can be booked via the conference registration form at a rate of 44 EUR per night in a single room, including breakfast. The hotel is in walking distance to the lecture rooms.

For more information (program, travel instructions, registration, etc.), please visit the website http://www.risc.jku.at/conferences/opsfa2019 or contact the organizers directly in case of specific questions. We are looking forward to welcome you in Hagenberg in July!

Topic \#3 _ OP - SF Net 26.2
 March 15, 2019

From: Howard S. Cohl (howard.cohl@nist.gov) and
Roberto S. Costas-Santos (rscosa@gmail.com)
Subject: Announcement: Special Session on OPSF at Symmetry in Benasque, Spain

Dear Colleagues: We invite you to attend a special session on "Symmetry in Special Functions and Orthogonal Polynomials" at the $2^{\text {nd }}$ International Conference on Symmetry at the Centro de Ciencias de Benasque Pedro Pascual, on 1-7 September 2019 in Benasque, Spain. If you are interested in speaking in our special session, then please contact:

Howard Cohl, Applied and Computational Mathematics Division, NIST; howard.cohl@nist.gov
Roberto Costas-Santos, Departamento de Física y Matemáticas, Universidad de Alcalá; rscosa@gmail.com

Scope: Special functions; Orthogonal polynomials; q-series and q-calculus; Generalized, basic, elliptic, and Kaneko-Macdonald hypergeometric series; Addition theorems and eigenfunction expansions; Definite and indefinite integrals of special functions; Global analysis on Riemannian and pseudo-Riemannian manfiolds; Applications of special functions and orthogonal polynomials; Mathematical knowledge management of OPSF.

You may also contribute to the corresponding Special Issue on "Symmetry in Special Functions and Orthogonal Polynomials" in the journal Symmetry with guest editors:
Howard S. Cohl; Charles F. Dunkl; Roberto S. Costas-Santos; Hans Volkmer; Loyal Durand

From: Barry Simon (bsimon@caltech.edu)
Subject: Public Request from Barry Simon to OPUC Workers for AMS Volume Update

The American Mathematical Society (AMS) has agreed to publish a second edition of my two volume Orthogonal Polynomials on the Unit Circle (OPUC) book. I don't expect to start on this until March of 2019 and I expect it to take $2-3$ years to complete. There has been substantial new literature since 2005 when those books appeared and I have learned of earlier literature that I missed (such as the earlier introduction of Cantero-Moral-Velázquez (CMV) matrices in the numerical linear algebra literature). The AMS and I are expecting to add 150-200 pages to Volume 1 and $50-100$ pages to Volume 2. While I may discuss in some places, orthogonal polynomials on the real line (OPRL) theory and more general OP topics, that will be very limited and the focus will be on OPUC.

I am making a public request to workers in this and related areas to please let me know of work by you and others related to the general theory of OPUC that you would like me to consider in this new project. Don't hesitate to tell me about pre-2005 work that I might have missed. I also welcome any list of typos (or worse) you might have for the first edition. My email is bsimon@caltech.edu. And please pass this on to others.

Topic \#5 _ OP - SF Net 26.2 __ March 15, 2019

From: Lothar Reichel (reichel@math.kent.edu)
Subject: Table of Contents for Special Volume 50 in ETNA dedicated to Walter Gautschi

The Electronic Transactions on Numerical Analysis (ETNA), Volume 50 (2018), was recently completed. This Special Volume of ETNA, dedicated to Walter Gautschi on the occasion of his $90^{\text {th }}$ birthday, was edited by Gradimir V. Milovanović and Lothar Reichel.

You may find the Special Volume online at this link.
Below is the table of contents of the Special Volume:
i-v Table of Contents and Abstracts
vi-viii Preface
1-19 S. Pozza, M. S. Pranić, and Z. Strakoš
The Lanczos algorithm and complex Gauss quadrature
20-35 R. M. Mutavdžić, A. V. Pejčev, and M. M. Spalević
Error bounds for Kronrod extension of generalizations of Micchelli-Rivlin quadrature formula for analytic functions

36-51 G. Mastroianni, G. V. Milovanović, and I. Notarangelo
Polynomial approximation with Pollaczeck-Laguerre weights on the real semiaxis. A survey
52-70 W. Gautschi and G. V. Milovanović
Binet-type polynomials and their zeros
71-97 A. Narayan
Computation of induced orthogonal polynomial distributions

98-108 I. Kucukoglu and Y. Simsek
Numerical evaluation of special power series including the numbers of Lyndon words: an approach to interpolation functions for Apostol-type numbers and polynomials
109-128 D. Benko, D. Coroian, P. Dragnev, and R. Orive
Probability, minimax approximation, and Nash-equilibrium.
Estimating the parameter of a biased coin
129-143 M. C. De Bonis and D. Occorsio
A product integration rule for hypersingular integrals on $(0,+\infty)$
144-163 A. H. Bentbib, M. El Ghomari, C. Jagels, K. Jbilou, and L. Reichel
The extended global Lanczos method for matrix function approximation
164-181 A. N. Jovanović, M. P. Stanić, and T. V. Tomović
Construction of the optimal set of quadrature rules in the sense of Borges
182-198 W. Van Assche and A. Vuerinckx Multiple Hermite polynomials and simultaneous Gaussian quadrature

Topic \#6 _ OP - SF Net 26.2 __ March 15, 2019

From: James McLaughlin (jmclaughlin@wcupa.edu)
Subject: Report on: AMS Special Session on Continued Fractions by James McLaughlin
Report on the AMS Special Session on Continued Fractions, held on Thursday January 17, 2019 at the Joint Mathematics Meetings, Baltimore, MD.

Report by James McLaughlin (jmclaughlin2@wcupa.edu), one of the co-organizers.
This special session was the eighth in a series of special sessions, which have been held at the Joint Mathematics Meetings roughly every two years, beginning in 2004. These special sessions were initially co-organized by James McLaughlin and Nancy Wyshinski, but they were joined in 2017 by Geremias Polanco, and the organizing team was extended to four with the addition of Barry Smith for JMM 2019.

Continued fractions have connections with many areas of mathematics. These areas include number theory (topics include transcendence questions, irrationality measures, Pell's equation, approximation theory, class numbers, Diophantine equations), basic hypergeometric series (q-continued fractions), cryptography (the continued fraction factoring algorithm), ergodic theory, orthogonal polynomials, dynamical systems, applied mathematics (topics include phyllotaxis, birth-death processes), combinatorics (permutation patterns, Motzkin paths) and special functions. The rationale for this series of special sessions is our belief is that continued fraction people from different fields will benefit greatly from bringing the techniques, methods and knowledge from different fields of continued fractions together in a collection of talks devoted to the general field of continued fractions.

The schedule of talks in the most recent special session was as follows:
8:00 a.m. Matrix scaling and a problem in number theory.
Melvyn B. Nathanson, Lehman College (CUNY)
Recently, there has been renewed interest in alternate minimization algorithms to generate doubly stochastic matrices, and their generalization to operator scaling. This talk will describe a problem in Diophantine approximation that these algorithms suggest.

Melvyn B. Nathanson tions.
Steven H. Weintraub, Lehigh University
We have previously considered continued fractions with "numerator" a positive integer N, which we refer to as cfN expansions. In particular, let E be a positive integer that is not a perfect square. For $N>1, \sqrt{E}$ has infinitely many cfN expansions. There is a natural notion of the "best" cfN expansion of. We have conjectured, based on extensive numerical evidence, that such a best expansion is not always periodic. From this evidence, it is difficult to predict for which N this expansion will be periodic. We show here that for any such E, there are infinitely many values of N for which this expansion is indeed periodic, more precisely, periodic of period 1 or 2 , and we obtain formulas for a subset of these expansions in terms of solutions to Pell's equation $x^{2}-E y^{2}=1$.

10:00 a.m. Hybrid Continued Fractions and p-adic algorithms, with some applications to cryptography and "unimaginable" numbers.
Antonino Leonardis, Università della Calabria
This work will continue the author's previous studies on continued fractions and Heron's algorithm, as from his former JMM 2017 presentation. Extending the notion of continued fraction to the p-adic fields, one can find continued fractions which converge in both real and p-adic topologies to the "same" quadratic irrational number, some of which are

Steven H. Weintraub given by the Heron's algorithm. The definition can be possibly generalized to other global fields, as left as an open question. We will end the part on hybrid convergence with many numerical examples. After that, we will recall the basic algorithms on the p-adic fields studied by the author and see some applications of theirs to computer science: applying Heron's algorithm to quickly compute p-adic square roots, finding new elementary cryptography procedures and some methods to get pseudo-random numbers, calculate last digits of some peculiar very big numbers.

Antonino Leonardis

10:30 a.m. Using Continued Fractions to Solve a Family of Diophantine Equations.
Eva G. Goedhart, Lebanon Valley College
For positive integers a, b, c, k with $k \geq 7$, I will show how the family of Diophantine equations $\left(a^{2} c X^{k}-1\right)\left(b^{2} c Y^{k}-1\right)=$ $\left(a b c Z^{k}-1\right)^{2}$ has no integer solutions $x, y, z>1$ with $a^{2} x^{k} \neq b^{2} y^{k}$ by using the simple continued fraction expansion of possible solutions to contradict known results. While this will be my focus for this presentation, the proof also uses a Diophantine approximation theorem.

Eva G. Goedhart
11:00 a.m. Maximal and Average Behavior of Elements in (u, v)-Calkin-Wilf Trees.
Johann Thiel, New York City College of Technology CUNY

The Calkin-Wilf tree is an infinite binary tree enumerating the positive rationals that has many interesting properties. In particular, one can compute the maximal and average values of elements of a fixed depth in the tree. In this talk we will extend these results to a generalization, due to Nathanson, of the Calkin-Wilf tree referred to as the (u, v)-Calkin-Wilf tree for positive integers u and v.

11:30 a.m. Nonstandard continued fractions with irrational numerator.
John R. Greene*, University of Minnesota Duluth
The simple continued fraction of \sqrt{n} has very nice periodic and palindromic properties. Expansions of the form

$$
\sqrt{n}=c_{0}+\frac{z}{c_{1}+\frac{z}{c_{2}+\frac{z}{c_{3}+\cdots}}}
$$

have the same palindromic properties provided z is a positive integer which is not too large and the expansion is periodic. When z is rational, the palindromic properties are only guaranteed when the expansion is periodic and the c 's are sufficiently large compared to z. Here we investigate continued

John R. Greene fraction expansions for $\sqrt{a+b \sqrt{m}}$ in the form

$$
\sqrt{a+b \sqrt{m}}=c_{0}+\frac{\sqrt{m}}{c_{1}+\frac{\sqrt{m}}{c_{2}+\frac{\sqrt{m}}{c_{3}+\cdots}}} .
$$

In these cases, when the expansion is periodic, it appears to mimic the simple continued fraction expansion of \sqrt{n} more closely than the two previously mentioned cases.

12:00-1:00 p.m. Break.

Guarav Bhatnagar

1:00 p.m. Orthogonal polynomials associated with a continued fraction of Hirschhorn.
Gaurav Bhatnagar, University of Vienna, Austria
We study orthogonal polynomials associated with a continued fraction due to Hirschhorn. Hirschhorn's continued fraction contains as special cases the famous Rogers-Ramanujan continued fraction and two of Ramanujan's generalizations. The orthogonality measure of the set of polynomials obtained has an absolutely continuous component. We find generating functions, asymptotic formulas, orthogonality relations, and the Stieltjes transform of the measure. Using standard generating function techniques, we show how to obtain formulas for the convergents of Ramanujan's continued fractions, including a formula that Ramanujan recorded himself as Entry 16 in Chapter 16 of his second notebook.

2:00 p.m. Continued fractions from b-ary Stern polynomials.
Larry Ericksen, Millville, New Jersey
Lucas sequences, like those of Fibonacci and Pell, are identified within generalized Stern number sequences. Each Stern polynomial analogue in b variables is obtained from recursions and generating functions. Then the associated continued fractions are developed as ratios of consecutive polynomials which involve single terms in their partial numera-

Larry Ericksen tors.

2:30 p.m. Matrix Representation for Higher-Order Euler Polynomials.
Lin Jiu, Dalhousie University

Lin Jiu

We study the Euler polynomials of order p, which are denoted by $E_{n}^{(p)}(x)$. Define a doubly infinite band matrix $R E^{(p)}$. Then, the left upper $m \times m$ block of $R E^{(p)}$ generates all $E_{n}^{(p)}(x)$ through its powers, for $n \leq m$. To obtain this matrix representation, the key theorem is to connect the moments of a random variable and the generalized Motzkin numbers, through the same J-fractions. Since recent results recognize $E_{n}^{(p)}(x)$ as moments of certain random variable, by the key theorem, we can view them also as generalized Motzkin numbers. Then, the matrix representation follows naturally from the lattice path interpretation. An analogue for the Bernoulli polynomials $B_{n}(x)$, is also obtained.

3:00 p.m. Some Experimental Evidence Supporting the Littlewood Conjecture.
Rich Burge, Garden Valley CA
This talk will present a two-dimensional continued fraction algorithm. Among other observations, two hypotheses about the behavior of the algorithm are noted from which the Littlewood conjecture can be deduced. Some experimental evidence supporting the hypotheses will be presented.

Rich Burge

3:30 p.m. Mathematical Diffraction and the Complex Roots of a Nonlattice Dirichlet Polynomial.
Edward Voskanian, University of California, Riverside
The discovery of quasicrystals established a new theory of solid state physics, and motivated by the desire to model these new structures also gave rise to the theory of mathematical quasicrystals. The set of complex roots of a nonlattice Dirichlet polynomial are approximated by the roots of a sequence of lattice Dirichlet polynomials determined by a sequence of simultaneous Diophantine approximations. This procedure, developed by Lapidus and van Frankenhuijsen, shows that the complex roots of a nonlattice Dirichlet polynomial have a quasiperiodic structure. The paper "Model Sets: A Survey" by Robert V. Moody suggests that aperiodicity and diffractivity are among the properties considered representative of mathematical quasicrystals, a term not universally defined. In this paper we give a survey of an open problem stated by Lapidus and van Frankenhuijsen asking if the set of complex roots of a nonlattice Dirichlet polynomial can be understood in terms of a suitable generalized mathematical quasicrystal. And, using a measure theoretic idealization of kinematic diffraction developed by A. Hof, a formula for the diffraction measure of a lattice Dirichlet polynomial satisfying a kind of regularity condition is given.

Unfortunately there was no picture of Edward from his talk. This image is from his presentation.

Topic \#7 _ OP - SF Net 26.2 _ March 15, 2019

From: OP-SF Net Editors
Subject: Preprints in arXiv.org
The following preprints related to the fields of orthogonal polynomials and special functions were posted or cross-listed to one of the subcategories of arXiv.org during January and February 2019. This list has been separated into two categories.

OP-SF Net Subscriber E-Prints

http://arxiv.org/abs/1901.00142
An expansion for the sum of a product of an exponential and a Bessel function R. B. Paris
http://arxiv.org/abs/1901.00318
Painlevé V, Painlevé XXXIV and the Degenerate Laguerre Unitary Ensemble Chao Min, Yang Chen
http://arxiv.org/abs/1901.00907
Combinatorics of (q, y)-Laguerre polynomials
Qiongqiong Pan, Jiang Zeng
http://arxiv.org/abs/1901.00946
Rogers-Ramanujan-Slater Type Identities
James McLaughlin, Andrew V. Sills, Peter Zimmer
http://arxiv.org/abs/1901.00951
Some identities between basic hypergeometric series deriving from a new Bailey-type transformation
James McLaughlin, Peter Zimmer
http://arxiv.org/abs/1901.01109
Asymptotics of Certain q-Series
Ruiming Zhang
http://arxiv.org/abs/1901.01121
Threefold symmetric Hahn-classical multiple orthogonal polynomials
Ana F. Loureiro, Walter Van Assche
http://arxiv.org/abs/1901.01128
Orthogonality of quasi-orthogonal polynomials
Cleonice F. Bracciali, Francisco Marcellán, Serhan Varma
http://arxiv.org/abs/1901.01232
Bounds for modified Lommel functions of the first kind and their ratios
Robert E. Gaunt
http://arxiv.org/abs/1901.01256
An Integral Equation for Riemann's Zeta Function and its Approximate Solution Michael Milgram
http://arxiv.org/abs/1901.01988
General Multi-sum Transformations and Some Implications
James McLaughlin
http://arxiv.org/abs/1901.03102
Solutions of Darboux Equations, its Degeneration and Painlevé VI Equations
Yik-Man Chiang, Avery Ching, Chiu-Yin Tsang
http://arxiv.org/abs/1901.03368
On Positivities of Certain q-Special Functions
Ruiming Zhang
http://arxiv.org/abs/1901.03453
The Fourier extension method and discrete orthogonal polynomials on an arc of the circle Jeffrey S. Geronimo, Karl Liechty
http://arxiv.org/abs/1901.03700
Some relations between the Riemann zeta function and the generalized Bernoulli polynomials of level m
Yamilet Quintana, Héctor Torres-Guzmán
http://arxiv.org/abs/1901.03672
Recurrence equations and their classical orthogonal polynomial solutions on a quadratic or q-quadratic lattice
Daniel Duviol Tcheutia
http://arxiv.org/abs/1901.03907
On some properties of moduli of smoothness with Jacobi weights
K. A. Kopotun, D. Leviatan, I. A. Shevchuk
http://arxiv.org/abs/1901.03908
On one estimate of divided differences and its applications
K. A. Kopotun, D. Leviatan, I. A. Shevchuk
http://arxiv.org/abs/1901.03911
Uniform and pointwise shape preserving approximation (SPA) by algebraic polynomials: an update
K. A. Kopotun, D. Leviatan, I. A. Shevchuk
http://arxiv.org/abs/1901.04069
The "Monkey Typing Shakespeare" Problem for Compositions
Shalosh B. Ekhad, Doron Zeilberger
http://arxiv.org/abs/1901.04840
Some Implications of the WP-Bailey Tree
James McLaughlin, Peter Zimmer
http://arxiv.org/abs/1901.04841
Lifting Bailey Pairs to WP-Bailey Pairs
James McLaughlin, Andrew V. Sills, Peter Zimmer
http://arxiv.org/abs/1901.04852
Some remarks on non-symmetric interpolation Macdonald polynomials
Siddhartha Sahi, Jasper Stokman
http://arxiv.org/abs/1901.05133
Integral Factorial Ratios
K. Soundararajan
http://arxiv.org/abs/1901.05326
On a pair of identities from Ramanujan's lost notebook
James McLaughlin, Andrew V. Sills
http://arxiv.org/abs/1901.05327
A Hardy-Ramanujan-Rademacher-type formula for (r, s)-regular partitions
James McLaughlin, Scott Parsell
http://arxiv.org/abs/1901.05330
Some implications of Chu's ${ }_{10} \psi_{10}$ extension of Bailey's ${ }_{6} \psi_{6}$ summation formula James McLaughlin, Andrew V. Sills, Peter Zimmer
http://arxiv.org/abs/1901.05788
On determinant expansions for Hankel operators
Gordon Blower, Yang Chen
http://arxiv.org/abs/1901.05886
A New Summation Formula for WP-Bailey Pairs
James McLaughlin
http://arxiv.org/abs/1901.05887
Some Applications of a Bailey-type Transformation
James McLaughlin, Peter Zimmer
http://arxiv.org/abs/1901.05888
Continued Fraction Proofs of m-versions of Some Identities of Rogers-Ramanujan-Slater
Type
Douglas Bowman, James McLaughlin, Nancy J. Wyshinski
http://arxiv.org/abs/1901.05889
Some new Transformations for Bailey pairs and WP-Bailey Pairs
James McLaughlin
http://arxiv.org/abs/1901.05890
General WP-Bailey Chains
James McLaughlin, Peter Zimmer
http://arxiv.org/abs/1901.06251
Lie group classification of second-order delay ordinary differential equations
Vladimir A. Dorodnitsyn, Roman Kozlov, Sergey V. Meleshko, Pavel Winternitz
http://arxiv.org/abs/1901.06275
Approximation theorems for multivariate Taylor-Abel-Poisson means
Jürgen Prestin, Viktor Savchuk, Andrii Shidlich
http://arxiv.org/abs/1901.07168
Some integrals of the Dedekind η function
Mark W. Coffey
http://arxiv.org/abs/1901.07343
Certain results on Euler-type integrals and their applications
S. Jabee, M. Shadab, R. B. Paris
http://arxiv.org/abs/1901.07843
Congruences for q-binomial coefficients
Wadim Zudilin
http://arxiv.org/abs/1901.07908
Factors of some truncated basic hypergeometric series
Victor J. W. Guo
http://arxiv.org/abs/1901.07962
Some new q-congruences for truncated basic hypergeometric series
Victor J. W. Guo, Michael J. Schlosser
http://arxiv.org/abs/1901.08172
In how many ways can I carry a total of n coins in my two pockets, and have the same amount in both pockets?
Shalosh B. Ekhad, Doron Zeilberger
http://arxiv.org/abs/1901.08222
Eigenvectors of Z-tensors associated with least H-eigenvalue with application to hypergraphs
Yi-Zheng Fan, Yi Wang, Yan-Hong Bao
http://arxiv.org/abs/1901.08279
Elliptic asymptotics in q-discrete Painlevé equations
Nalini Joshi, Elynor Liu
http://arxiv.org/abs/1901.08423
Sharp upper bounds for fractional moments of the Riemann zeta function
Winston Heap, Maksym Radziwiłł, Kannan Soundararajan
http://arxiv.org/abs/1901.08502
The Proportion of Trees that are Linear
Tanay Wakhare, Eric Wityk, Charles R. Johnson
http://arxiv.org/abs/1901.08529
Inequalities for some integrals involving modified Lommel functions of the first kind Robert E. Gaunt
http://arxiv.org/abs/1901.09332
Solution of an Open Problem about Two Families of Orthogonal Polynomials Walter Van Assche
http://arxiv.org/abs/1901.09985
Orthogonal polynomials associated with a continued fraction of Hirschhorn
Gaurav Bhatnagar, Mourad E. H. Ismail
http://arxiv.org/abs/1901.10038
Generating weighted Hurwitz numbers
M. Bertola, J. Harnad, B. Runov
http://arxiv.org/abs/1901.10122
Open Problems for Painlevé Equations
Peter A. Clarkson
http://arxiv.org/abs/1901.10357
The hyperbolic maximum principle approach to the construction of generalized convolutions
Rúben Sousa, Manuel Guerra, Semyon Yakubovich
http://arxiv.org/abs/1901.10373
A Ramanujan-type formula for $\zeta^{2}(2 m+1)$ and its generalizations
Atul Dixit, Rajat Gupta
http://arxiv.org/abs/1901.10519
On modifications of the exponential integral with the Mittag-Leffler function Francesco Mainardi, Enrico Masina
http://arxiv.org/abs/1901.11021
Sturm-Liouville hypergroups without the compactness axiom
Rúben Sousa, Manuel Guerra, Semyon Yakubovich
http://arxiv.org/abs/1901.11138
On the Leibniz rule and Laplace transform for fractional derivatives
Yiheng Wei, Da-Yan Liu, Peter W. Tse, Yong Wang
http://arxiv.org/abs/1901.11460
Some new Stein operators for product distributions
Robert E. Gaunt, Guillaume Mijoule, Yvik Swan
http://arxiv.org/abs/1902.00228
A lecture hall theorem for m-falling partitions
Shishuo Fu, Dazhao Tang, Ae Ja Yee
http://arxiv.org/abs/1902.00807
Cluster structures in Schubert varieties in the Grassmannian
K. Serhiyenko, M. Sherman-Bennett, L. Williams
http://arxiv.org/abs/1902.01761
Discrete Harmonic Analysis associated with Jacobi expansions II: the Riesz transform
Alberto Arenas, Óscar Ciaurri, Edgar Labarga
http://arxiv.org/abs/1902.02310
Some Singular Vector-valued Jack and Macdonald Polynomials
Charles F. Dunkl
http://arxiv.org/abs/1902.02341
Asymptotics of orthogonal polynomials with slowly oscillating recurrence coefficients Grzegorz Świderski, Bartosz Trojan
http://arxiv.org/abs/1902.02821
Sonine formulas and intertwining operators in Dunkl theory
Margit Rösler, Michael Voit
http://arxiv.org/abs/1902.03386
Modular Nekrasov-Okounkov formulas
Adam Walsh, S. Ole Warnaar
http://arxiv.org/abs/1902.03431
On the maximal minimal cube lengths in distinct DNF tautologies
Manuel Kauers, Martina Seidl, Doron Zeilberger
http://arxiv.org/abs/1902.03494
On some classical type Sobolev orthogonal polynomials
Sergey M. Zagorodnyuk
http://arxiv.org/abs/1902.04233
The least H-eigenvalue of signless Laplacian of non-odd-bipartite hypergraphs
Yi-Zheng Fan, Jiang-Chao Wan, Yi Wang
http://arxiv.org/abs/1902.04447
A partial theta function Borwein conjecture
Gaurav Bhatnagar, Michael J. Schlosser
http://arxiv.org/abs/1902.04863
A sparse spectral method on triangles
Sheehan Olver, Alex Townsend, Geoff Vasil
http://arxiv.org/abs/1902.04858
Elliptic extension of Gustafson's q-integral of type G_{2}
Masahiko Ito, Masatoshi Noumi
http://arxiv.org/abs/1902.04936
Alternative approach to Miller-Paris transformations and their extensions
D. B. Karp, E. G. Prilepkina
http://arxiv.org/abs/1902.05595
Fredholm determinant solutions of the Painlevé II hierarchy and gap probabilities of determinantal point processes
Mattia Cafasso, Tom Claeys, Manuela Girotti
http://arxiv.org/abs/1902.05886
Numerical and Symbolic Studies of the Peaceable Queens Problem
Yukun Yao, Doron Zeilberger
http://arxiv.org/abs/1902.06104
A simple proof of a congruence for a series involving the little q-Jacobi polynomials
Atul Dixit
http://arxiv.org/abs/1902.06227
Orthogonal polynomials with the Prudnikov-type weights
Semyon Yakubovich
http://arxiv.org/abs/1902.06895
Lickorish type construction of manifolds over simple polytopes
Zhi Lü, Wei Wang, Li Yu
http://arxiv.org/abs/1902.07321
Jensen polynomials for the Riemann zeta function and other sequences
Michael Griffin, Ken Ono, Larry Rolen, Don Zagier
http://arxiv.org/abs/1902.07842
A review of elliptic difference Painlevé equations
Nalini Joshi, Nobutaka Nakazono
http://arxiv.org/abs/1902.07883
The q-Bannai-Ito algebra and multivariate $(-q)$-Racah and Bannai-Ito polynomials Hendrik De Bie, Hadewijch De Clercq
http://arxiv.org/abs/1902.08064
Double Gegenbauer expansion of $|s-t|^{\alpha}$
T. Kobayashi, A. Leontiev
http://arxiv.org/abs/1902.08497
Unconstrained polarization (Chebyshev) problems: basic properties and Riesz kernel asymptotics
Douglas P. Hardin, Mircea Petrache, Edward B. Saff
http://arxiv.org/abs/1902.09540
Laguerre-Angelesco multiple orthogonal polynomials on an r-star
Marjolein Leurs, Walter Van Assche
http://arxiv.org/abs/1902.09800
Floquet Theory for Quaternion-valued Differential Equations
Dong Cheng, Kit Ian Kou, Yong Hui Xia
http://arxiv.org/abs/1902.10129
On spectra of Cayley graphs of the lamplighter group and their spectral measures Rostislav Grigorchuk, Brian Simanek
http://arxiv.org/abs/1902.10468
Some observations about determinants which are connected with Catalan numbers and related topics
Johann Cigler
http://arxiv.org/abs/1902.10533
A determinant formula associated with the elliptic hypergeometric integrals of type $B C_{n}$ Masahiko Ito, Masatoshi Noumi
http://arxiv.org/abs/1902.10554
Rank two false theta functions and Jacobi forms of negative definite matrix index
Kathrin Bringmann, Jonas Kaszian, Antun Milas, Sander Zwegers
http://arxiv.org/abs/1902.10672
On Carmichael and polygonal numbers, Bernoulli polynomials, and sums of base-p digits Bernd C. Kellner, Jonathan Sondow
http://arxiv.org/abs/1902.10783
Answers to Some Questions about Explicit Sinkhorn Limits posed by Mel Nathanson Shalosh B. Ekhad, Doron Zeilberger
http://arxiv.org/abs/1902.11062
Quadrature rules from finite orthogonality relations for Bernstein-Szegő polynomials J. F. van Diejen, E. Emsiz

Other Relevant OP-SF E-Prints

http://arxiv.org/abs/1901.00254
Two-curve Green's function for 2-SLE: the boundary case Dapeng Zhan
http://arxiv.org/abs/1901.00260
Double Exponential Transformation For Computing Three-Centre Nuclear Attraction Integrals
Jordan Lovrod, Hassan Safouhi
http://arxiv.org/abs/1901.00356
Some curious results related to a conjecture of Strohmer and Beaver
Markus Faulhuber
http://arxiv.org/abs/1901.00632
Constructing Riemann-Hilbert problem and multi-soliton solutions for the N-coupled $\mathrm{Hi}-$ rota equations in an optical fiber
Zhou-Zheng Kang, Tie-Cheng Xia
http://arxiv.org/abs/1901.00819
On the Mayer series of two-dimensional Yukawa gas at inverse temperature in the interval of collapse
Wilhelm Kroschinsky, Domingos H. U. Marchetti
http://arxiv.org/abs/1901.01066
On the Galois group of Generalised Laguerre polynomials II
Shanta Laishram, Saranya G. Nair, Tarlok Nath Shorey
http://arxiv.org/abs/1901.01071
Irreducibility and Galois Groups of Generalized Laguerre Polynomials $L_{n}^{(-1-n-r)}(x)$ Ankita Jindal, Shanta Laishram, Ritumoni Sarma
http://arxiv.org/abs/1901.01072
Irreducibility of extensions of Laguerre Polynomials
Shanta Laishram, Saranya G. Nair, Tarlok Nath Shorey
http://arxiv.org/abs/1901.01096
A Dunkl-Gamma Type Operators in Terms of Two-Variable Hermite Polynomials Bayram Çekim, Rabia Aktaş, Fatma Taşdelen
http://arxiv.org/abs/1901.01218
An Application of Hypergeometric Functions to Heat Kernels on Rectangular Tori and a "Weltkonstante" - or - How Ramanujan Split Temperatures
Markus Faulhuber
http://arxiv.org/abs/1901.01459
Wave kernels with magnetic field on the hyperbolic plane and with the Morse potential on the real line
Mohamed Vall Ould Moustapha
http://arxiv.org/abs/1901.01584
A smooth shift approach for a Ramanujan expansion Giovanni Coppola
http://arxiv.org/abs/1901.01634
Number Identities and Integer Partitions
Craig Culbert
http://arxiv.org/abs/1901.01648
A digression on Hermite polynomials
Keith Y. Patarroyo
http://arxiv.org/abs/1901.01840
$R(p, q)$-analogs of discrete distributions: general formalism and application
Mahouton Norbert Hounkonnou, Fridolin Melong
http://arxiv.org/abs/1901.02013
General relativity from p-adic strings
An Huang, Bogdan Stoica, Shing-Tung Yau
http://arxiv.org/abs/1901.02076
Resurgence, Painlevé Equations and Conformal Blocks
Gerald V. Dunne
http://arxiv.org/abs/1901.02189
Can we split fractional derivative while analyzing fractional differential equations?
Sachin Bhalekar, Madhuri Patil
http://arxiv.org/abs/1901.02231
Lie symmetry analysis and exact solutions of the one-dimensional heat equation with power law diffusivity
Tobias F. Illenseer
http://arxiv.org/abs/1901.02345
Comparative Analysis of the Efficiency of Application of Legendre Polynomials and Trigonometric Functions to the Numerical Integration of Ito Stochastic Differential Equations Dmitriy F. Kuznetsov
http://arxiv.org/abs/1901.02424
On the value distribution of the Riemann zeta-function and the Euler gamma-function Qi Han, Jingbo Liu, Qiong Wang
http://arxiv.org/abs/1901.02912
Generating functions for finite sums involving higher powers of binomial coefficients: Analysis of hypergeometric functions including new families of polynomials and numbers Yilmaz Simsek
http://arxiv.org/abs/1901.03382
A Ramanujan enigma involving the first Stieltjes constant
Donal F. Connon
http://arxiv.org/abs/1901.03400
Euler and the Multiplication Formula for the Gamma Function
Alexander Aycock
http://arxiv.org/abs/1901.03488
Generalized hypergeometric arithmetic \mathcal{D}-modules under a p-adic non-Liouvilleness condition
Kazuaki Miyatani
http://arxiv.org/abs/1901.04048
A family of integrable perturbed Kepler systems
Anatol Odzijewicz, Aneta Sliżewska, Elwira Wawreniuk
http://arxiv.org/abs/1901.04219
Ultraspherical moments on a set of disjoint intervals
Hashem AlSabi, James Griffin
http://arxiv.org/abs/1901.04296
The Dixonian elliptic functions
P. L. Robinson
http://arxiv.org/abs/1901.04297
Pendulum Analysis by Leaf Functions and Hyperbolic Leaf Functions
Kazunori Shinohara
http://arxiv.org/abs/1901.04344
Isomonodromic deformations of a rational differential system and reconstruction with the topological recursion: the $\mathfrak{s l}_{2}$ case
Olivier Marchal, Nicolas Orantin
http://arxiv.org/abs/1901.04788
The special values of L-functions at $s=1$ of theta products of weight 3
Ryojun Ito
http://arxiv.org/abs/1901.04825
Incomplete Riemann-Liouville fractional derivative operators and incomplete hypergeometric functions
Mehmet Ali Özarslan, Ceren Ustaoğlu
http://arxiv.org/abs/1901.05436
Generalized disconnection exponents
Wei Qian
http://arxiv.org/abs/1901.05695
Dunkl-Gamma Type Operators including Appell Polynomials
Fatma Tasdelen, Dilek Soylemez, Rabia Aktas
http://arxiv.org/abs/1901.06041
Asymptotics of the Charlier polynomials via difference equation methods
Xiao-Min Huang, Yu Lin, Yu-Qiu Zhao
http://arxiv.org/abs/1901.06254
FFT and orthogonal discrete transform on weight lattices of semi-simple Lie groups Bastian Seifert
http://arxiv.org/abs/1901.06458
Ergodic MIMO Mutual Information: Twenty Years After Emre Telatar Lu Wei
http://arxiv.org/abs/1901.06596
Constants of de Bruijn-Newman type in analytic number theory and statistical physics Charles M. Newman, Wei Wu
http://arxiv.org/abs/1901.06711
View on N-dimensional spherical harmonics from the quantum mechanical Pöschl-Teller potential well
A. Smirnov
http://arxiv.org/abs/1901.07011
A Note on the Riemann ξ-Function
M. L. Glasser
http://arxiv.org/abs/1901.07228
Exact large deviation function of spin current for the one dimensional XX spin chain with domain wall initial condition
H. Moriya, R. Nagao, T. Sasamoto
http://arxiv.org/abs/1901.07275
Fast Algorithms for the Multi-dimensional Jacobi Polynomial Transform
James Bremer, Qiyuan Pang, Haizhao Yang
http://arxiv.org/abs/1901.07324
Extremal problems for polynomials with real roots
Arturas Dubickas, Igor Pritsker
http://arxiv.org/abs/1901.07397
Extende beta, hypergeometric and confluent hypergeometric functions
N. U. Khan, T. Usman, M. Aman
http://arxiv.org/abs/1901.07479
Mixed moments of characteristic polynomials of random unitary matrices
Emma C. Bailey, Sandro Bettin, Gordon Blower, J. Brian Conrey, Andrei Prokhorov, Michael O. Rubinstein, Nina C. Snaith
http://arxiv.org/abs/1901.07520
Demazure crystals for specialized nonsymmetric Macdonald polynomials
Sami Assaf, Nicolle Gonzalez
http://arxiv.org/abs/1901.07551
On a New Type Multivariable Hypergeometric Functions
Duriye Korkmaz Duzgun, Esra Erkuş Duman
http://arxiv.org/abs/1901.07614
A necessary and sufficient condition for global convergence of the complex zeros of random orthogonal polynomials
Duncan Dauvergne
http://arxiv.org/abs/1901.07898
Ruelle zeta function for cofinite hyperbolic Riemann surfaces with ramification points Lee-Peng Teo
http://arxiv.org/abs/1901.08318
The fundamental solution of a class of ultra-hyperbolic operators on Pseudo H-type groups
Wolfram Bauer, André Froehly, Irina Markina
http://arxiv.org/abs/1901.08646
Approximation by sequence of operators including Dunkl Appell polynomials
Sezgin Sucu
http://arxiv.org/abs/1901.08765
Exact parity and time reversal symmetry invariant and symmetry breaking solutions for a nonlocal KP system
Wenbiao Wu, S. Y. Lou
http://arxiv.org/abs/1901.08866
Hardy-type Inequalities for Dunkl Operators
Andrei Velicu
http://arxiv.org/abs/1901.09026
Hyperelliptic Integrals and Mirrors of the Johnson-Kollár del Pezzo Surfaces
Alessio Corti, Giulia Gugiatti
http://arxiv.org/abs/1901.09053
Seeds for Generalized Taxicab Numbers
Jeffrey. H. Dinitz, Richard Games, Robert Roth
http://arxiv.org/abs/1901.09519
A Formula for the Riemann zeta function with complex and positive integer argument, Apéry's constant and related results
Artur Kawalec
http://arxiv.org/abs/1901.09568
Detection of a Signal in Colored Noise: A Random Matrix Theory Based Analysis Lahiru D. Chamain, Prathapasinghe Dharmawansa, Saman Atapattu, Chintha Tellambura
http://arxiv.org/abs/1901.09820
Some extensions for Ramanujan's circular summation formula
Ji-Ke Ge, Qiu-Ming Luo
http://arxiv.org/abs/1901.09912
Further Spectral Properties of the Weighted Finite Transform Operator and Approximation in Weighted Sobolev Spaces
Ahmed Souabni, NourElHouda Bourguiba
http://arxiv.org/abs/1901.10497
$\mathcal{N}=2^{*}$ gauge theory, free fermions on the torus and Painlevé VI
Giulio Bonelli, Fabrizio Del Monte, Pavlo Gavrylenko, Alessandro Tanzini
http://arxiv.org/abs/1901.10790
Symmetry of zeros of Lerch zeta-function for equal parameters
Ramūnas Garunkštis, Rokas Tamošiūnas
http://arxiv.org/abs/1901.10840
Approximation to uniform distribution in $S O(3)$
Carlos Beltrán, Damir Ferizović
http://arxiv.org/abs/1901.11183
Representations of the Riemann zeta function: A probabilistic approach
Jiamei Liu, Yuxia Huang, Chuancun Yin
http://arxiv.org/abs/1902.00510
On some new formulae involving the Stieltjes constants
Donal F. Connon
http://arxiv.org/abs/1902.00745
On the restricted partition function via determinants with Bernoulli polynomials. II
Mircea Cimpoeas
http://arxiv.org/abs/1902.00872
Notes on the Szegő minimum problem. II. Singular measures
Alexander Borichev, Anna Kononova, Mikhail Sodin
http://arxiv.org/abs/1902.00874
Notes on the Szegő minimum problem. I. Measures with deep zeroes
Alexander Borichev, Anna Kononova, Mikhail Sodin
http://arxiv.org/abs/1902.00920
Non-harmonic Gohberg's lemma, Gershgorin theory and heat equation on manifolds with boundary
Michael Ruzhansky, Juan Pablo Velasquez-Rodriguez
http://arxiv.org/abs/1902.00959
Finite term relations for the exponential orthogonal polynomials
Bjorn Gustafsson, Mihai Putinar
http://arxiv.org/abs/1902.01013
Lagrangian formalism and its auxiliary conditions: special function equations and Bateman oscillators
Zdzislaw Musielak, Niyousha Davachi, Marialis Rosario-Franco
http://arxiv.org/abs/1902.01539
A note on the Ramanujan master theorem
Lazhar Bougoffa
http://arxiv.org/abs/1902.01546
A new encoding of permutations by Laguerre histories
Sherry H. F. Yan, Hao Zhou, Zhicong Lin
http://arxiv.org/abs/1902.01726
On the complex conjugate zeros of the partial theta function Vladimir Petrov Kostov
http://arxiv.org/abs/1902.02241
A classical functional generalization of the first Barnes lemma
Raffaele Marcovecchio
http://arxiv.org/abs/1902.02275
Cyclotomic expansions of HOMFLY-PT colored by rectangular Young diagrams Masaya Kameyama, Satoshi Nawata, Runkai Tao, Hao Derrick Zhang
http://arxiv.org/abs/1902.02483
Eigenvalue Based Detection of a Signal in Colored Noise: Finite and Asymptotic Analyses Lahiru D. Chamain, Prathapasinghe Dharmawansa, Saman Atapattu, Chintha Tellambura
http://arxiv.org/abs/1902.02552
On Generalized Fractional Derivatives Involving Generalized k-Mittag Leffler Function Mehar Chand, Jatinder Kumar Bansal
http://arxiv.org/abs/1902.02927
On the integrability of Hill's equation of the motion of the moon
Fernando Reis, Bruno Scárdua
http://arxiv.org/abs/1902.02956
On the behavior of the logarithm of the Riemann zeta-function
Shota Inoue
http://arxiv.org/abs/1902.03064
Zeros of the Lerch zeta-function and of its derivative for equal parameters
Ramūnas Garunkštis, Rokas Tamošiūnas
http://arxiv.org/abs/1902.03232
Green function and self-adjoint Laplacians on polyhedral surfaces
Alexey Kokotov, Kelvin Lagota
http://arxiv.org/abs/1902.03405
A new class of special functions arising from the solution of differential equations involving multiple proportional delays
Jayvant Patade, Sachin Bhalekar
http://arxiv.org/abs/1902.03713
The Smooth Selection Embedding Method with Chebyshev Polynomials
Daniel Agress, Patrick Guidotti, Dong Yan
http://arxiv.org/abs/1902.03922
Class of hypocomplex structures on the two dimensional torus
Abdelhamid Meziani, Giuliano Zugliani
http://arxiv.org/abs/1902.03971
Polylogarithms, Bloch complexes, and quiver mutations
Christian K. Zickert
http://arxiv.org/abs/1902.04234
The Dirichlet problem for elliptic equation with several singular coefficients Tuhtasin Ergashev
http://arxiv.org/abs/1902.04277
Lemniscate Convexity and Other Properties of Generalized Bessel Functions
Vibha Madaan, Ajay Kumar, V. Ravichandran
http://arxiv.org/abs/1902.04327
About one method for constructing Hermite trigonometric polynomials
V. P. Denysiuk
http://arxiv.org/abs/1902.04746
An analytic approach to the Riemann hypothesis
Paolo D'Isanto, Giampiero Esposito
http://arxiv.org/abs/1902.05302
Determinants with Bernoulli polynomials and the restricted partition function Mircea Cimpoeas
http://arxiv.org/abs/1902.05681
Complexity of the circulant foliation over a graph
Young Soo Kwon, Alexander Mednykh, Ilya Mednykh
http://arxiv.org/abs/1902.05765
Refined scattering diagrams and theta functions from asymptotic analysis of MaurerCartan equations
Naichung Conan Leung, Ziming Nikolas Ma, Matthew B. Young
http://arxiv.org/abs/1902.06262
On certain maximal hyperelliptic curves related to Chebyshev polynomials
Saeed Tafazolian, Jaap Top
http://arxiv.org/abs/1902.06330
Orthogonal polynomial expansions for the Riemann xi function
Dan Romik
http://arxiv.org/abs/1902.06373
Bi -orthogonal Polynomials and the Five parameter Asymmetric Simple Exclusion Process
R. Brak, W. Moore
http://arxiv.org/abs/1902.06439
2-parameter τ-function for the first Painlevé equation - Topological recursion and direct monodromy problem via exact WKB analysis
Kohei Iwaki
http://arxiv.org/abs/1902.06619
Cardy-like asymptotics of the $4 \mathrm{~d} \mathcal{N}=4$ index and AdS_{5} blackholes
Arash Arabi Ardehali
http://arxiv.org/abs/1902.06677
Poisson semi groups for the modified Bessel operator, with Morse potential and on the hyperbolic space
Adam Zakria, Ibrahim-Elkhalil Ahmed, Mohamed Vall El-Moustapha
http://arxiv.org/abs/1902.06690
General series identities, some additive theorems on hypergeometric functions and their applications
Mohammad Idris Qureshi, Saima Jabee, Mohammad Shadab
http://arxiv.org/abs/1902.06695
Notes on the Riemann zeta function
Tanfer Tanriverdi
http://arxiv.org/abs/1902.06763
Special values of generalized multiple Hurwitz zeta function at non-positive integers
Sadaoui Boualem
http://arxiv.org/abs/1902.06840
Central limit theorems for multivariate Bessel processes in the freezing regime II: the covariance matrices
Sergio Andraus, Michael Voit
http://arxiv.org/abs/1902.06885
On the Limits of a Generalized Harmonic Progression
Jose Risomar Sousa
http://arxiv.org/abs/1902.08129
A Mean Field Theory of Batch Normalization
Greg Yang, Jeffrey Pennington, Vinay Rao, Jascha Sohl-Dickstein, Samuel S. Schoenholz
http://arxiv.org/abs/1902.08162
Asymptotics of Hankel determinants with a Laguerre-type or Jacobi-type potential and Fisher-Hartwig singularities
Christophe Charlier, Roozbeh Gharakhloo
http://arxiv.org/abs/1902.08250
Adapting free-space fast multipole method for layered media Green's function: algorithm and analysis
Min Hyung Cho, Jingfang Huang
http://arxiv.org/abs/1902.08690
Explicit unconditionally stable methods for the heat equation via potential theory
Alex H. Barnett, Charles L. Epstein, Leslie Greengard, Shidong Jiang, Jun Wang
http://arxiv.org/abs/1902.09042
Classical discrete symplectic ensembles on the linear and exponential lattice: skew orthogonal polynomials and correlation functions
Peter J Forrester, Shi-Hao Li
http://arxiv.org/abs/1902.09231
An Asymptotic Formula for Chebyshev Theta Function
Aditya Ghosh
http://arxiv.org/abs/1902.09945
On a novel class of polyanalytic Hermite polynomials
Abdelhadi Benahmadi, Allal Ghanmi
http://arxiv.org/abs/1902.09979
Radii of starlikeness and convexity of generalized k-Bessel functions
Evrim Toklu
http://arxiv.org/abs/1902.09994
Summation formula for generalized discrete q-Hermite II polynomials
Sama Arjika
http://arxiv.org/abs/1902.10362
Dilations of q-commuting unitaries
Malte Gerhold, Orr Shalit
http://arxiv.org/abs/1902.11220
Hypergeometric identities arising from the elephant random walk Bernard Bercu, Marie-Line Chabanol, Jean-Jacques Ruch
http://arxiv.org/abs/1902.11283
On primary Carmichael numbers
Bernd C. Kellner
Topic \#8 —— OP - SF Net 26.2 —— March 15, 2019

From: OP-SF Net Editors
Subject: Submitting contributions to OP-SF NET and SIAM-OPSF (OP-SF Talk)

To contribute a news item to OP-SF NET, send e-mail to one of the OP-SF Editors howard.cohl@nist.gov, or spost@hawaii.edu.

Contributions to OP-SF NET 26.3 should be sent by May 1, 2019.
OP-SF NET is an electronic newsletter of the SIAM Activity Group on Special Functions and Orthogonal Polynomials. We disseminate your contributions on anything of interest to the special functions and orthogonal polynomials community. This includes announcements of conferences, forthcoming books, new software, electronic archives, research questions, and job openings as well as news about new appointments, promotions, research visitors, awards and prizes. OP-SF Net is transmitted periodically through a post to SIAM-OPSF (OP-SF Talk).

SIAM-OPSF (OP-SF Talk) is a listserv of the SIAM Activity Group on Special Functions and Orthogonal Polynomials, which facilitates communication among members, and friends of the Activity Group. See the previous Topic. To post an item to the listserv, send e-mail to siam-opsf@siam.org.

WWW home page of this Activity Group:
http://math.nist.gov/opsf
Information on joining SIAM and this activity group: service@siam.org

The elected Officers of the Activity Group (2017-2019) are:
Walter Van Assche, Chair
Andrei Martínez-Finkelshtein, Vice Chair
Sarah Post, Program Director
Yuan Xu, Secretary
The appointed officers are:
Howard Cohl, OP-SF NET co-editor
Sarah Post, OP-SF NET co-editor
Diego Dominici, OP-SF Talk moderator
Bonita Saunders, Webmaster and OP-SF Talk moderator
Topic \#9 __ OP - SF Net 26.2 ___ March 15, 2019

From: OP-SF Net Editors
Subject: Thought of the Month by Robert A. Heinlein

Anyone who cannot cope with mathematics is not fully human. At best, he is a tolerable subhuman who has learned to wear his shoes, bathe, and not make messes in the house.

Robert A. Heinlein (1978), taken from The Notebooks of Lazarus Long, Ace Books.
Contributed by James McLaughlin.

