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1. Classical orthogonal polynomials

1.1. Shift operators. Let (a, b) be an open interval and let two systems of monic
orthogonal polynomials {pn}∞n=0 and {qn}∞n=0 be defined with respect to strictly positive
weight functions w respectively w1 on (a, b). Suppose that w is continuous and w1 is
continuously differentiable on (a, b). Under suitable boundary assumptions on w and w1,
integration by parts yields∫ b

a

p′n(x) qm−1(x)w1(x) dx = −
∫ b

a

pn(x)w(x)−1
d

dx

(
w1(x) qm−1(x)

)
w(x) dx (1.1)

without stock terms. Suppose that

w(x)−1
d

dx

(
w1(x)xn−1

)
= an x

n + polynomial of degree < n (1.2)

for certain an 6= 0. Then (1.1) and (1.2) together with the orthogonality properties of
{pn}∞n=0 and {qn}∞n=0 yield that

p′n(x) = n qn−1(x) (1.3)

and

w(x)−1
d

dx

(
w1(x) qn−1(x)

)
= an pn(x). (1.4)

The pair of operators D− and D+ defined by

(D−f)(x) := f ′(x), (1.5)

(D+f)(x) :=

(
w(x)−1

d

dx
◦ w1(x)

)
f(x) =

w1(x)

w(x)
f ′(x) +

w′1(x)

w(x)
f(x), (1.6)

will be called a pair of shift operators. So we have:
adjointness:∫ b

a

(D−f)(x) g(x)w1(x) dx = −
∫ b

a

f(x) (D+g)(x)w(x) dx, f , g polynomials, (1.7)

shift formulas:
D−pn = n qn−1, D+qn−1 = an pn, (1.8)

second order differential equation:

(D+ ◦D−)pn = nan pn, (1.9)

relation between squared L2-norms:

n

∫ b

a

(qn−1(x))2 w1(x) dx = −an
∫ b

a

(pn(x))2 w(x) dx. (1.10)

The following cases are examples for which the above considerations are valid:
(i) Jacobi: (a, b) = (−1, 1), w(x) = (1− x)α(1 + x)β , w1(x) = (1− x2)w(x), α, β > −1.

(ii) Laguerre: (a, b) = (0,∞), w(x) = xαe−x, w1(x) = xw(x), α > −1.

(iii) Hermite: (a, b) = (−∞,∞), w(x) = w1(x) = e−x
2

.
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Exercise. Show that these three cases are essentially the only cases which satisfy the
above conditions.

Note that in each of the three cases we can iterate, i.e., we can associate with the
weight function w1 again another weight function such that the new pair saisfies the above
conditions.

1.2. Jacobi polynomials. Let α, β > −1. Let a, b, w and w1 be as in case (i) above.
Note that the integral of w over (−1, 1) is a variant of the beta integral:∫ 1

−1
(1− x)α (1 + x)β dx =

2α+β+1 Γ(α+ 1) Γ(β + 1)

Γ(α+ β + 2)
. (1.11)

Denote the monic orthogonal polynomials on (−1, 1) with respect to the weight function

w by p
(α,β)
n (monic Jacobi polynomials). Then the raising shift operator D+ = D

(α,β)
+ is

given by

(D
(α,β)
+ f)(x) =

(
(1− x)−α(1 + x)−β

d

dx
◦ (1− x)α+1(1 + x)β+1

)
f(x) (1.12)

= (1− x2) f ′(x) + (β − α− (α+ β + 2)x) f(x). (1.13)

Hence an = −(n+ α+ β + 1) and the shift relations become:

d

dx
p(α,β)n (x) = n p

(α+1,β+1)
n−1 (x), (1.14)

(
(1− x)−α(1 + x)−β

d

dx
◦ (1− x)α+1(1 + x)β+1

)
p
(α+1,β+1)
n−1 (x)

=
(

(1− x2)
d

dx
+ (β − α− (α+ β + 2)x)

)
p
(α+1,β+1)
n−1 (x)

= −(n+ α+ β + 1) p(α,β)n (x). (1.15)

The second order differential equation becomes(
(1− x2)

d2

dx2
+ (β − α− (α+ β + 2)x)

d

dx

)
p(α,β)n (x) = −n(n+ α+ β + 1) p(α,β)n (x).

(1.16)
Iteration of (1.15) yields the Rodrigues formula

p(α,β)n (x) =
(−1)n

(n+ α+ β + 1)n
(1− x)−α(1 + x)−β

dn

dxn
{

(1− x)α+n (1 + x)β+n
}
. (1.17)

Formula (1.10) yields the recurrence∫ 1

−1

(
p(α,β)n (x)

)2
(1− x)α(1 + x)β dx

=
n

n+ α+ β + 1

∫ 1

−1

(
p
(α+1,β+1)
n−1 (x)

)2
(1− x)α+1(1 + x)β+1 dx. (1.18)
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Iteration of (1.18) and combination with (1.11) yields∫ 1

−1
(
p
(α,β)
n (x)

)2
(1− x)α(1 + x)β dx∫ 1

−1(1− x)α(1 + x)β dx
=

22n n! (α+ 1)n (β + 1)n
(α+ β + 2)2n (n+ α+ β + 1)n

. (1.19)

Consider (1.15) for x = 1. This yields the recurrence

−2(α+ 1) p
(α+1,β+1)
n−1 (1) = −(n+ α+ β + 1) p(α,β)n (1). (1.20)

By iteration we obtain

p(α,β)n (1) =
2n (α+ 1)n

(n+ α+ β + 1)n
. (1.21)

By Taylor expansion and by use of (1.14) and (1.21) we obtain

p(α,β)n (x) =

n∑
k=0

(x− 1)k

k!

(
d

dx

)k
p(α,β)n (x)

∣∣∣
x=1

=
n∑
k=0

(x− 1)k

k!

n!

(n− k)!
p
(α+k,β+k)
n−k (1)

=

n∑
k=0

n! 2n−k (α+ k + 1)n−k (x− 1)k

k! (n− k)! (n+ α+ β + k + 1)n−k

=
2n (α+ 1)n

(n+ α+ β + 1)n

n∑
k=0

(−n)k (n+ α+ β + 1)k
(α+ 1)k k!

(
1− x

2

)k
. (1.22)

From (1.22) and (1.21) we obtain

p
(α,β)
n (x)

p
(α,β)
n (1)

=

n∑
k=0

(−n)k (n+ α+ β + 1)k
(α+ 1)k k!

(
1− x

2

)k
(1.23)

= 2F1(−n, n+ α+ β + 1;α+ 1; (1− x)/2). (1.24)

The standard normalization of Jacobi polynomials is different from the monic normal-

ization. Write P
(α,β)
n for the constant multiple of p

(α,β)
n such that

P (α,β)
n (1) =

(α+ 1)n
n!

. (1.25)

Then, by (1.21) and (1.25),

P (α,β)
n (x) =

(n+ α+ β + 1)n
2n n!

p(α,β)n (x) (1.26)

=
(n+ α+ β + 1)n

2n n!
xn + lower degree terms. (1.27)

From (1.25) and (1.24) we obtain:

P (α,β)
n (x) =

(α+ 1)n
n!

2F1(−n, n+ α+ β + 1;α+ 1; (1− x)/2). (1.28)

One might now rewrite all previous formulas in terms of these renormalized Jacobi polyno-
mials. See Temme, vraagstuk 5.4, (5.29), (5.18), vraagstuk 5.11 for the rewriting of (1.14),
(1.16), (1.17), (1.19), respectively.
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1.3. Laguerre and Hermite polynomials. Consider now the Laguerre example (ii)
and the Hermite example (iii) in §1.1. These suggest to introduce monic Laguerre polyno-
mials lαn which are orthogonal on (0,∞) with respect to the weight function x 7→ xα e−x

(α > −1), and monic Hermite polynomials hn which are orthogonal on (−∞,∞) with

respect to the weight function x 7→ e−x
2

. For these two classes of polynomials we may now
imitate what we have done for Jacobi polynomials in §1.2. In particular, the raising shift
formulas now become (

x
d

dx
+ (α+ 1− x)

)
lα+1
n−1(x) = −lαn(x), (1.29)

( d
dx
− 2x

)
hn−1(x) = −2hn(x). (1.30)

The Laguerre analogues of (1.21), (1.23) and (1.24) are

lαn(0) =(−1)n (α+ 1)n, (1.31)

lαn(x)

lαn(0)
=

n∑
k=0

(−n)k x
k

(α+ 1)k k!
(1.32)

=1F1(−n;α+ 1;x). (1.33)

In (1.33) appears an 1F1 hypergeometric function, a so-called confluent hypergeometric
function. When we compare (1.21) and (1.23) with (1.31) and (1.32) then we can conclude
that the following limit relation holds:

lim
β→∞

(−β/2)n p(α,β)n (1− 2x/β) = lαn(x). (1.34)

This limit transition can also be read off from the weight functions, at least formally. The

polynomials x 7→ p
(α,β)
n (1− 2x/β) are orthogonal on the interval (0, β) with respect to the

weight function x 7→ xα(1 − x/β)β . This tends formally, as β → ∞, to an orthogonality
on (0,∞) with respect to the weight function xαe−x.

Laguerre polynomials are usually normalized as Lαn = const. lαn such that

Lαn(0) =
(α+ 1)n

n!
. (1.35)

Then, by (1.31) and (1.35),

Lαn(x) =
(−1)n

n!
lαn(x). (1.36)

There is no analogue of (1.20) and (1.21) for Hermite polynomials. The usual normal-
ization of Hermite polynomials is by the definition

Hn(x) := 2n hn(x). (1.37)

1.4. Quadratic transformations. We formulate two propositions which follow very
easily from the definition of a system of orthogonal polynomials.
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Proposition 1.1 Let {pn}∞n=0 be a system of monic orthogonal polynomials with respect
to a weight function w on an interval (−a, a). Put v(x) := w(−x). Then the polynomials
x 7→ (−1)n pn(−x) are monic orthogonal polynomials with respect to the weight function
v on the interval (−a, a). If the weight function w is even (i.e., w(x) = w(−x)) then pn is
an even or odd function according to whether n is even or odd.

This proposition immediately implies that

p(α,β)n (−x) = (−1)n p(β,α)n (x). (1.38)

Proposition 1.2 Let {pn}∞n=0 be a system of monic orthogonal polynomials with respect
to an even weight function w on an interval (−a, a). Put

qn(x2) := p2n(x), rn(x2) := x−1 p2n+1(x). (1.39)

Define weight functions v1 and v2 on (0, a2) by

v1(x2) := x−1 w(x), v2(x2) := xw(x). (1.40)

Then the polynomials qn are monic orthogonal polynomials on (0, a2) with respect to the
weight function v1 and the polynomials rn are monic orthogonal polynomials on (0, a2)
with respect to the weight function v2.

As a corollary we obtain the following quadratic transformations:

p
(α,− 1

2 )
n (2x2 − 1) = 2n p

(α,α)
2n (x), (1.41)

x p
(α, 12 )
n (2x2 − 1) = 2n p

(α,α)
2n+1(x), (1.42)

l
− 1

2
n (x2) = h2n(x), (1.43)

x l
1
2
n (x2) = h2n+1(x). (1.44)

Exercise. Combination of (1.31) and (1.32) with (1.43) and (1.44) yields an expansion
of hn(x) in terms of powers of x. Derive this. In a similar way, derive an expansion of

p
(α,α)
n (x) in terms of powers of x.

It follows by combination of (1.41)–(1.44), (1.38) and (1.34) that there is the limit
transition

lim
α→∞

α
1
2n p(α,α)n (α−

1
2x) = hn(x). (1.45)
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2. Standard formuals for classical orthogonal polynomials

2.1. Jacobi polynomials.

Definition: Let α, β > −1. The Jacobi polynomial P
(α,β)
n is the polynomial of degree n

such that ∫ 1

−1
Pα,βn (x)xk (1− x)α (1 + x)β dx = 0 for k = 0, 1, . . . , n− 1, (2.1)

and

P (α,β)
n (1) =

(α+ 1)n
n!

. (2.2)

Explicit expression:

P (α,β)
n (x) = P (α,β)

n (1) 2F1(−n, n+ α+ β + 1;α+ 1; 1
2 (1− x)) (2.3)

=
(α+ 1)n

n!

n∑
k=0

(−n)k (n+ α+ β + 1)k
(α+ 1)k k!

(
1− x

2

)k
. (2.4)

=
(n+ α+ β + 1)n

2n n!
xn + terms of lower degree. (2.5)

Shift operators:

d

dx
P (α,β)
n (x) = 1

2 (n+ α+ β + 1)P
(α+1,β+1)
n−1 (x) if n > 0 and = 0 if n = 0, (2.6)

d

dx

[
(1− x)α+1 (1 + x)β+1 P

(α+1,β+1)
n−1 (x)

]
= −2n (1− x)α (1 + x)β P (α,β)

n (x). (2.7)

Differential equation:(
(1− x2)

(
d

dx

)2

+ (β − α− (α+ β + 2)x)
d

dx

)
P (α,β)
n (x) = −n(n+α+β+1)P (α,β)

n (x).

(2.8)

Rodrigues formula:

P (α,β)
n (x) =

(−1)n

2n n!
(1− x)−α (1 + x)−β

(
d

dx

)n [
(1− x)n+α (1 + x)n+β

]
. (2.9)

Orthogonality relations:

Γ(α+ β + 2)

2α+β+1 Γ(α+ 1) Γ(β + 1)

∫ 1

−1
Pα,βm (x)Pα,βn (x) (1− x)α (1 + x)β dx

= δm,n
(α+ 1)n (β + 1)n (n+ α+ β + 1)n

(α+ β + 2)2n n!
. (2.10)
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Symmetry relation and value at −1:

P (α,β)
n (−x) = (−1)n P (β,α)

n (x), P (α,β)
n (−1) =

(−1)n (β + 1)n
n!

. (2.11)

Three-term recurrence relation:

xP (α,β)
n (x) =

2(n+ 1) (n+ α+ β + 1)

(2n+ α+ β + 1) (2n+ α+ β + 2)
P

(α,β)
n+1 (x)

+
β2 − α2

(2n+ α+ β) (2n+ α+ β + 2)
P (α,β)
n (x)

+
2(n+ α) (n+ β)

(2n+ α+ β) (2n+ α+ β + 1)
P

(α,β)
n−1 (x). (2.12)

Quadratic transformations:

P
(α,α)
2n (x)

P
(α,α)
2n (1)

=
P

(α,− 1
2 )

n (2x2 − 1)

P
(α,− 1

2 )
n (1)

, (2.13)

P
(α,α)
2n+1 (x)

P
(α,α)
2n+1 (1)

=
xP

(α, 12 )
n (2x2 − 1)

P
(α, 12 )
n (1)

. (2.14)

Gegenbauer or ultraspherical polynomials:

Cλn(x) :=
(2λ)n

(λ+ 1
2 )n

P
(λ− 1

2 ,λ−
1
2 )

n (x), λ 6= 0. (2.15)

Legendre polynomials:

Pn(x) := P (0,0)
n (x) = C

1
2
n (x). (2.16)

Chebyshev polynomials of first and second kind:

Tn(cos θ) := cos(nθ) =
P

(− 1
2 ,−

1
2 )

n (cos θ)

P
(− 1

2 ,−
1
2 )

n (1)
, (2.17)

Un(cos θ) :=
sin((n+ 1)θ)

sin θ
=

(n+ 1)P
( 1
2 ,

1
2 )

n (cos θ)

P
( 1
2 ,

1
2 )

n (1)
. (2.18)

Power series in x for Gegenbauer polynomials:

P (α,α)
n (x) =

(n+ 2α+ 1)n
2n n!

xn 2F1

[
− 1

2n,−
1
2n+ 1

2

−n− α+ 1
2

;x−2

]
(2.19)

=
(α+ 1)n
(2α+ 1)n

[n/2]∑
k=0

(−1)k (α+ 1
2 )n−k

k! (n− 2k)!
(2x)n−2k. (2.20)
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Generating functions:

∞∑
n=0

P (α,β)
n (x)wn = 2α+β R−1 (1−w+R)−α (1 +w+R)−β , x ∈ [−1, 1], |w| < 1, (2.21)

where
R := (1− 2xw + w2)

1
2 , (2.22)

∞∑
n=0

(α+ β + 1)n
(α+ 1)n

P (α,β)
n (x)wn = (1− w)−α−β−1

×2F1

[ 1
2 (α+ β + 1), 12 (α+ β + 2)

α+ 1
;

2w(x− 1)

(1− w)2

]
, x ∈ [−1, 1], |w| < 1, (2.23)

∞∑
n=0

(2α+ 1)n
(α+ 1)n

P (α,α)
n (x)wn =

∞∑
n=0

C
α+ 1

2
n (x)wn = (1− 2wx+ w2)−α−

1
2 ,

x ∈ [−1, 1], |w| < 1.

(2.24)

Limit formula:

lim
α→∞

P
(α,β)
n (x)

P
(α,β)
n (1)

=

(
1 + x

2

)n
. (2.25)

2.2. Laguerre polynomials.

Definition: Let α > −1. The Laguerre polynomial Lαn is the polynomial of degree n such
that ∫ ∞

0

Lαn(x)xk xα e−x dx = 0 for k = 0, 1, . . . , n− 1, (2.26)

and

Lαn(0) =
(α+ 1)n

n!
. (2.27)

Explicit expression:

Lαn(x) = Lαn(0) 1F1(−n;α+ 1;x) (2.28)

=
(α+ 1)n

n!

n∑
k=0

(−n)k
(α+ 1)k k!

xk. (2.29)

=
(−1)n

n!
xn + terms of lower degree. (2.30)

Shift operators:

d

dx
Lαn(x) = −Lα+1

n−1(x) if n > 0 and = 0 if n = 0, (2.31)

d

dx

[
xα+1 e−x Lα+1

n−1(x)
]

= nxα e−x Lαn(x). (2.32)



–9–

Differential equation:(
x

(
d

dx

)2

+ (α+ 1− x)
d

dx

)
Lαn(x) = −nLαn(x). (2.33)

Rodrigues formula:

Lαn(x) =
1

n!
x−α ex

(
d

dx

)n [
xn+α e−x

]
. (2.34)

Orthogonality relations:

1

Γ(α+ 1)

∫ ∞
0

Lαm(x)Lαn(x)xα e−x dx = δm,n
(α+ 1)n

n!
. (2.35)

Three-term recurrence relation:

xLαn(x) = −(n+ 1)Lαn+1(x) + (2n+ α+ 1)Lαn(x)− (n+ α)Lαn−1(x). (2.36)

Limit formula:

lim
β→∞

P (α,β)
n (1− 2β−1x) = Lαn(x). (2.37)

Generating functions:

∞∑
n=0

Lαn(x)wn = (1− w)−α−1 exp
xw

w − 1
, |w| < 1, (2.38)

∞∑
n=0

Lαn(x)wn

(α+ 1)n
= ew 0F1(−;α+ 1;−wx). (2.39)

2.3. Hermite polynomials.

Definition: The Hermite polynomial Hn is the polynomial of degree n such that∫ ∞
−∞

Hn(x)xk e−x
2

dx = 0 for k = 0, 1, . . . , n− 1, (2.40)

and

Hn(x) = 2n xn + terms of lower degree. (2.41)

Quadratic transformations

H2n(x) = (−1)n 22n n!L
− 1

2
n (x2), (2.42)

H2n+1(x) = (−1)n 22n+1 n!xL
1
2
n (x2). (2.43)
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Explicit expression:

Hn(x) = (2x)n 2F0(− 1
2n,−

1
2n+ 1

2 ;−;−x−2) (2.44)

= n!

[ 12n]∑
k=0

(−1)k (2x)n−2k

k! (n− 2k)!
. (2.45)

Shift operators:

d

dx
Hn(x) = 2nHn−1(x) if n > 0 and = 0 if n = 0, (2.46)

d

dx

[
e−x

2

Hn−1(x)
]

= −e−x
2

Hn(x). (2.47)

Differential equation: ((
d

dx

)2

− 2x
d

dx

)
Hn(x) = −2nHn(x). (2.48)

Rodrigues formula:

Hn(x) = (−1)n ex
2

(
d

dx

)n [
e−x

2
]
. (2.49)

Orthogonality relations:

π−
1
2

∫ ∞
−∞

Hm(x)Hn(x) e−x
2

dx = δm,n 2n n! . (2.50)

Three-term recurrence relation:

xHn(x) = 1
2 Hn+1(x) + nHn−1(x). (2.51)

Limit formulas:

lim
α→∞

α−
1
2n P (α,α)

n (α−
1
2x) =

Hn(x)

2n n!
, (2.52)

lim
α→∞

(2α)−
1
2n Lαn((2α)

1
2 x+ α) =

(−1)n

2n n!
Hn(x). (2.53)

Generating function:
∞∑
n=0

Hn(x)wn

n!
= exp(2xw − w2). (2.54)
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3. Bessel functions

Consider the Fourier transform pair for functions in the Schwartz class S(Rd):

g(ξ) = (2π)−
1
2d

∫
Rd

f(x) e−i x.ξ dx, (3.1)

f(x) = (2π)−
1
2d

∫
Rd

g(ξ) ei x.ξ dξ. (3.2)

Observe that f is moreover a radial function iff g is moreover a radial function and that
then f(x) = F (|x|), g(ξ) = G(|ξ|) for certain even functions F,G ∈ S(R). A computation
shows that then (3.1) can be rewritten in the form

G(ρ) = (2π)−
1
2d

∫ ∞
0

F (r)K(r, ρ) rd−1 dr,

where

K(r, ρ) :=

∫
Sd−1

e−irρ x
′.e1 dω(x′) (3.3)

= vol(Sd−2)

∫ 1

−1
e−irρt (1− t2)

1
2 (d−3) dt,

Sd−1 is de unit sphere in Rd, and the measure dω is the volume element on Sd−1, and

vol(Sd−2) =
2π

1
2 (d−1)

Γ( 1
2 (d− 1))

.

Put
Jα(z) := 0F1(α+ 1;−z2/4), z ∈ C.

Apart from some elementary factors this is a Bessel function. An easy computation shows
that

Jα(z) =
Γ(α+ 1)

Γ(α+ 1
2 ) Γ( 1

2 )

∫ 1

−1
e−izt (1− t2)α−

1
2 dt, Reα > − 1

2 .

Hence,

K(r, ρ) =
(2π)

1
2d

2
1
2 (d−1) Γ( 1

2d)
J 1

2d−1
(rρ). (3.4)

Thus, in the radial case, we can rewrite the transform pair (3.1)–(3.2) in the form

G(ρ) =
1

2
1
2 (d−1) Γ( 1

2d)

∫ ∞
0

F (r)J 1
2d−1

(rρ) rd−1 dr, (3.5)

F (r) =
1

2
1
2 (d−1) Γ( 1

2d)

∫ ∞
0

G(ρ)J 1
2d−1

(rρ) ρd−1 dρ. (3.6)
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This transform pair is known as the Hankel transform pair, and it remains valid for arbi-
trary real d > 0, but this will not be proved here.

It follows from (3.3), (3.4) that

J 1
2d−1

(|x|) =
1

vol(Sd−1)

∫
Sd−1

e−i x.y
′
dω(y′), x ∈ Rd. (3.7)

Hence
(∆ + 1)

[
J 1

2d−1
(|x|)

]
= 0, (3.8)

where ∆ is the Laplace operator on Rd. By taking radial parts we find that(
d2

dr2
+
d− 1

r

d

dr
+ 1

)
J 1

2d−1
(r) = 0. (3.9)

It is easily verified that (3.9) remains valid for more general real or complex values of d.
Consider now the operator in (3.8) for d = 2, but acting on a function which is not

necessarily radial: (
∂2

∂x2
+

∂2

∂y2
+ 1

)
F (x, y) = 0.

If F (r cos θ, r sin θ) = f(r) einθ (n ∈ Z) then we find the following differential equation for
f(r):

r2 f ′′(r) + r f ′(r) + (r2 − n2) f(r) = 0.

A possible solution is

f(r) = r|n| 0F1(|n|+ 1;−r2/4) = r|n| J|n|(r).

This outcome is a possible historical explanation for the following convention of defining
the Bessel function of order α:

Jα(z) :=
zα

2αΓ(α+ 1)
0F1(α+ 1;−z2/4) (3.10)

=

∞∑
k=0

(−1)k (z2/4)k+
1
2α

Γ(α+ k + 1) k!
. (3.11)

For unique determination of zα in case of non-integer α we take | arg z| < π. Observe that
(3.11) remains meaningful if α = −n ∈ {−1,−2, . . .}. The summation then starts with
k = n and we obtain

J−n(z) = (−1)n Jn(z).

In the case d = 2 formula (3.7) can be rewritten as

J0(r) =
1

2π

∫ 2π

0

eir sin θ dθ.
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Hence, in the Fourier series

eir sin θ =
∞∑

n=−∞
einθ fn(r)

we have f0(r) = J0(r). It is easily seen that ∆+1 acting on the function (r cos θ, r sin θ) 7→
einθ fn(r) yields zero. Thus possibly fn(r) = const. Jn(r). The constant is even equal to
1. Indeed, straightforward computation yields that

exp( 1
2z(t− t

−1)) =

∞∑
n=−∞

tn Jn(z). (3.12)

This formula can be viewed as a generating function for Bessel functions of integer order.
It gives a possible historical explanation for the choice of the constant factor in (3.10).

For Gaussian hypergeometric functions we have seen the quadratic transformation

2F1(a, b; 2b; z) = (1− z)− 1
2a 2F1

(
1
2a, b−

1
2a; b+ 1

2 ;
z2

4(z − 1)

)
, z /∈ [1,∞).

Replace z by z/a and let a→∞ in the above formula. We find at least formally, by taking
termwise limits, that

1F1(b; 2b; z) = e
1
2 z 0F1(b+ 1

2 ; z2/16). (3.13)

Formula (3.13) can be considered as a quadratic transformation between special 1F1-
functions and general 0F1 functions. The formula can also be seen as a corollary of a
quadratic transformation between the second order differential equation of 1F1 and of 0F1.
In this way, special solutions around 0 or∞ for the 0F1 differential equation can be related
to similar solutions for the 1F1 differential equation, and known integral representations
for solutions in the 1F1 case will yield integral representations fro solutions in the 0F1 case.
Formula (3.13) implies that

Jα(z) =
zα e−iz

2α Γ(α+ 1)
1F1(α+ 1

2 ; 2α+ 1; 2iz)

=
zα eiz

2α Γ(α+ 1)
1F1(α+ 1

2 ; 2α+ 1;−2iz).

Define the modified Bessel function by

Iα(z) :=
zα

2αΓ(α+ 1)
0F1(α+ 1; z2/4), | arg z| < π,

=e−
1
2απi Jα(iz), −π < arg z < 1

2π. (3.14)

Then Iα(z) is a solution f(z) of the differential equation

z2 f ′′(z) + z f ′(z)− (z2 + α2) f(z) = 0. (3.15)

Note that solutions f of (3.15) correspond to solutions g of the differential equation

w g′′(w) + (2α+ 1− w) g′(w)− (α+ 1
2 ) g(w) = 0

under the identification
f(z) = const. zα e−z g(2z).

We now discuss some special cases of this correspondence.
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Case 1. If

g(w) = 1F1(α+ 1
2 ; 2α+ 1;w)

= 1 +O(|w|), |w| → 0,

=
Γ(2α+ 1)

Γ(α+ 1
2 )

ew w−α−
1
2 (1 +O(|w|−1)), |w| → ∞, | argw| < π/2,

=
Γ(2α+ 1)

Γ(α+ 1
2 )2

∫ 1

0

esw sα−
1
2 (1− s)α− 1

2 ds, Reα > − 1
2 ,

then

f(z) =
zα e−z

2α Γ(α+ 1)
g(2z)

= Iα(z)

=
zα

2αΓ(α+ 1)
(1 +O(|z|)), |z| → 0, | arg z| < π,

= (2π)−
1
2 z−

1
2 ez (1 +O(|z|−1)), |z| → ∞, | arg z| < 1

2π

=
zα

π
1
2 2α Γ(α+ 1

2 )

∫ 1

−1
etz (1− t2)α−

1
2 dt, Reα > − 1

2 .

Case 2. If

g(w) = w−2α 1F1(α+ 1
2 ;−2α+ 1;w), | argw| < π,

= w−2α(1 +O(|w|)), |w| → 0, | argw| < π,

=
Γ(−2α+ 1)

Γ(−α+ 1
2 )

ew w−α−
1
2 (1 +O(|w|−1)), |w| → ∞, | argw| < 1

2π,

then

f(z) =
23α

Γ(1− α)
zα e−z g(2z)

= I−α(z)

=
2α z−α

Γ(1− α)
(1 +O(|z|)), |z| → 0, | arg z| < π,

= (2π)−
1
2 z−

1
2 ez (1 +O(|z|−1)), | arg z| < 1

2π.

Case 3. If

g(w) = U(α+ 1
2 , 2α+ 1, w)

= w−α−
1
2 (1 +O(|w|−1)), |w| → ∞, | argw| < 3π/2,

=
1

Γ(α+ 1
2 )

∫ ∞
0

e−sw sα−
1
2 (1 + s)α−

1
2 ds, Reα > − 1

2 , Rew > 0,
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then

f(z) = π
1
2 (2z)α e−z g(2z)

= π
1
2 (2z)α e−z U(α+ 1

2 , 2α+ 1, 2z) (3.16)

= Kα(z) (3.17)

= (π/2)
1
2 z−

1
2 e−z (1 +O(|z|−1)), |z| → ∞, | arg z| < 3π/2. (3.18)

=
π

1
2 zα

2α Γ(α+ 1
2 )

∫ ∞
1

e−tz (t2 − 1)α−
1
2 dt.

Here, in (3.17), the function Kα is the Macdonald function or modified Bessel function
of the third kind, which is defined either by (3.16) in terms of a U(a, c, . ) function or
characterized as the solution f of the differential equation (3.15) with asymptotic behaviour
(3.18).

Case 4. Now observe that the differential equation (3.15) is invariant under the transforma-
tion z 7→ −z, i.e., if f is a solution then so are the functions z 7→ f(eiπz) and z 7→ f(e−iπz).
)Note that we cannot simply write f(−z), since a solution f of (3.15) may be multi-valued
on C\{0}.) Hence we obtain from Case 3 the following solution f of (3.15).

f(z) = Kα(eiπz)

= π
1
2 eiπα 2α zα ez U(α+ 1

2 , 2α+ 1, 2eiπz)

= (π/2)
1
2 i−1 z−

1
2 ez (1 +O(|z|−1)), |z| → ∞, −5π/2 < arg z < π/2.

In order to express Iα in terms of Kα and K−α and to give the asymptotics of Kα(z)
as |z| → ∞ for a wider region than | arg z| < π/2, we will extend some of the earlier results
for solutions f of the confluent hypergeometric differential equation

z f ′′(z) + (c− z) f ′(z)− a f(z) = 0. (3.19)

Remember the formula

U(a, c, z) =
Γ(1− c)

Γ(a− c+ 1)
1F1(a; c; z) +

Γ(c− 1)

Γ(a)
z1−c 1F1(a− c+ 1; 2− c; z), | arg z| < π.

(3.20)
Replace in this formula z by eiπz, replace a by c− a, multiply both sides next by ez, and
then apply the transformation formula

1F1(a; c; z) = ez 1F1(c− a; c;−z)

to the right-hand side twice. We obtain

ez U(c− a,c, eiπz) =
Γ(1− c)
Γ(1− a)

1F1(a; c; z)

+
Γ(c− 1)

Γ(c− a)
eiπ(1−c) z1−c 1F1(a− c+ 1; 2− c; z), −2π < arg z < 0.

(3.21)
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Since the left-hand side of (3.21) is written as a linear combination of two solutions of
(3.19), it is a solution of (3.19) itself. Now eliminate z1−c 1F1(a−c+1; 2−c; z) from (3.20)
and (3.21). We obtain

1F1(a; c; z)

=
e−iπa Γ(c)

Γ(c− a)
U(a, c, z) +

eiπ(c−a) Γ(c)

Γ(a)
ez U(c− a, c, eiπz), −π < arg z < 0, (3.22)

=
e−iπa Γ(c)

Γ(c− a)
z−a (1 +O(|z|−1))

+
Γ(c)

Γ(a)
zc−a ez (1 +O(|z|−1)), |z| → ∞, −π < arg z < 0. (3.23)

For the asymptotic formula (3.23) we have used the earlier result that

U(a, c, z) = z−a (1 +O(|z|−1)), |z| → ∞, | arg z| < 3π/2.

Note that (3.23) gives an extension to the earlier result

1F1(a; c; z) =
Γ(c)

Γ(a)
za−c ez (1 +O(|z|−1)), |z| → ∞, | arg z| < π/2.

Formulas (3.20), (3.21) and (3.22) only hold for generic values of a and c. If certain pa-
rameters or parameter differences become integer then solutions of (3.19) with logarithmic
terms will enter.

Substitution of the above cases 1, 2 and 3 in formula (3.20) will yield

Kα(z) =
π

2 sin(πα)
(I−α(z)− Iα(z)),

while substitution of cases 1 and 3 in formula (3.12) yield

Iα(z) = (iπ)−1 (e−iπαKα(z)−Kα(eiπz)), −π < arg z < 0. (3.24)

Now define the Hankel functions or Bessel functions of the third kind by

H(1)
α (z) :=

2e−
1
2απi

iπ
Kα(e−

1
2πiz), − 1

2π < z < 1
2π, (3.25)

H(2)
α (z) :=

−2e
1
2απi

iπ
Kα(e

1
2πiz), − 1

2π < z < 1
2π. (3.26)

Combination of (3.24) with (3.25), (3.26) and (3.14) yields

Jα(z) = 1
2 H

(1)
α (z) + 1

2 H
(2)
α (z), − 1

2π < z < 1
2π. (3.27)

From (3.25), (3.26) and (3.18) we obtain the asymptotic estimates

H(1)
α (z) = (1

2πz)
− 1

2 ei(z−
1
2πα−

1
4π) (1 +O(|z|−1)), |z| → ∞, −π < arg z < 2π, (3.28)

H(2)
α (z) = (1

2πz)
− 1

2 e−i(z−
1
2πα−

1
4π) (1 +O(|z|−1)), |z| → ∞, −2π < arg z < π. (3.29)
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Hence, combination of (3.27), (3.28), (3.29) yields the following asymptotic estimate for
the Bessel function:

Jα(x) = (1
2πx)−

1
2 cos(x− 1

2πα−
1
4π) (1 +O(|x|−1)), x→∞, x > 0. (3.30)

The functions Jα, H
(1)
α and H

(2)
α are solutions of the following differential equation

(which we gave earlier in the case of integer α).

z2 f ′′(z) + z f ′(z) + (z2 − α2) f(z) = 0. (3.31)

One other solution of (3.31) is the Neumann function or Bessel function of the second kind
given by

Yα(z) :=
1

2i
(H(1)

α (z)−H(2)
α (z)). (3.32)

For Yα there is by (3.28), (3.29), (3.32) an asymptotic estimate similar to (3.30):

Yα(x) = (1
2πx)−

1
2 sin(x− 1

2πα−
1
4π) (1 +O(|x|−1)), x→∞, x > 0. (3.33)

Since the differential equation (3.31) is invariant under the transformation α 7→ −α, the
function J−α is also a solution. We have seen earlier that J−α is a constant multiple of Jα
if α ∈ Z. For non-integer α there is the following relationship between the three solutions
Jα, J−α and Yα.

Yα(z) =
cos(απ) Jα(z)− J−α(z)

sin(απ)
.

This can be derived from (3.30) and (3.33).
Bessel functions can be obtained as limit cases of Jacobi polynomials:

lim
n→∞

P
(α,β)
n (1− x2/(2n2))

P
(α,β)
n (1)

= Jα(x). (3.34)

Indeed, this follows from

lim
n→∞ 2F1(−n, n+ α+ β + 1;α+ 1;x2/(4n2)) = 0F1(α+ 1;−x2/4).

We will give an indication how the orthogonality relations for Jacobi polynomials tend to
the Hankel transform pair. First observe that a refinement of (3.34) is given by

lim
N→∞

P
(α,β)
nN (1− x2/(2N2))

P
(α,β)
nN (1)

= Jα(λx) if lim
N→∞

nN
N

= λ.

Now let nN → λ, mN → µ as N → ∞ and assume that λ 6= µ. Then the orthogonality
relations for Jacobi polynomials imply that∫ 2N

0

P (α,β)
nN

(1− x2/(2N2))P (α,β)
mN

(1− x2/(2N2))x2α+1 (1− x2/(4N2))β dx = 0.

A formal limit transition as N →∞ would yield∫ ∞
0

Jα(λx)Jα(µx)x2α+1 dx = 0, λ 6= µ.

The above integral no longer converges, but formally it is directly related to the Hankel
transform pair.


