
College Quantumgroepen, Koornwinder, 17-9-96

Tensor fields on manifolds (tutorial)

C∞-manifolds. Let M be a C∞-manifold of dimension m. Thus M is a topological
space which is Hausdorff (i.e., distinct points have disjoint open neighbourhoods), and
each point has an open neighbourhood which is homeomorphic to some open part of R

m.
We can write this homeomorphism as p 7→ (x1(p), . . . , xm(p)) and we can consider the
x1, . . . , xm locally as coordinates on M . It is also required that, in case of overlap of two
sets on which coordinates, say (x1, . . . , xm) and (y1, . . . , ym), are given, the transition from
the x to the y coordinates is a C∞-diffeomorphism. There is one more technical condition:
M as a topological space is second countable, i.e., there is a countable collection of open
subsets Uj of M such that any open subset of M is a union of Uj ’s. (This implies that M
can have only countably many connected components.)

Vector fields. Let C∞(M) be the space of all real-valued C∞-functions on M . A vector

field (always assumed to be C∞) on M is a linear map X : f 7→ X(f): C∞(M) → C∞(M)
which can locally, in terms of coordinates (x1, . . . , xm), be written as

(X(f))(x) =
m

∑

j=1

aj(x)
∂f(x)

∂xj

with the functions aj being C∞. The commutator [X, Y ] := XY −Y X of two vector fields
X, Y is again a vector field. Write

Xx(f) := (X(f))(x).

Fix x ∈ M . Then, the linear functionals Xx: C∞(M) → R (X vector field) form an
m-dimensional real vector space, the so-called tangent space TxM . Locally, in terms of
coordinates (x1, . . . , xm), the ∂/∂xj evaluated at x form a basis of TxM .

Proposition X is a vector field on M iff X is a derivation of the algebra C∞(M), i.e.,
iff X : C∞(M) → C∞(M) is a linear map satisfying X(fg) = X(f) g + f X(g).

1-forms. The cotangent space T ∗
x M is the linear dual of TxM . Write the pairing as

〈 . , . 〉: TxM × T ∗
x M → R. Any f ∈ C∞(M) determines an element (df)x ∈ T ∗

x M by

〈Xx, (df)x〉 := Xx(f) (Xx ∈ TxM).

A 1-form (always assumed to be C∞) on M is an element ω = (ωx)x∈M with ωx ∈ T ∗
x M

such that the function x 7→ 〈Xx, ωx〉: M → R is C∞ for all vector fields X . We will write
this function as 〈X, ω〉, so

〈X, ω〉(x) = 〈Xx, ωx〉.

If f ∈ C∞(M) then df = ((df)x)x∈M is a 1-form and

〈X, df〉 = X(f).

Locally, in terms of coordinates (x1, . . . , xm), we can write

X =
∑

j

aj

∂

∂xj

, df =
∑

i

∂f

xi

dxi,

and

X(f) = 〈X, df〉 =
∑

i,j

aj

∂f

∂xi

〈∂/∂xj, dxi〉 =
∑

j

aj

∂f

∂xj

.
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Contravariant tensor fields. A contravariant tensor field of degree r (always assumed
to be C∞) on M is an element T = (Tx)x∈M with Tx ∈ (Tx)⊗r (r-fold tensor product)
such that the function x 7→ 〈Tx, (df1)x ⊗ · · · ⊗ (dfr)x〉 is C∞ for all f1, . . . , fr ∈ C∞(M).
Locally, in terms of coordinates (x1, . . . , xm), we can write

〈Tx, (df1)x ⊗ · · · ⊗ (dfr)x〉 =
∑

j1,...,jr

Tj1,...,jr
(x)

∂f1(x)

∂xj1

. . .
∂fr(x)

∂xjr

,

where the functions Tj1,...,jr
are C∞. By an r-vector field we mean an antisymmetric

contravariant tensor field of degree r. For r = 2 we speak about a bivector field.

Covariant tensor fields. A covariant tensor field of degree r (always assumed to be C∞)
on M is an element ω = (ωx)x∈M with ωx ∈ (T ∗

x )⊗r such that the function x 7→ 〈Tx, ωx〉
is C∞ for all contravariant tensor fields T of degree r. Locally, in terms of coordinates
(x1, . . . , xm), we can write

ωx =
∑

j1,...,jr

ωj1,...,jr
(x) dxj1 ⊗ · · · ⊗ dxjr

,

〈Tx, ωx〉 =
∑

j1,...,jr

Tj1,...,jr
(x) ωj1,...,jr

(x).

r-forms. An r-form is a covariant tensor field of degree r which is anti-symmetric. If
ω1, . . . , ωr are 1-forms then

ω1 ∧ ω2 ∧ . . . ∧ ωr :=
1

r!

∑

σ∈Sr

ε(σ)ωσ(1) ⊗ · · · ⊗ ωσ(r)

is an r-form. Here ε(σ) denotes the signum of the permutation σ. Note that, for σ ∈ Sr,

ωσ(1) ∧ ωσ(2) ∧ . . . ∧ ωσ(r) = ε(σ) ω1 ∧ ω2 ∧ . . . ∧ ωr.

Locally, in terms of coordinates (x1, . . . , xm), each r-form can be written in the form

ω = r!
∑

j1<j2<...<jr

ωj1,...,jr
dxj1 ∧ . . . ∧ dxjr

,

where the functions ωj1,...,jr
are C∞. Note that nonzero r-forms exist iff r ≤ m. The

differential dω of the above r-form ω is an (r + 1)-form given by

dω := r!
∑

j1<j2<...<jr

dωj1,...,jr
∧ dxj1 ∧ . . . ∧ dxjr

.

An r-form ω is called closed if dω = 0. We always have that d(dω) = 0.

Differential of a C∞-map. Let M and N be C∞-manifolds and let F : N → M be a
C∞-map. Let x ∈ N . Then the differential of F at x is the linear map dFx: TxN → TF (x)M
defined by

(dFx(Xx))(f) := Xx(f ◦ F ) (Xx ∈ Tx, f ∈ C∞(M)).

Hence
〈dFx(Xx), (df)F (x)〉 = 〈Xx, (d(f ◦ F ))x〉.
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Submanifold. Let M be a C∞-manifold. Let S be a subset of M and denote by
i: S → M the natural injection. The subset S is called a submanifold of M if S is a
C∞-manifold itself such that the map i: S → M is C∞ and, for all x ∈ S, the linear map
dix: TxS → TxM is injective. Thus the tangent space TxS can be identified with a linear
subspace of TxM . We will mostly deal with submanifolds which are regularly embedded,
i.e., with differentiable structure compatible with the topology inherited from M .

Let M have dimension m and let its regularly embedded submanifold S have dimension
s. It can be shown that each point of S has an open neighbourhood on which there are
coordinates x1, . . . , xm for M such that (x1, . . . , xm) ∈ S iff xs+1 = . . . = xm = 0, and
that then x1, . . . , xs are coordinates locally on S.

Integral curves. Let X be a vector field on a C∞-manifold M . Let α be a C∞-curve in
M , i.e., a C∞-map α: t 7→ α(t): (a, b) → M . Then the curve α is called an integral curve

of the vector field X if dαs(
d
dt

∣

∣

t=s
) = Xα(s) for all s ∈ (a, b), or equivalently, if

Xα(t)(f) =
d

dt
f(α(t))

for all f ∈ C∞(M) and all t ∈ (a, b). Locally, in terms of coordinates (x1, . . . , xm) we can
write

X =
∑

j

aj

∂

∂xj

and α(t) = (α1(t), . . . , αm(t)).

Then α is an integral curve of X iff α′
j(t) = aj(α(t)) for j = 1, . . . , m.

Additions to C&P, §1.1

Proposition Let M be a C∞-manifold. Then the identity

〈w, df ⊗ dg〉 = {f, g} (f, g ∈ C∞(M))

establishes a 1-1 correspondence between bivector fields w on M and antisymmetric bilinear
forms { . , . } on C∞(M) satisfying the Leibniz identity (3).

Locally, in terms of coordinates (x1, . . . , xm), write w = (wij). Then { . , . } satisfies
moreover the Jacobi identity (2) iff

∑

r

(

wri

∂wjk

∂xr

+ wrj

∂wki

∂xr

+ wrk

∂wij

∂xr

)

= 0.

Let these equivalent conditons hold. Then M is called a Poisson manifold, { . , . } is
called a Poisson bracket, w is called a Poisson bivector, and for each f ∈ C∞(M) the
corresponding hamiltonian vector field Xf is given by

Xf (g) := {g, f} (g ∈ C∞(M)).

Re: Definition-Proposition 1.1.2 The collection (Bx(T ∗
x M))x∈M is an example of

an involutive distribution D on M : a (smooth) choice of linear subspace Dx of TxM for
each x ∈ M such that, for vector fields X, Y on M with the property that Xx, Yx ∈ Dx

for all x ∈ M , we also have that [X, Y ]x ∈ Dx for all x ∈ M . A submanifold S is called
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an integral manifold of the distribution D if TxS = Dx for all x ∈ S. In case of constant
rank (dimDx constant), the existence of a unique maximal integral manifold through each
point of M is stated by a theorem of Frobenius. The extension of this result to the case of
non-constant rank for the distribution (Bx(T ∗

x M))x∈M is possible because the rank does
not change along integral curves of hamiltonian vector fields. See Kirillov, l.c., and R.
Hermann, Cartan connections and the equivalence problem for geometric structures, in
Contributions to Differential Equations, Vol. 3, Wiley, 1964, pp. 199–248.

Exercises (Submit an answer to Exercise 7)

Exercise 1. Prove the second part of the above Proposition by showing that

{{f, g}, h}+ {{g, h}, f}+ {{h, f}, g}

=
∑

i,j,l

∑

k

(

wkl

∂wij

∂xk

+ wki

∂wjl

∂xk

+ wkj

∂wli

∂xk

)

∂f

∂xi

∂g

∂xj

∂h

∂xl

.

Exercise 2. Let M be a Poisson manifold. Show that [Xf , Xg] = X{g,f}.

Exercise 3. Let M be a Poisson manifold. Work locally, in terms of coordinates
(x1, . . . , xm), so xj can also be considered as a smooth function p 7→ xj(p). Let Xf .Xxj

denote the hamiltonian vector fields corresponding to f, xj ∈ C∞(M). Show that

Xf =
∑

i





∑

j

wij

∂f

∂xj





∂

∂xi

=
∑

j

∂f

∂xj

Xxj
.

Exercise 4. Let M, N be C∞-manifolds and let F : N → M be a C∞-map. Prove that
F is a Poisson map iff (dFx ⊗ dFx)(wN )x = (wM )F (x) for all x ∈ N .

Exercise 5. Let M be a Poisson manifold and let S be a submanifold of M such that
(wM )x ∈ TxS ⊗TxS for all x ∈ S. Prove that S then can be made into a Poisson manifold
with Poisson bivector (wS)x := (wM )x (x ∈ S).

Exercise 6. Let M be a Poisson manifold. Let f ∈ C∞(M) and let α be an integral curve
of the hamiltonian vector field Xf . Show that locally, in terms of coordinates (x1, . . . , xm),

α′
i(t) =

∑

j

wij(α(t))
∂f(x)

∂xj

∣

∣

∣

x=α(t)
.

Conclude that, if S is a Poisson submanifold of M and the curve α has a point in common
with S, then the curve α lies completely in S. Conclude from this that, if S is a Poisson
submanifold of M and x ∈ S then any symplectic leaf containg x is a subset of S.

Exercise 7. Show that R
2n+s with

{f, g} :=

n
∑

j=1

(

∂f

∂xj

∂g

∂xj+n

−
∂f

∂xj+n

∂g

∂xj

)

is a Poisson manifold. Show that the symplectic leaves are the submanifolds {(x, y) | x ∈
R

2n} (y ∈ R
s). For any x ∈ R

2n, y ∈ R
s also give f ∈ C∞(R2n+s) such that a suitable

integral curve of Xf connects (0, y) with (x, y).
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College Quantumgroepen, Koornwinder, 24-9-96

Lie groups and corresponding Lie algebras (tutorial)

Left invariant vector fields. A Lie group is a group G which has also the structure of a
C∞-manifold such that the multiplication µ: (x, y) 7→ xy: G×G → G is a C∞-map. Then
it can be shown that the inversion x 7→ x−1 is also a C∞-map. Let Lx: y 7→ xy: G → G

and Rx: y 7→ yx: G → G denote left and right multiplication, respectively. For each x ∈ G

the maps Lx and Rx are diffeomorphisms of G.
A vector field X on G is called left invariant if (dLx)y(Xy) = Xxy for all x, y ∈ G.

Then:
(a) The space of all left invariant vector fields is a Lie algebra over R with Lie bracket

[X, Y ] := XY − Y X (using the product of linear operators on C∞(G)). This Lie
algebra is denoted by Lie(G).

(b) Each left invariant vector field X is completely determined by Xe since Xx = (dLx)e(Xe).
Also, for any v ∈ Te(G) the formula Xx := (dLx)e(v) defines a left invariant vector
field X . Thus there is a linear bijection X 7→ Xe: Lie(G) → TeG.

When we speak about Lie(G) or about the Lie algebra of the Lie group G, we mean
by definition the Lie algebra of left invariant vector fields, but often, silently using the
identification of linear spaces in (b), one means instead the tangent space TeG. A priori,
this tangent space is just a vector space. We make TeG into a Lie algebra by inducing on
it the Lie algebra structure of the space of left invariant vector fields: [Xe, Ye] := [X, Y ]e,
where X, Y are left invariant vector fields.

The Lie algebra of GL(n, R). For so-called linear Lie groups G, the induced Lie algebra
structure of TeG coincides with another natural Lie algebra structure. As a prototype of
this situation consider G := GL(n, R), the group of all real invertible (n×n) matrices. By
writing T ∈ GL(n, R) as T = (Tij)i,j=1,...,n we can consider GL(n, R) as an open subset

of Rn2

, by which it becomes a C∞-manifold and a Lie group. Let gl(n, R) denote the real
vector space of all real (n × n) matrices, which becomes a Lie algebra with Lie bracket
[A, B] := AB − BA (using the matrix product). With any A ∈ gl(n, R) we can associate
a vector field XA on GL(n, R) given by

(XA)T :=
∑

i,j=1,...,n

(TA)ij

∂

∂Tij

.

Then:
(a) The vector field XA is left invariant.
(b) The mapping A 7→ XA: gl(n, R) → Lie(GL(n, R)) is an isomorphism of Lie algebras,

so it is a linear bijection and it preserves the Lie bracket: X[A,B] = [XA, XB].
Note that

(XA)I =
∑

i,j=1,...,n

Aij

∂

∂Tij

∣

∣

∣

T=I
.

In general, if S is a submanifold of Rn and x ∈ S, there is a natural identification (linear
bijection) between the tangent space TxS and some linear subspace of Rn. The linear
bijection A 7→ (XA)I : gl(n, R) → TIGL(n, R) in the formula above gives this natural

identification for the case of the submanifold GL(n, R) of gl(n, R) ≃ Rn2

, where the tangent
space is taken at I.
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Lie group homomorphisms and Lie subgroups. Let G and H be Lie groups and let
F : G → H be a Lie group homomorphism, i.e., a group homomorphism which is also a
C∞-mapping. Then there is a unique Lie algebra homomorphism f : Lie(G) → Lie(H) such
that (f(X))e = (dFe)(Xe) for all X ∈ Lie(G). Thus, if X ∈ Lie(G) and Y := f(X) then
YF (x) = dFx(Xx). Instead of f we also write dF .

Let G be a Lie group, let H ⊂ G and write i: H → G for the natural injection.
We call H a Lie subgroup of G if H is both a subgroup and a submanifold of G. Then
di: Lie(H) → Lie(G) is an injective Lie algebra homomorphism, so it identifies Lie(H) with
a Lie subalgebra of Lie(G).

Linear Lie groups. Let G be a Lie subgroup of GL(n, R), so G is a submanifold of

gl(n, R) ≃ Rn2

. Thus TIG can be naturally identified with a linear subspace g of gl(n, R).
It turns out that g is a Lie subalgebra of gl(n, R) and that the map A 7→ XA: g → Lie(G)
(the restriction of the map A 7→ XA: gl(n, R) → Lie(GL(n, R)) given above) is a Lie algebra
isomorphism.

As a generalisation of the description of Lie(GL(n, R)) we can consider the group
GL(n, C) of all complex invertible (n × n) matrices. By considering Re Tij and Im Tij

(i, j = 1, . . . , n) as real coordinates of T ∈ GL(n, C), we can consider GL(n, C) as an open

subset of R2n2

. Thus GL(n, C) becomes a C∞-manifold and a Lie group. (In fact it is
even a complex analytic manifold and a complex Lie group.) The complex vector space
gl(n, C) of all complex (n × n) matrices becomes a Lie algebra over C with Lie bracket
[A, B] := AB−BA, so, by restricting scalar multiplication to real scalars, it becomes also a
Lie algebra over R. With any A ∈ gl(n, C) we can associate a vector field XA on GL(n, C)
given by

(XA)T :=
∑

i,j=1,...n

(

Re (TA)ij

∂

∂(Re Tij)
+ Im (TA)ij

∂

∂(ImTij)

)

.

Then the vector field XA is left invariant and the mapping A 7→ XA: gl(n, C) → Lie(GL(n, C))
is an isomorphism of Lie algebras.

A Lie group G is called a linear Lie group if it is a Lie subgroup of GL(n, C) for
certain n. We can essentially repeat here what we wrote above for Lie subgroups of
GL(n, R). If G is a Lie subgroup of GL(n, C) then G is a submanifold of gl(n, C) ≃ R2n2

,
so TIG can naturally be identified with a real linear subspace g of gl(n, C). The map
A 7→ XA: g → Lie(G) is then a Lie algebra isomorphism. Finally observe that, since
GL(n, R) is a Lie subgroup of GL(n, C), any Lie subgroup of GL(n, R) is a Lie subgroup
of GL(n, C).

The exponential map. Let G be a Lie group. There exists a unique map exp: Lie(G) →
G such that exp(0) = e and, for each X ∈ Lie(G), the map t 7→ exp(tX): R → G is C∞ and
gives an integral curve of the (left invariant) vector field X . Then also exp((s + t)X) =
exp(sX) exp(tX). The map exp is called the exponential map associated with the Lie
group G. The definition of exp implies that

(Xf)(y) =
d

dt
f(y exp(tX))

∣

∣

∣

t=0
(X ∈ Lie(G), f ∈ C∞(G), y ∈ G).

In particular,

Xe(f) =
d

dt
f(exp(tX))

∣

∣

∣

t=0
(X ∈ Lie(G), f ∈ C∞(G)).
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If G is a linear Lie group and if g is the real Lie subalgebra of gl(n, C) associated with TIG

then

exp(XA) = eA :=

∞
∑

k=0

Ak

k!
(A ∈ g).

For an arbitrary Lie group G there are open subsets U of 0 in Lie(G) and V of e in G such
that exp is a diffeomorphism of U onto V .

If F : G → H is a homomorphism of Lie groups and if f : Lie(G) → Lie(H) is the
corresponding Lie algebra homomorphism then expH(f(X)) = F (expG(X)) for all X ∈
Lie(G).

If H is a Lie subgroup of G then expH(X) = expG(X) for all X ∈ Lie(H).

The adjoint representations Ad and ad. Let G be a Lie group and let y ∈ G. The
map ay: x 7→ yxy−1: G → G is a Lie group automorphism. Denote the differential of
ay by Ady. Then Ady: Lie(G) → Lie(G) is a Lie algebra automorphism. Furthermore,
the map Ad: y 7→ Ady: G → GL(Lie(G)) is a Lie group homomorphism. Hence Ad is
a representation of G on the vector space g. The representation Ad is called the adjoint

representation of the Lie group G. If G ⊂ GL(n, C) is a linear Lie group with corresponding
Lie subalgebra g ⊂ gl(n, C) then AdT (XA) = XTAT−1 .

The adjoint representation of any Lie algebra g is defined by adY (X) := [Y, X ] (X, Y ∈
g). Then ad: Y 7→ adY : g → gl(g) is a Lie algebra homomorphism and the map adY : X 7→
[Y, X ]: g → g is a derivation of the Lie algebra g.

Now consider the adjoint representation of the Lie algebra Lie(G) (G a Lie group).
Since the Lie algebra Lie(GL(Lie(G))) can be identified with gl(Lie(G)), we can consider
the differential of the Lie group homomorphism Ad: G → GL(Lie(G)) as a Lie algebra
homomorphism of g to gl(Lie(G)). It is a theorem that this differential is equal to ad.
Thus

adY (X) =
d

dt
Adexp(tY )(X)

∣

∣

∣

t=0
(X, Y ∈ Lie(G)),

and for a linear Lie group G ⊂ GL(n, C) with Lie algebra g ⊂ gl(n, C):

adB(A) =
d

dt
(etB A e−tB)

∣

∣

t=0
(A, B ∈ g).

While we can go downwards from ay to the adjoint representations Ad and ad by taking
suitable differentials, we can go upwards from ad to Ad and ay by using the exponential
map. For a Lie group G we have the formulas

Adexp X(Y ) = eadX (Y ) =
∞
∑

k=0

1

k!
(adX)k(Y ) (X, Y ∈ Lie(G)),

ay(exp(X)) = exp(Ady(X)) (y ∈ G, X ∈ Lie(G)).

For a linear Lie group G ⊂ GL(n, C) with Lie algebra g ⊂ gl(n, C) these formulas become:

eABe−A = eadB (A) and TeAT−1 = eTAT−1

(A, B ∈ g, T ∈ G).

The co-adjoint representations Ad∗ and ad∗. Let G be a Lie group and write g :=
Lie(G). Let g

∗ be the linear dual of g. Let 〈X, ξ〉 denote the pairing between X ∈ g and
ξ ∈ g

∗. For x ∈ G and X ∈ g define Ad∗

x ∈ GL(g∗) and ad∗

X ∈ gl(g∗) by

< Y, Ad∗

x(ξ)〉 := 〈Adx(Y ), ξ〉 and 〈Y, ad∗

X(ξ)〉 := 〈adX(Y ), ξ〉 (Y ∈ g, ξ ∈ g
∗).
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Then the map x 7→ Ad∗

x−1 : G → GL(g∗) is a Lie group homomorphism and the map
X 7→ −ad∗

X : g → gl(g∗) is a Lie algebra homomorphism. We have:

d

dt
Ad∗

exp(tX)

∣

∣

t=0
= ad∗

X .

This follows by duality from a similar formula for Ad and ad.

Additions to C&P, §1.1 (continued)

In the situation of Exercise 1 take for f, g, h functions which are locally equal to the
coordinate functions xi, xj, xl, respectively. Then it follows that locally

{{xi, xj}, xl} + {{xj , xl}, xi} + {{xl, xi}, xj} =
∑

k

(

wkl

∂wij

∂xk

+ wki

∂wjl

∂xk

+ wkj

∂wli

∂xk

)

.

Hence, we have locally that

{{f, g}, h}+ {{g, h}, f}+ {{h, f}, g}

=
∑

i,j,l

(

{{xi, xj}, xl} + {{xj , xl}, xi} + {{xl, xi}, xj}
) ∂f

∂xi

∂g

∂xj

∂h

∂xl

.

This implies that the bracket { . , . } satisfies the Jacobi identity for general f, g, h if it
satisfies the Jacobi identity on the coordinate functions.

Re: Example 1.1.3 Let ξ ∈ g
∗. We can identify the tangent space Tξg

∗ with g
∗ by

the linear bijection η 7→ ηξ : g
∗ → Tξg

∗, where

ηξ(f) :=
d

dt
f(ξ + tη)

∣

∣

t=0
(f ∈ C∞(g∗)).

So T ∗

ξ g
∗ can be identified with g. Write 〈x, η〉 for the pairing between x ∈ g and η ∈ g

∗.
For ξ ∈ g

∗ and f ∈ C∞(g∗) the element (df)ξ ∈ T ∗

ξ g
∗ can be considered as an element of

g which is determined by the rule

〈(df)ξ, η〉 =
d

dt
f(ξ + tη)

∣

∣

t=0
(η ∈ g

∗).

Let x ∈ g. Then x can be considered as an element of C∞(g∗) by the rule x(ξ) := 〈x, ξ〉
(ξ ∈ g

∗). Thus

〈(dx)ξ, η〉 =
d

dt
〈x, ξ + tη〉

∣

∣

t=0
= 〈x, η〉 (η ∈ g

∗).

Hence (dx)ξ = x.
For f, g ∈ C∞(g∗) define the function {f, g} on g

∗ by

{f, g}(ξ) := 〈[(df)ξ, (dg)ξ], ξ〉.

This is again a C∞-function. In particular

{x, y}(ξ) = 〈[x, y], ξ〉 for all ξ ∈ g
∗, so {x, y} = [x, y].
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It is evident that the bracket { . , . } is bilinear and anti-symmetric and that it satisfies the
Leibniz identity. For x, y, z ∈ g it satisfies the Jacobi identity:

{{x, y}, z}+ {{y, z}, x}+ {{z, x}, y} = [[x, y], z] + [[y, z], x] + [[z, x], y] = 0.

If x1, . . . , xm is a basis of g then the functions x1, . . . , xm can be considered as global coor-
dinate functions on g

∗: identify ξ ∈ g
∗ with (〈x1, ξ〉, . . . 〈xm, ξ〉). Since the bracket { . , . }

satisfies the Jacobi identity on the coordinate functions, it satisfies the Jacobi identity on
any C∞-functions. So g

∗ becomes a Poisson manifiold with this bracket.
For ξ ∈ g

∗, we have the Poisson bivector wξ ∈ Tξg
∗ ⊗ Tξg

∗ ≃ g
∗ ⊗ g

∗ such that

〈(df)ξ ⊗ (dg)ξ, wξ〉 = {f, g}(ξ).

In particular, for x, y ∈ g:

〈x ⊗ y, wξ〉 = 〈[x, y], ξ〉,

This shows that wξ depends linearly on ξ. Also note that the linear map ξ 7→ wξ: g
∗ →

g
∗ ⊗ g

∗ is the linear adjoint of the linear map x ⊗ y 7→ [x, y]: g⊗ g → g.

Let G be a connected Lie group with g = Lie(G). Another way to see that the
symplectic leaves of g

∗ are the coadjoint orbits {Ad∗

g(ξ)}g∈G is as follows. The symplectic
leaves are the maximal connected integral manifolds of the involutive distribution D on g

∗

defined by

Dξ := {(Xf )ξ | f ∈ C∞(g∗)} = Span{(Xxi
)ξ}i=1,...,m

For x ∈ g considered as function on g
∗, we compute the corresponding Hamiltonian vector

field Xx. Let f ∈ C∞(g∗), ξ ∈ g
∗. Then

〈(df)ξ, (Xx)ξ〉 = (Xx)ξ(f) = {f, x}(ξ).

In particular, for f := y with y ∈ g, we obtain:

〈y, (Xx)ξ〉 = {y, x}(ξ) = 〈[y, x], ξ〉 = −〈adx(y), ξ〉 = −〈y, ad∗

x(ξ)〉.

Hence (Xx)ξ = −ad∗

x(ξ). So Dξ = {ad∗

x(ξ)}x∈g.
On the other hand, for ξ ∈ {Ad∗

g(η)}g∈G we determine the tangent space at ξ to the
submanifold {Ad∗

g(η)}g∈G of g
∗. We identify this tangent space with a linear subspace of

g
∗. The elements of this linear subspace are the elements

d

dt
Ad∗

exp(tx)(ξ) = ad∗

x(ξ) (x ∈ g).

Thus this tangent space coincides with Dξ.

Additions to C&P, §1.2 and §1.3

Another expression for Adx Let G be a Lie group. For x ∈ G we saw that the linear
map Adx: Lie(G) → Lie(G) is the differential of ax: G → G. Since Lie(G) can be identified
with TeG as a linear space, we can consider Adx also as a linear mapping of TeG to
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itself by the rule Adx(Ye) := (Adx(Y ))e (Y ∈ Lie(G)). Then Adx = (dax)e. Since
ax(y) = xyx−1 = Rx−1(Lx(y)), we have

Adx = (dax)e = (dRx−1)x ◦ (dLx)e.

Lemma K1 Let G be a Lie group with bracket { . , . } on C∞(G) which is bilinear,
antisymmetric and satisfies the Leibniz identity. Let w be the corresponding bivector.
Put g := TeG with the Lie algebra structure induced by Lie(G). Define a C∞-mapping
wR: G → g ⊗ g (taking anti-symmetric values) by

wR(g) :=
(

(dRg−1)g ⊗ (dRg−1)g

)

(wg).

Then the following three statements are equivalent:

(a) {f1, f2}G(gh) = {f1 ◦ µ, f2 ◦ µ}G×G(g, h) (f1, f2 ∈ C∞(G), g, h ∈ G);

(b) wgh =
(

(dLg)h ⊗ (dLg)h

)

(wh) +
(

(dRh)g ⊗ (dRh)g

)

(wg) (g, h ∈ G);

(c) wR(gh) = (Adg ⊗ Adg)(w
R(h)) + wR(g) (g, h ∈ G).

Proof The left-hand side of (a) equals 〈wgh, (df1)gh ⊗ (df2)gh〉. The right-hand side of
(a) equals

{(f1 ◦ µ)(., h), (f2 ◦ µ)(., h)}G(g) + {(f1 ◦ µ)(g, .), (f2 ◦ µ)(g, .)}G(h)

= {f1 ◦ Rh, f2 ◦ Rh}G(g) + {f1 ◦ Lg, f2 ◦ Lg}G(h)

= 〈wg, (d(f1 ◦ Rh))g ⊗ (d(f2 ◦ Rh))g〉 + 〈wh, (d(f1 ◦ Lg))h ⊗ (d(f2 ◦ Lg))h〉

= 〈
(

(dRh)g ⊗ (dRh)g

)

(wg), (df1)gh ⊗ (df2)gh〉 + 〈
(

(dLg)h ⊗ (dLg)h

)

(wh), (df1)gh ⊗ (df2)gh〉.

This establishes the equivalence of (a) and (b).
Identity (c) can be obtained from (b) by applying

(

(dRg−1)g⊗(dRg−1)g

)

◦
(

(dRh−1)gh⊗

(dRh−1)gh

)

to both sides of (b). (Use the alternative expression for Adg given above, and
use that the operations of left multiplication and right multiplication commute.) We can
go back from (c) to (b) by applying the inverse of the above operator.

Note that (b) implies that we = 0 and that (c) implies that wR(e) = 0.

Cocycles and coboundaries of a group Let G be a group and let π be a repre-
sentation of G on a finite dimensional vector space V . A V -valued function f : G → V is
called a 1-cocycle if

π(g) f(h) + f(g)− f(gh) = 0 (g, h ∈ G).

In particular, the reader can verify immediately that all functions f : G → V of the form

f(g) := π(g) v − v (g ∈ G)

for some v ∈ V (the so-called coboundaries) are 1-cocycles.
Thus, condition (c) in Lemma K1 can be rephrased as stating that the function

wR: G → g ⊗ g is a 1-cocycle for the representation Ad ⊗ Ad of G on g ⊗ g.
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Let g ∧ g be the antisymmetric part of g ⊗ g, i.e., the linear span of all elements
A ∧ B := 1

2
(A ⊗ B − B ⊗ A) (A, B ∈ g). Take in (c) for wR a coboundary

wR(g) := (Adg ⊗ Adg − id) (r) (g ∈ G)

for some r ∈ g ∧ g. So (c) is valid and, equivalently, (b) is valid with

wg = ((dLg)e ⊗ (dLg)e − (dRg)e ⊗ (dRg)e) (r) (g ∈ G).

Re: C-P, §1.3A, formulas (11) and (12) Let G be a Lie group, put g := TeG, and
let { . , . }, w and wR be related as in the assumptions of Lemma K1. Put δ := (dwR)e, a
linear map. Since wR: G → g ⊗ g, we have δ: g → g ⊗ g and δ, like wR, maps into g ∧ g.
There is also the formula

δ(A) =
d

dt
wR(exp(tA))

∣

∣

t=0
(A ∈ g).

The linear antisymmetric map δ∗: g∗ ⊗ g
∗ → g

∗ is defined by duality:

〈A, δ∗(ξ ⊗ η)〉 := 〈δ(A), ξ ⊗ η〉 (ξ, η ∈ g
∗, A ∈ g).

If f ∈ C∞(G) then (df)e ∈ T ∗

e G = g
∗.

Proposition K2 Let { . , . }, w and wR be related as in the assumptions of Lemma K1.
Assume that wR(e) = 0 (certainly true if condition (c) of Lemma K1 holds). Then:

(i) (d{f1, f2})e = δ∗
(

(df1)e ⊗ (df2)e

)

(f1, f2 ∈ C∞(G)). Thus we then have an anti-
symmetric bilinear map (ξ, η) 7→ [ξ, η]: g∗ × g

∗ → g
∗ given by:

[ξ, η] := (d{f1, f2})e if ξ = (df1)e, η = (df2)e.

(ii) If the bracket { . , . } satisfies the Jacobi identity (i.e., if it is a Poisson bracket) then
the bracket [ . , . ] on g

∗ satisfies the Jacobi identity, so it makes g
∗ into a Lie algebra.

(iii) If condition (c) of Lemma K1 is satisfied then

δ([A, B]) = (adA ⊗ id + id ⊗ adA) δ(B)− (adB ⊗ id + id ⊗ adB) δ(A) (A, B ∈ g).

(iv) If G is a Poisson-Lie group then δ induces a Lie algebra structure on g
∗ according to

(i) and (ii), and δ satisfies the identity given in (iii).

Proof First we prove (i). We have

{f1, f2}(g) = 〈wg, (df1)g ⊗ (df2)g〉 = 〈wR(g), (d(f1 ◦ Rg))e ⊗ (d(f2 ◦ Rg))e〉.

Hence, for A ∈ g,

{f1, f2}(exp(tA)) = 〈wR(exp(tA), (d(f1 ◦ Rexp(tA)))e ⊗ (d(f2 ◦ Rexp(tA)))e〉.

Differentiate both sides with respect to t at 0. Since wR(e) = 0, we only need to differen-
tiate the right-hand side with respect to the occurrence of t in wR(exp(tA)). Thus

〈A, (d{f1, f2})e〉 = 〈δ(A), (df1)e ⊗ (df2)e〉 = 〈A, δ∗((df1)e ⊗ (df2)e)〉.

The proof of (ii) is immediate. For the proof of (iii) note that iteration of condition
(c) of Lemma K1 implies that

wR(ghg−1) = (Adg⊗Adg)(Adh⊗Adh)(wR(g−1))+(Adg⊗Adg)(w
R(h))+wR(g) (g, h ∈ G).

Put h := exp(tB) and differentiate both sides with respect to t at 0. This yields:

δ(Adg(B)) = (Adg ⊗ Adg)(adB ⊗ id + id ⊗ adB)(wR(g−1)) + (Adg ⊗ Adg)(δ(B)).

Next put g := exp(sA) and differentiate both sides with respect to s at 0. Also use that
wR(e) = 0. Then we obtain (iii).
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Cocycles and coboundaries of a Lie algebra Let g be a Lie algebra and let ρ be
a representation of g on a vector space V . A linear map θ: g → V is called a 1-cocycle if

ρ(A) θ(B)− ρ(B) θ(A)− θ([A, B]) = 0 (A, B ∈ g).

In particular, the reader can verify immediately that all linear mappings θ: g → V of the
form

θ(A) := ρ(A) v (A ∈ g)

for some v ∈ V (the so-called coboundaries) are 1-cocycles.
Thus the identity in (iii) of Proposition K2 can be rephrased as stating that the linear

map δ: g → g ⊗ g is a 1-cocycle for the representation of g on g ⊗ g which is the tensor
product of the adjoint representation ad of g on g.

Observe that, corresponding to the coboundary wR(g) := (Adg ⊗ Adg − id) (r) (for
some r ∈ g ∧ g), we have the coboundary δ: g → g ⊗ g given by

δ(A) := (adA ⊗ id + id ⊗ adA) r (A ∈ g).

Let g be a finite dimensional Lie algebra which is semisimple, i.e., for which the Killing

form

κ(A, B) := tr (adA ◦ adB) (A, B ∈ g)

is a nondegenerate bilinear form. A Lemma of Whitehead (see for instance V. S. Varadara-
jan, Lie groups, Lie algebras, and their representations, Prentice-Hall, 1974, Theorem
3.12.1) states that, for a finite dimensional representation of g, any cocycle is a cobound-
ary.

Exercises

Exercise 8. Let M and N be Poisson manifolds with Poisson bivectors wM and wN ,
respectively. Observe that, for (x, y) ∈ M × N , the tangent space Tx,y(M × N) can be
identified with the direct sum TxM ⊕ TyN such that, if u ∈ TxM and v ∈ TyN , then
u + v ∈ T(x,y)(M × N) is given by

(u + v)(f) := u(f(., y)) + v(f(x, .)) (f ∈ C∞(M × N)).

Let { . , . }M×N be defined as in C-P, §1.1.B, formula (6). Show that this bracket is anti-
symmetric and that it satisfies the Leibniz identity. Show that the corresponding bivector
wM×N satisfying

〈(wM×N )(x,y), (df)(x,y) ⊗ (dg)(x,y)〉 = {f, g}(x, y) (f, g ∈ C∞(M × N))

equals
(wM×N )(x,y) = (wM )x + (wN )y.
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The Schouten bracket

The Schouten bracket was mentioned in C&P, p.17. In addition to Schouten, 1940, l.c, see
A. Nijenhuis, Jacobi-type identities for bilinear differential concomitants of certain tensor

fields. I, II, Indag. Math. 42 (1955), 391–397, 398–403.

Definition-Proposition K3 Let M be a C∞-manifold of dimension m. For positive
integers a, b let A be a a-vector field on M and B a b-vector field. Then there is a unique
(a + b − 1)-vector field [A, B], called the Schouten bracket of A and B, such that for all
(a + b − 1)-forms β on M the following holds:

〈[A, B], β〉 =(−1)a

(

a + b − 1

a

)

〈B, d(β(A ⊗ .))〉 + (−1)(a−1)b

(

a + b − 1

b

)

〈A, d(β(B ⊗ .))〉

−

(

a + b

a

)

〈A ⊗ B, dβ〉. (K1)

Here the (b − 1)-form β(A ⊗ .) is defined by

〈X1 ⊗ · · · ⊗ Xb−1, β(A ⊗ .)〉 := 〈A ⊗ X1 ⊗ · · · ⊗ Xb−1, β〉 (X1, . . . , Xb−1 vector fields.)

Sketch of Proof Evidently, the right-hand side of (K1) evaluated at some x ∈ M defines
a linear functional on the space of (a + b − 1)-forms β. In order to see that this linear
functional only depends on βx it is sufficient to show that the right-hand side is linear in
β over the ring C∞(M). For the proof of this let f ∈ C∞(M), take the right-hand side
with β replaced by fβ and subtract from this f× the right-hand side. This difference is
equal to

(−1)a

(

a + b − 1

a

)

〈B, df ∧ β(A ⊗ .)〉+(−1)(a−1)b

(

a + b − 1

b

)

〈A, df ∧ β(B ⊗ .)〉

−

(

a + b

a

)

〈A ⊗ B, df ∧ β〉.

This last expression can be shown to be zero by replacing A by X1 ⊗ · · · ⊗ Xa and B by
Xa+1 ⊗ · · · ⊗ Xa+b (X1, . . . , Xa+b vecor fields) and by showing that the expression thus
obtained can be reduced to zero.

See Exercise 9 for two simple properties of the Schouten bracket. Let us next work
locally on M in coordinates x1, . . . , xm and write an a-vector field A as (Ai1,...,ia

) with
respect to these coordinates. Then:

Proposition K4

[A, B]i1,...,ia+b−1
=

1

(a − 1)! b!

∑

σ∈Sa+b−1

m
∑

j=1

sgn(σ) Aj,iσ(1),...,iσ(a−1)

∂

∂xj

Biσ(a),...,iσ(a+b−1)

+
(−1)a

a! (b − 1)!

∑

σ∈Sa+b−1

m
∑

j=1

sgn(σ) Bj,iσ(a+1),...,iσ(a+b−1)

∂

∂xj

Aiσ(1),...,iσ(a)
.
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Sketch of Proof Take β := dxi1 ∧ . . .∧dxia+b−1
in formula (K1), so dβ = 0. Since [A, B]

is anti-symmetric, we have:

[A, B]i1,...,ia+b−1
:= 〈[A, B], dxi1 ⊗ · · · ⊗ dxia+b−1

〉 = 〈[A, B], dxi1 ∧ · · · ∧ dxia+b−1
〉.

Now use that

(dxi1∧. . .∧dxia+b−1
)(A⊗.) =

1

(a + b − 1)!

∑

σ∈Sa+b−1

sgn(σ) Aiσ(1),...,iσ(a)
dxiσ(a+1)

∧. . .∧dxiσ(a+b−1)
.

Hence the differential of this (b − 1)-form equals

1

(a + b − 1)!

∑

σ∈Sa+b−1

m
∑

j=1

sgn(σ)
∂Aiσ(1),...,iσ(a)

∂xj

dxj ∧ dxiσ(a+1)
∧ . . . ∧ dxiσ(a+b−1)

.

By substitution in formula (K1) of this last expression and a similar one, the result follows
readily.

See Exercise 10. Thus the bracket { . , . } defined by a bivector field w on a C∞-
manifold M satisfies the Jacobi identity iff [w, w] = 0.

Let g be a Lie algebra. For r ∈ g ⊗ g C&P (p.51) define elements [r12, r13], etc. of
g ⊗ g ⊗ g. In order to see that this is well-defined, define (just for the moment) the linear
map λ: a ⊗ b → [a, b]: g⊗ g → g. Let σ: a ⊗ b → b ⊗ a: g ⊗ g → g ⊗ g be the flip operator.
Let v, w ∈ g. Then [v12, w13] is defined as an element of g ⊗ g ⊗ g by:

[v12, w13] := λ12(v13 ⊗ w24) = (λ ⊗ id ⊗ id)(id ⊗ σ ⊗ id)(v ⊗ w).

If v =
∑

i ai ⊗ bi and w =
∑

j cj ⊗ dj then

[v12, w13] =
∑

i,j

[ai, cj ] ⊗ bi ⊗ dj.

Other brackets in C&P, p.51 can be dealt with in a similar way. Now let, for r ∈ g ⊗ g,

[[r, r]] := [r12, r13] + [r12, r23] + [r13, r23].

Note that, if r ∈ g ∧ g, this can be rewritten as:

[[r, r]] = [r12, r13] + [r23, r21] + [r31, r32],

and then [[r, r]] ∈ g ∧ g ∧ g. We say that r ∈ g ⊗ g satisfies the classical Yang-Baxter

equation if [[r, r]] = 0 (see C&P, p.54).
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Proposition K5 Let M be a C∞-manifold and let g be the Lie algebra of vector fields
on M . Let w be a bivector field on M , so w ∈ g ∧ g and [[w, w]] is a well-defined 3-vector
field on M . Let [w, w] be the Schouten bracket. Then

[w, w] = −2[[w, w]].

Sketch of Proof Work locally in terms of coordinates x1, . . . , xm and write w = (wij).
Then, by linearity, we may suppose that wij = u1vj − ujvi with u, v vector fields on M ,
since a general w will be a sum of such elements. Recall that [u, v]j =

∑

l(ul(∂vj/∂xl) −
vl(∂uj/∂xl). Now observe that

m
∑

l=1

(

wli

∂wjk

∂xl

+ wlj

∂wki

∂xl

+ wlk

∂wij

∂xl

)

=
m

∑

l=1

(

ul

∂vi

∂xl

− vl

∂ui

∂xl

)

(vjuk − vkuj) + cyclic permutation in i, j, k.

We conclude from Proposition K5 that the bracket { . , . } defined by a bivector field w
on a C∞-manifold M satisfies the Jacobi identity iff w satisfies the classical Yang-Baxter
equation [[w, w]] = 0, where [[ . ]] is taken with respect to the Lie algebra structure of the
space of vector fields on M .

Let us apply this to the Poisson manifold structure of g
∗, where g is a Lie algebra.

We have seen that the corresponding Poisson bivector field w on g
∗ can be characterized

by
〈x ⊗ y, wξ〉 = 〈[x, y], ξ〉 (x, y ∈ g, ξ ∈ g

∗).

Let x1, . . . , xm be a basis for g and let ξ1, . . . , ξm be the dual basis for g
∗. Write

[xi, xj] =
∑

k

ck
ijxk

(see C&P, p.20). Here the ck
ij are the structure constants for the Lie algebra g. Then

wξ =
∑

i,j,k

ck
ij xk(ξ) ξi ⊗ ξj, hence (wξ)ij =

∑

k

ck
ij xk(ξ).

It follows from the preceding remark that w will satisfy the classical Yang-Baxter equation
with respect to the Lie algebra structure of the vector fields on g

∗. Still otherwise said, for
given structure constants of a Lie algebra, the identities for these structure constants which
follow from the Jacobi identity can also be viewed as the classical Yang Baxter equation
for suitable linear bivector fields expressed in terms of these structure constants.

Coboundary Poisson-Lie groups A Poisson-Lie group G with Lie algebra g identified
with TeG is called a coboundary Poisson-Lie group if the Poisson bivector field w has the
form

wg = ((dLg)e ⊗ (dLg)e − (dRg)e ⊗ (dRg)e) (r) (g ∈ G)

for some r ∈ g ∧ g. This condition is equivalent to the fact that wR: G → G ⊗ G is a
coboundary for the representation Ad⊗Ad of G on g⊗g (see pp.10,11 of these notes). For
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a given r ∈ g∧ g we see that w satisfies property (b) of Lemma K1. However, the bracket
{ . , . } corresponding to w will not necessarily satisfy the Jacobi identity. A necessary and
sufficient condition for the Jacobi identity is that the Schouten bracket [w, w] equals 0.

Define a left invariant bivector field w(1) and a right invariant bivector field w(2) on
G by:

w(1)
g := ((dLg)e ⊗ (dLg)e)(r),

w(2)
g := ((dRg)e ⊗ (dRg)e)(r).

Then w = w(1) − w(2) and

[w, w] = [w(1), w(1)] + [w(2), w(2)] − 2[w(1), w(2)],

Hence, by Exercise 12,
[w, w] = [w(1), w(1)] + [w(2), w(2)].

Also, since we = 0, we have [w, w]e = 0 (write [w, w] locally in terms of coordinates).
Hence

−[w(2), w(2)]e = [w(1), w(1)]e = [[w(1), w(1)]]e = [[r, r]],

where the last identity follows since g ≃ TeG has the Lie algebra structure induced from
the Lie algebra structure of the space of left invariant vector fields. Now we have:

[w, w] = 0
iff

[w(2), w(2)]g = −[w(1), w(1)]g for all g ∈ G
iff

((dRg)e ⊗ (dRg)e ⊗ (dRg)e)([w
(2), w(2)]e) = −((dLg)e ⊗ (dLg)e ⊗ (dLg)e)([w

(1), w(1)]e) for
all g ∈ G

iff
(Adg ⊗ Adg ⊗ Adg)([w

(1), w(1)]e) = [w(1), w(1)]e for all g ∈ G
iff

[[r, r]] is AdG-invariant.

So we have proved:

Proposition K6 Let G be a Lie group with Lie algebra g ≃ TeG. Let r ∈ g ∧ g. Then
G is a coboundary Poisson-Lie group with Poisson bivector field

wg = ((dLg)e ⊗ (dLg)e − (dRg)e ⊗ (dRg)e) (r) (g ∈ G)

iff [[r, r]] is invariant under the representation Ad ⊗ Ad ⊗ Ad of G on g ∧ g ∧ g.

Example K7 Let G = SU(2) with Lie algebra su(2) (of dimension 3). Hence g ∧ g ∧ g

has dimension 1. Hence the representation Ad⊗Ad⊗Ad on g∧ g∧ g can be equivalently
considered as a representation of SU(2) on R. Since SU(2) is compact and connected, this
will be the trivial representation. Hence, for any r ∈ g∧g, we see that [[r, r]] is Ad-invariant
and that r will yield a coboundary Poisson-Lie group by Proposition K6. In particular,
the bivector field wG in C&P, Example 1.2.5 indeed defines a Poisson-Lie group structure
on SU(2).



–17–

Triangular and quasi-triangular Poisson-Lie groups Keep the assumptions of
Proposition K6. Clearly, [[r, r]] is AdG-invariant if it equals zero. A coboundary Poisson-
Lie group corresponding to an element r ∈ g∧ g satisfying [[r, r]] = 0 is called a triangular

Poisson-Lie group.
Next assume that u ∈ g ⊗ g, [[u, u]] = 0 and s := 1

2 (u12 + u21) (the symmetric part
of u) is AdG-invariant, hence also adg-invariant. Let r := 1

2
(u12 − u21) (the antisymmetric

part of u). Then, by Exercise 11, 0 = [[u, u]] = [[r, r]] + [[s, s]]. Hence [[r, r]] = −[[s, s]],
and it is AdG-invariant (see Exercise 14). So, by Proposition K6, there is a coboundary
Poisson-Lie group corresponding to r. Such a Poisson-Lie group is called quasi-triangular.
Note that, for such r, the Poisson bivector field w on G also satisfies

wg = ((dLg)e ⊗ (dLg)e − (dRg)e ⊗ (dRg)e) (u) (g ∈ G).

Exercises (submit 11 or 12)

Exercise 9. Let A be a a-vector field and B a b-vector field on a C∞-manifold M . Show
that

[A, B] = (−1)ab [B, A].

Show also that, for a = b = 1, the Schouten bracket [A, B] coincides with the commutator
AB − BA of vector fields.

Exercise 10. Let A be a bivector field on a C∞-manifold M . Show that locally, in terms
of coordinates x1, . . . , xm we have:

[A, A]ijk = 2
m

∑

l=1

(

Ali

∂Ajk

∂xl

+ Alj

∂Aki

∂xl

+ Alk

∂Aij

∂xl

)

.

Exercise 11. Let g be a Lie algebra, let a ∈ g ∧ g and b ∈ g ⊗ g. Show that

[[a + b, a + b]] = [[a, a]] + [[b, b]] + [a12 + a32, b13] + [a12 + a13, b23] − [a13 + a23, b12].

Conclude that
[[a + b, a + b]] = [[a, a]] + [[b, b]]

if a ∈ g∧ g, b ∈ g⊗ g and b is ad-invariant, i.e., if (adx ⊗ id + id⊗ adx)(b) = 0 for all x ∈ g.

Exercise 12. Let G be a Lie group. Show that [X, Y ] = 0 if X is a left invariant vector
field and Y is a right invariant vector field on G. Use this in order to show that the
Schouten bracket [A, B] of a left invariant bivector field A and a right invariant bivector
field B equals zero.
Hint Write 2[A, B] = [A+B, A+B]− [A, A]− [B, B] = [[A+B, A+B]]− [[A, A]]− [[B,B]]
and use the first identity in Exercise 11.

Exercise 13. Let G be a Lie group. Let A be a bivector field on G. Show that that the
3-vector field [A, A] is left (right) invariant if A is left (right) invariant.
Hint Use that [A, A] = [[A, A]] taken with respect to the Lie algebra structure of the
vector fields on M .

Exercise 14. Let G be a Lie group with Lie algebra g ≃ TeG. Let b ∈ g ⊗ g be AdG-
invariant. Show that [[b, b]] is AdG-invariant.
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The modified classical Yang-Baxter equation (see C&P, pp.54,55)

Let g be a finite dimensional Lie algebra equipped with a non-degenerate bilinear symmetric
form 〈 . , . 〉 which is adg-invariant, i.e., for which

〈adx(y), z〉+ 〈y, adx(z)〉 = 0 (x, y, z ∈ g),

or equivalently,
〈[x, y], z〉 = 〈x, [y, z]〉 (x, y, z ∈ g).

If G is connected Lie group with Lie(G) = g, then adg-invariance of the form 〈 . , . 〉 is
equivalent to AdG-invariance:

〈Adg(y),Adg(z)〉 = 〈y, z〉 (y, z ∈ g, g ∈ G).

Such a form exists uniquely, up to a constant factor, if g is simple (i.e., having no nontrivial
ideals). If g is semisimple (i.e., direct sum of simple Lie algebras) or reductive (i.e., direct
sum of a semisimple and an abelian Lie algebra) then such a form exists, but not necessarily
uniquely.

Now define t ∈ g ⊗ g and ω ∈ g ⊗ g ⊗ g by

〈x⊗ y, t〉 := 〈x, y〉 (x, y ∈ g), (K2)

〈x⊗ y ⊗ z, ω〉 := 〈[x, y], z〉 (x, y, z ∈ g). (K3)

Note that t is symmetric and adg-invariant (and AdG-invariant), and that ω is anti-
symmetric and adg-invariant (and AdG-invariant). It can be shown (see Exercise 15)
that

[[t, t]] = ω. (K4)

Let r ∈ g ∧ g. Then:

[[r + t, r + t]] = 0 ⇐⇒ [[r, r]] = −ω.

We call the equation [[r, r]] = −ω the modified clasical Yang-Baxter equation. See the
example for sl(2) in Exercise 16. We also have:

[[r + it, r + it]] = 0 ⇐⇒ [[r, r]] = ω.

See an example of this last case for su(2) in Exercise 17.

Linear coboundary Poisson-Lie groups First observe that, on a Poisson manifold
M , the Poisson bracket can be extended to a complex bilinear mapping for complex-valued
C∞-functions on M . Now let G ⊂ GL(n,C) be a linear Lie group. Then each g ∈ G can
be written as an element g = (gij) of GL(n,C) and the functions τij: g → gij are (complex-
valued) C∞-functions on G. Suppose that G is also a coboundary Poisson-Lie group. Let
A(G) be the algebra (under pointwise multiplication) generated by the functions τij . It
will turn out that for any pair τij , τkl their Poisson bracket is in A(G) with an explicit
(quadratic) expression. Thus, because of the Leibniz rule, A(G) is closed under taking the
Poisson bracket.
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Proposition K8 Let G ⊂ GL(n,C) be a linear Lie group with Lie algebra g ⊂ gl(n,C).
Let r ∈ g ∧ g such that G becomes a coboundary Poisson-Lie group with Poisson bivector
field as in Proposition K6. Then

{τij, τkl}(g) = ((g ⊗ g)r)ik,jl − (r(g ⊗ g))ik,jl (K5)

=
∑

p,q

gipgkqrpq,jl −
∑

p,q

rik,pqgpjgql.

Proof We give the proof for G ⊂ GL(n,R) with Lie algebra g ⊂ gl(n,R). (The proof for
G ⊂ GL(n,C) is similar.) Recall that

{τij , τkl}(g) = 〈wg, (dτij)g ⊗ (dτkl)g〉.

Substitute the expression for wg as given in Proposition K5. It follows that

{τij, τkl}(g) = 〈r, (d(τij ◦ Lg))e ⊗ (d(τkl ◦ Lg))e〉 − 〈r, (d(τij ◦Rg))e ⊗ (d(τkl ◦Rg))e〉.

Now observe that, for v = (vij) ∈ g and f ∈ C∞(G) we have:

〈v, (d(f ◦ Lg))e〉 =
∑

p,q

(gv)pq

∂f(g)

∂gpq

,

〈v, (d(f ◦Rg))e〉 =
∑

p,q

(vg)pq

∂f(g)

∂gpq

.

Hence
〈v, (d(τij ◦ Lg))e〉 = (gv)ij, 〈v, (d(τij ◦Rg))e〉 = (vg)ij.

A moment’s thought now yields (K5).

See Exercise 18 for an application of this Proposition to the case G = SL(2,R).

Cohomology of groups and of Lie algebras First we discuss cohomology of groups,
see for instance A. A. Kirillov, Elements of the theory of representations, Springer, 1976,
§2.5. Let G be a group and let π be a representation of G on a finite dimensional vector
space V . By an n-dimensional cochain we mean a V -valued function f :Gn+1 → V such
that

f(gg0, gg1, . . . , ggn) = π(g) f(g0, g1, . . . , gn).

Denote the vector space of all n-dimensional cochains by Cn(G, π). Define the linear
operator d:Cn(G, π) → Cn+1(G, π) by

(df)(g0, . . . , gn+1) :=

n+1∑

i=0

(−1)i f(g0, . . . , ĝi, . . . , gn+1).

Then it follows easily that d ◦ d = 0. A cochain f is called a coboundary if f = dg for
some cochain g. The space of all n-dimensional coboundaries is denoted by Bn(G, π). A
cochain f is called a cocycle if df = 0. The space of all n-dimensional cocycles is denoted
by Zn(G, π). Clearly, every coboundary is a cocycle, so Bn(G, π) is a linear subspace of
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Zn(G, π). The quotient space Zn(G, π)/Bn(G, π) is called the n-dimensional cohomology

space of G for the representation π.
There is the following 1-1 linear bijection f ↔ f̃ between the space of n-dimensional

cochains and the space of V -valued functions on Gn:

f̃(h1, . . . , hn) = f(e, h1, h1h2, . . . , h1h2 . . . hn).

Then

d̃f(h1, . . . , hn+1) = π(h1) f̃(h2, . . . , hn+1)

+

n∑

i=1

(−1)i f̃(h1, . . . , hi−1, hihi+1, hi+2, . . . , hn+1) + (−1)n+1 f̃(h1, . . . , hn).

In particular

d̃f(h) = π(h) f̃ − f̃ , d̃f(h1, h2) = π(h1) f̃(h2) − f̃(h1h2) + f̃(h1).

Next we discuss cohomology of Lie algebras. Let g be a Lie algebra and let ρ be a
representation of g on a finite dimensional vector space V . By an n-dimensional cochain

we mean a linear anti-symmetric mapping φ: gn → V . Denote the vector space of all
n-dimensional cochains by Cn(g, ρ). Define the linear operator d:Cn(g, ρ) → Cn+1(g, ρ)
by

(dφ)(x1 ∧ . . . ∧ xn+1) :=
n+1∑

i=1

(−1)i+1 ρ(xi)φ(x1 ∧ . . . ∧ x̂i ∧ . . . ∧ xn+1)

+
∑

i<j

(−1)i+j φ([xi, xj] ∧ x1 ∧ . . . ∧ x̂i ∧ . . . ∧ x̂j ∧ . . . ∧ xn+1).

Then d ◦ d = 0. The special cases n = 0, 1 of the operator d are:

(dφ)(x) = ρ(x)φ, (dφ)(x, y) = ρ(x)φ(y)− ρ(y)φ(x)− φ([x, y]).

A cochain φ is called a coboundary if φ = dψ for some cochain ψ. The space of all
n-dimensional coboundaries is denoted by Bn(g, ρ). A cochain φ is called a cocycle if
dφ = 0. The space of all n-dimensional cocycles is denoted by Zn(g, ρ). Clearly, every
coboundary is a cocycle, so Bn(g, ρ) is a linear subspace of Zn(g, ρ). The quotient space
Zn(g, ρ)/Bn(g, ρ) is called the n-dimensional cohomology space of g for the representation
ρ.

Proposition K9 Let G be a connected Lie group with Lie algebra g ≃ TeG. Let π be
a continuous (hence smooth) representation of G on a finite dimensional vector space V .
Let ρ := dπ be the corresponding representation of g on V . Then
(i) If f :G → V is a group 1-cocycle then φ := (df)e: g → V is a Lie algebra 1-cocycle.

Also, f is uniquely determined by φ. Furthermore, f is coboundary iff φ is coboundary.
(ii) If G is simply connected then to any Lie algebra 1-cocycle φ there corresponds a Lie

group 1-cocycle f such that φ = (df)e.
(iii) If g is semisimple then every 1-cocycle φ: g → V on g is a coboundary, i.e., φ(x) =

ρ(x) v for some v ∈ V .
(iv) If G is compact then every 1-cocycle f :G → V on G is a coboundary, i.e., f(g) =

π(g) v − v for some v ∈ V .



–21–

Parts (i) and (iv) are left as exercises to the reader. For the proof of (ii) see J.-H.
Lu, Multiplicative and affine Poisson structures on Lie groups, Dissertation, University of
California, Berkeley, 1990, Lemma 2.13. Part (iii) is Whitehead’s Lemma, see p.12 of these
notes.

Lie bialgebras Read at p.11 of these notes Proposition K2 and the paragraph pre-
ceding it. Lu (l.c., Theorem 2.18) shows that, under certain conditions, the converse of
part (ii) of Proposition K2 also holds:

Proposition K10 Let G be a connected Lie group with bracket { . , . } on C∞(G) which
is bilinear, antisymmetric, satisfies the Leibniz identity and satisfies condition (a) of Lemma
K1. Let g ≃ TeG be the Lie algebra of G. Define a bracket [ . , . ] on g

∗ by the rule
[ξ, η] := (d{f1, f2})e if ξ = (df1)e, η = (df2)e.
Then { . , . } satisfies the Jacobi identity iff [ . , . ] satisfies the Jacobi identity.

See now C&P, Definition 1.3.1 (definition of a Lie bialgebra). As a corollary of Propo-
sitions K2, K9 and K10 we have a result stated in C&P, Theorem 1.3.2:

Theorem K11 Let G be a connected Lie group with Lie algebra g. Every Poisson-Lie
group structure on G determines, as in Proposition K2, a Lie bialgebra structure on g,
and to every Lie bialgebra structure on g there corresponds at most one Poisson-Lie group
structure on G. If G is moreover simply connected then, for every Lie bialgebra structure
on g, there exists a corresponding Poisson-Lie group structure on G.

Manin triples See in C&P the definition of a Manin triple (Definition 1.3.3) and the
1-1 correspondence between Lie bialgebras and Manin triples stated in Proposition 1.3.4.
Proposition 1.3.4 follows from Lemma 1.3.5. We restate this Lemma.

Let g and g
∗ be finite dimensional vector spaces, dual to each other. Extend the

bilinear pairing 〈 . , . 〉 on g × g
∗ to a symmetric bilinear form 〈 . , . 〉 on g ⊕ g

∗ such that
〈x, y〉 = 0 (x, y ∈ g) and 〈ξ, η〉 = 0 (ξ, η ∈ g

∗). Assume that both g and g
∗ have a Lie

algebra structure. Extend the Lie brackets on g and on g
∗ to an antisymmetric bilinear

bracket [ . , . ] on g ⊕ g
∗ such that the form 〈 . , . 〉 on g × g

∗ is “ad-invariant”, i.e.,

〈[x+ ξ, y + η], z + ζ〉 = 〈x+ ξ, [y + η, z + ζ]〉 (x, y, z ∈ g, ξ, η, ζ ∈ g
∗).

Hence, for x ∈ g and η ∈ g
∗, the g-part [x, η]g and the g

∗-part [x, η]g∗ of [x, η] are
determined by

〈[x, η]g, ζ〉 = 〈x, [η, ζ]g∗〉 (ζ ∈ g
∗),

〈[x, η]g∗ , z〉 = −〈η, [x, z]g〉 (z ∈ g).

Define δ: g → g ⊗ g by

〈δ(x), η ⊗ ζ〉 := 〈x, [η, ζ]〉 (η, ζ ∈ g
∗).

Lemma K12 The bracket [ . , . ] satisfies the Jacobi identity iff δ is a 1-cocycle for the
representation ad of g on g ⊗ g.
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For the proof see the proof of C&P, Lemma 1.3.5.

Exercises (submit 16 or 18, preferably both)

Exercise 15. Let g be a finite dimensional Lie algebra equipped with a non-degenerate
bilinear symmetric form. Let t ∈ g⊗ g and ω ∈ g⊗ g⊗ g be defined by (K2), (K3). Prove
(K4).
Hint For instance, if g is a Lie algebra over R then there will be a basis x1, . . . , xm of g

such that 〈xi, xj〉 = λ−1

j δij for certain real nonzero λj . Now express t and ω in terms of
the xj, λj and (for ω) the structure coefficients of g.

Exercise 16 Let g = sl(2,F) (F = R or C). Take h, b, c as a basis for g with

h :=

(
1 0
0 −1

)
, b :=

(
0 1
0 0

)
, c :=

(
0 0
1 0

)
.

An adg-invariant bilinear symmetric form (unique up to a constant factor) on g is given
by 〈h, h〉 := 2, 〈b, c〉 = 〈c, b〉 := 1, while the form on other pairs of basis elements equals
zero. Show that t and ω, defined by (K2) and (K3), are equal to

t = 1

2
h⊗ h+ b⊗ c+ c⊗ b, ω = 6h ∧ c ∧ b.

Let
r := 2 c ∧ b.

Show that [[r, r]] = −ω.

Exercise 17 Let g = su(2). It has a basis consisting of

ih =

(
i 0
0 −i

)
, b− c =

(
0 1
−1 0

)
, i(b+ c) =

(
0 i
i 0

)
.

Here h, b, c are as in Exercise 17. The restriction to su(2) of the ad-invariant bilinear
symmetric form on sl(2,C) given in Exercise 16 yields: 〈ih, ih〉 = −2, 〈b− c, b− c〉 = −2,
〈i(b+ c), i(b+ c)〉 = −2, while the form on other pairs of basis elements equals zero. Show
that t and ω, defined by (K2) and (K3), are equal to

t = −1

2
(ih)⊗ (ih)− 1

2
(b−c)⊗ (b−c)− 1

2
(ib+ ic)⊗ (ib+ ic), ω = −3h∧ (ib+ ic)∧ (b−c).

Let
r := (ib+ ic) ∧ (b− c).

Show that [[r, r]] = ω = [[t, t]] and that [[r + it, r + it]] = 0.

Exercise 18 Let α, β, γ, δ be the functions on SL(2,C) which send g =

(
a b
c d

)
to

a, b, c, d, respectively. Apply Proposition K8 to the case G = SL(2,R) with r as in Exercise
16. Show that

{α, β} = αβ, {α, γ} = αγ, {α, δ} = 2βγ, {β, γ} = 0, {β, δ} = βδ, {γ, δ} = γδ.
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Hint Rewrite (K5) as an identitity for (4 × 4) matrices with the left-hand side equal to




{α, α}(g) {α, β}(g) {β, α}(g) {β, β}(g)
{α, γ}(g) {α, δ}(g) {β, γ}(g) {β, δ}(g)
{γ, α}(g) {γ, β}(g) {δ, α}(g) {δ, β}(g)
{γ, γ}(g) {γ, δ}(g) {δ, γ}(g) {δ, δ}(g)




and

g ⊗ g =




a2 ab ba b2

ac ad bc bd
ca cb da db
c2 cd dc d2


 , r =




0 0 0 0
0 0 −1 0
0 1 0 0
0 0 0 0


 .

Exercise 19 Prove Proposition K9 (i).
Hint For the first part imitate the proof of Proposition K2 (iii). For the second part
assume φ = 0 and show first that ρ(x)f(g) = 0 for all x ∈ g and all g ∈ G.

Exercise 20 Prove Proposition K9 (iv).
Hint Integrate the cocycle condition with respect to the Haar measure on G.
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Structure of semisimple Lie algebras (tutorial) See for instance:

J. E. Humphreys, Introduction to Lie algebras and representation theory, Springer, 1972;

T. H. Koornwinder, Real semisimple Lie algebras, in The structure of real semisimple Lie

groups, MC Syllabus 49, Mathematisch Centrum, Amsterdam, 1982.

Let g be a complex semisimple Lie algebra. Equivalently, let g be a finite dimensional
complex Lie algebra for which the Killing form κ(X, Y ) := tr (adX◦adY ) is a nondegenerate
bilinear symmetric form on g. A Cartan subalgebra (CSA) of g is a maximal abelian Lie
subalgebra h of g such that, for each H ∈ h, the linear map adH : g → g is semisimple (i.e.,
diagonalizable). There exists a CSA in g, and all CSA’s are conjugate under the (complex)
adjoint group of g. Let h∗ be the linear dual of h. For α ∈ h∗ let the linear subspace gα of
g be defined by

gα := {X ∈ g | [H, X ] = α(H) X ∀H ∈ h}.

Let the set ∆ consist of all α ∈ h∗\{0} such that dim gα > 0. Then dim gα = 1 for all
α ∈ ∆ and

g = h +
∑

α∈∆

gα (direct sum of vector spaces).

The restriction of the Killing form κ to h is a nondegenerate bilinear symmetric form
on h. For λ ∈ h∗ let Tλ ∈ h be defined by

κ(Tλ, H) := λ(H) (H ∈ h).

Define a nondegenerate bilinear symmetric form on h∗ by

〈λ, µ〉 := κ(Tλ, Tµ) (λ, µ ∈ h∗).

Let h0 be the R-span of the Tα (α ∈ ∆). Then h0 is a real form of h and the restriction of
the Killing form to h0 is a positive definite bilinear symmetric form. The same holds for
the restriction of 〈 . , . 〉 to h∗

0 (i.e., to the real linear dual of h0). Thus h0 and h∗
0 become

inner product spaces. We will also use the notation

Hα :=
2

〈α, α〉
Tα (α ∈ ∆).

For α ∈ h∗
0\{0} define the reflection map sα: h∗

0 → h∗
0 by

sα(λ) := λ −
2〈λ, α〉

〈α, α〉
α (λ ∈ h∗

0).

The finite subset ∆ of h∗
0\{0} is a root system in the inner product space h∗

0, i.e.,

(a) ∆ spans h∗
0;

(b) If α, β ∈ ∆ then sβ(α) ∈ ∆;

(c) If α, β ∈ ∆ then 2〈β,α〉
〈α,α〉 ∈ Z.
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In particular, note that −α ∈ ∆ iff α ∈ ∆. It can also be shown that the root system ∆
is reduced, i.e., if α ∈ ∆ then the only multiples of α in ∆ are ±α. The elements of ∆ are
called roots, the nonzero elements of gα (α ∈ ∆) are called root vectors.

The Weyl group W corresponding to the root system ∆ is the subgroup of the group
of orthogonal transformations of h∗

0 which is generated by the reflections sα (α ∈ ∆).
If α, β ∈ ∆ and X, Y are nonzero elements of gα, gβ, respectively, then [X, Y ] ∈ gα+β ,

we have [X, Y ] 6= 0 iff α + β ∈ ∆ ∪ {0}, and we have κ(X, Y ) 6= 0 iff α + β = 0.
Choose some nonzero λ ∈ h∗

0 such that 〈λ, α〉 6= 0 for all roots α. Let ∆+ := {α ∈ ∆ |
〈λ, α〉 > 0}. Then ∆ is the disjoint union of ∆+ and −∆+. The elements of ∆+ are called
positive roots. Define

n+ :=
∑

α∈∆+

gα, n− :=
∑

α∈∆+

g−α.

Then n+ and n− are Lie subalgebras of g. They are nilpotent Lie algebras, i.e., for each
element X sufficiently high powers of adX acting on this Lie algebra vanish. Also define
the so-called Borel subalgebras

b+ := h + n+, b− := h + n−.

These are also Lie subalgebras of g.
For each α ∈ ∆ choose Xα ∈ gα\{0}. If α, β, α + β ∈ ∆ then let cα,β ∈ C\{0} be

defined by
[Xα, Xβ] = cα,β Xα+β.

Theorem K13 With notation as above the Xα’s can be chosen such that:
(i) [Xα, X−α] = Hα (α ∈ ∆);
(ii) if α, β, α + β ∈ ∆ then cα,β = −c−α,−β and cα,β ∈ R;
(iii) κ(Xα, X−α) = 2/〈α, α〉 (α ∈ ∆).

Let g be a complex Lie algebra and write gR for g considered as a real Lie algebra.
By a real form of g we mean a (real) Lie subalgebra g0 of gR such that gR is the direct
sum of g0 and ig0.

Corollary K14 Let the Xα’s be as in Theorem K13. Then ih0 together with the elements
Xα − X−α and iXα + iX−α (α ∈ ∆) span a real form u of g on which κ is a negative
definite symmetric bilinear form. (We call u a compact real form of g.)

Example K15 (Manin triple) (cf. C&P, Example 1.4.3)
Let g be a complex semisimple Lie algebra. Let h be a CSA in g, let ∆+ be a choice of
positive roots and let n± and b± be as above. Let P : g → h be the projection onto h which
vanishes on n+ + n−. Then the restrictions P : b+ → h and P : b− → h are Lie algebra
homomorphisms. Define a new Lie algebra q as a direct sum by

q := g ⊕ h := {(X, H) | X ∈ g, H ∈ h}.

Then q can also be written as a direct sum q = q+ + q− of Lie subalgebras

q± := {(x, Px) | x ∈ b±}.
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Indeed, for X = X+ + X0 + X− (X± ∈ n±, X0 ∈ h) being an arbitrary element of g and
for H ∈ h we have

(X, H) = (X+ + 1
2
X0 + 1

2
H, 1

2
X0 + 1

2
H) + (X− + 1

2
X0 −

1
2
H,−1

2
X0 + 1

2
H),

where the first term is in q+ and the second term in q−. Now define a symmetric bilinear
form 〈 . , . 〉 on q by

〈(X, H), (X ′, H ′)〉 := κ(X, X ′) − κ(H, H ′) (X, X ′ ∈ g, H, H ′ ∈ h). (K5)

Then this form is nondegenerate and adq-invariant, and the form restricted to q+ or q−
vanishes (see Exercise 21). We conclude that (q, q+, q−) is a Manin triple.

Example K16 (Manin triple) (cf. C&P, §1.4C; J,-H. Lu, Dissertation, Example 2.30).
Let g be a complex semisimple Lie algebra and u a compact real form of g. Let n+ be as
defined on p.25. Put b0 := h0 + n+, a real Lie subalgebra of g. Then gR is the direct sum
of u and b0. Define a real symmetric bilinear form on gR by

〈X, Y 〉 := Im (κ(X, Y )) (X, Y ∈ g). (K6)

Then this form is nondegenerate and adgR
-invariant, and the form restricted to u or b0

vanishes (see Exercise 22). We conclude that (gR, u, b0) is a Manin triple.

Coboundary Lie bialgebras Read in C&P Definition 2.1.1 of a coboundary Lie

bialgebra. Read also Proposition 2.1.2, which characterizes those r ∈ g ⊗ g for which
δ: X 7→ X.r: g → g ⊗ g gives rise to a Lie bialgebra structure. Note that the easy part of
the proof is to show that δ: X 7→ X.r is anti-symmetric iff r12 + r21 is an adg-invariant
element of g⊗g. If these two equivalent conditions hold then δ(X) = X.r = 1

2
X.(r12−r21),

so we may assume as well that δ(X) = X.r with r anti-symmetric. Note that an alternative
way to the rest of the proof of the Proposition is by considering a simply connected Lie
group G with Lie algebra g, and by taking wR(g) := Adg(r) − r and by next defining the
bivector field w on G as on the top of p.11 of these notes. Then use Proposition K6 and
Theorem K11.

Read the definitions of a triangular Lie bialgebra and a quasitriangular Lie bialgebra
in C&P, §2.1B, p.54. These are parallel to the definitions for the case of Poisson-Lie groups
on top of p.17 of these notes.

If we say that g is a Lie bialgebra then we imply that g and g∗ are Lie algebras. A
Lie bialgebra g is compeletely described by the pair (g, g∗) of Lie algebras. However, not
every pair (g, g∗) of Lie algebras yields a Lie bialgebra. Note that, by the characterization
of Lie bialgebras in terms of Manin triples, we see that, if g (i.e. the pair of Lie algebras
(g, g∗)) is a Lie bialgebra, then so is g∗ (i.e. the pair of Lie algebras (g∗, g)).

See C&P, Definition 1.3.1(b) for the definition of a Lie bialgebra homomorphism φ: g →
h. So then g and h are Lie bialgebras and φ: g → h and φ∗: h∗ → g∗ are Lie algebra
homomorphisms. Here φ∗ is the dual of φ, i.e., 〈X, φ∗(η)〉 = 〈φ(X), η〉 (X ∈ g, η ∈ h∗).

If g is a Lie algebra then we mean by gop the opposite Lie algebra, i.e., [X, Y ]gop
:=

−[X, Y ]g. If g is a Lie bialgebra, and thus a pair (g, g∗) of Lie algebras, then gop is the Lie
bialgebra given by the pair of Lie algebras (g, (g∗)op), and gop is the Lie bialgebra given
by the pair of Lie algebras (gop, g∗). See also C&P, p.25, Remark [3].
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Definition-Theorem K17 (classical double) (see C&P, Proposition 1.4.2, Proposition
2.1.11) Let g be a finite-dimensional Lie bialgebra. So we know that g∗ is a Lie algebra
and that g ⊕ g∗ is a Lie algebra having g and g∗ as Lie subalgebras and with ad-invariant
nondegenerate form obtained from the pairing between g and g∗. Write D(g) = D :=
g ⊕ g∗ for this Lie algebra. Identify D∗ as a linear space with g∗ ⊕ g. By means of the
nondegenerate form on D we can identify D with D∗. So the pairing of x+ ξ ∈ g⊕ g∗ ≃ D
with η + y ∈ g∗ ⊕ g ≃ D∗ is given by

〈x + ξ, η + y〉 = 〈x, η〉+ 〈ξ, y〉.

identify D∗ as a Lie algebra with g∗ ⊕ gop. Thus:

[ξ + X, η + Y ]D∗ := [ξ, η]g∗ − [X, Y ]g.

Then D(g) is a Lie bialgebra. It is called the classical double of the Lie bialgebra g.
Moreover, D(g) is a quasitriangular Lie bialgebra with r ∈ D(g) ⊗D(g) given by

〈r, (ξ + X) ⊗ (η + Y )〉 := 〈ξ, Y 〉 (X, Y ∈ g, ξ, η ∈ g∗).

Proof Let r be as above. Define the linear map δ:D → D ⊗D by

δ(Z + ζ) := (Z + ζ).r = (adZ+ζ ⊗ id + id ⊗ adZ+ζ)(r) (Z ∈ g, ζ ∈ g∗),

where ad is the adjoint representation for the Lie algebra D. We will first show that

〈δ(Z + ζ), (ξ ⊕ X) ⊗ (η ⊕ Y )〉 = 〈Z + ζ, [ξ + X, η + Y ]D∗〉.

This will imply that D is a coboundary Lie bialgebra. (Note that the antisymmetry of the
Lie bracket on D∗ implies by the above identity that r12 + r21 is adD-invariant, and thus
δ(Z + ζ) = 1

2
(Z + ζ).(r12 − r21).) The identity for ζ = 0 is obtained by:

〈Z.r, (ξ + X) ⊗ (η + Y )〉 = 〈r, [ξ + X, Z]D ⊗ (η + Y )〉 + 〈r, (ξ + X) ⊗ [η + Y, Z]D〉

= 〈[ξ, Z]D, Y 〉 + 〈ξ, [η, Z]D〉 + 〈ξ, [Y, Z]D〉 = 〈Z, [ξ, η]D〉 = 〈Z, [ξ, η]g∗〉 = 〈Z, [ξ, η]D∗〉.

The identity for z = 0 is obtained by:

〈ζ.r, (ξ + X) ⊗ (η + Y )〉 = 〈r, [ξ + X, ζ]D ⊗ (η + Y )〉 + 〈r, (ξ + X) ⊗ [η + Y, ζ]D〉

= 〈[ξ, ζ]D, Y 〉 + 〈[X, ζ]D, Y 〉 + 〈ξ, [Y, ζ]D〉 = −〈ζ, [X, Y ]D〉 = −〈ζ, [X, Y ]g〉 = 〈ζ, [X, Y ]D∗〉.

Finally we have to show that [[r, r]] = 0. For this purpose choose a basis {Xr} of g,
let {Xs} be the dual basis for g∗ and observe that r =

∑
t Xt ⊗ ξt (see Exercise 23). Now

follow the proof of C&P, Proposition 2.1.11.

Definition K18 Let g be a finite dimensional Lie bialgebra and let k be a linear
subspace of g. We call k a Lie bialgebra ideal of g if k is both an ideal of g (i.e., [k, g] ⊂ k)
and a co-ideal of g (i.e., δ(k) ⊂ g⊗ k+ k⊗g). (See C&P, p.25, Remark [5].) We call k a Lie

subbialgebra of g if k is both a Lie subalgebra of g (i.e., [k, k] ⊂ k) and a Lie subcoalgebra

of g (i.e., δ(k) ⊂ k ⊗ k). Next consider the statements of Exercise 24.
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Example K19 (classical double) Consider the situation of Example K15. We know
from Definition-Theorem K17 that D = D(q+) ≃ q := g⊕ h is a Lie bialgebra. D∗ ≃ g⊕ h

as linear spaces, but D∗ ≃ q+ ⊕ (q−)op as a Lie algebra. Let X = X+ + X0 + X− and
X ′ = X ′

−+X ′
0+X ′

− (X±, X ′
± ∈ n±, X0, X

′
0 ∈ h) be arbitrary elements of g. Let H, H ′ ∈ h.

Then

[(X, H), (X ′, H ′)]D = ([X, X ′]g, 0),

[(X, H), (X ′, H ′)]D∗ = [(X+ + 1
2
X0 + 1

2
H, 1

2
X0 + 1

2
H), (X ′

+ + 1
2
X ′

0 + 1
2
H ′, 1

2
X ′

0 + 1
2
H ′)]q+

− [(X− + 1
2
X0 −

1
2
H,−1

2
X0 + 1

2
H), (X ′

− + 1
2
X ′

0 −
1
2
H ′,−1

2
X ′

0 + 1
2
H ′)]q−

= ([X+ + 1
2
X0 + 1

2
H, X ′

+ + 1
2
X ′

0 + 1
2
H ′]g, 0) − ([X− + 1

2
X0 −

1
2
H, X ′

− + 1
2
X ′

0 −
1
2
H ′]g, 0),

〈(X, H), (X ′, H ′)〉 = κ(X, X ′) − κ(H, H ′) (pairing between (X, H) ∈ D and (X ′, H ′) ∈ D∗),

〈r, (X, H)⊗ (X ′, H ′)〉 = 〈(X− + 1
2
X0 −

1
2
H,−1

2
X0 + 1

2
H), (X ′

+ + 1
2
X ′

0 + 1
2
H ′, 1

2
X ′

0 + 1
2
H ′)〉

= κ(X− + 1
2
X0 −

1
2
H, X ′

+ + 1
2
X ′

0 + 1
2
H ′) − κ(−1

2
X0 + 1

2
H, 1

2
X ′

0 + 1
2
H ′)

= κ(X−, X ′
+) + 1

2
κ(X0 − H, X ′

0 + H ′).

Clearly the subspace k := {(0, H) | H ∈ h} is a Lie algebra ideal of D. We will show
that it is also a coideal, hence a bialgebra ideal. Equivalently, we show that the subspace
k⊥ ≃ {(X, 0) | X ∈ g} is a Lie subalgebra of D∗. Indeed, D∗ ≃ g ⊕ h as linear spaces,
but D∗ ≃ q+ ⊕ (q−)op as a Lie algebra. Then observe that [q+, q+] and [q−, q−] are both
included in k⊥.

Since D is a quasitriangular bialgebra, it follows from Exercise 24 that this induces
the structure of a quasitriangular bialgebra on D/k. As linear spaces we can identify g

with g∗ by the Killing form and we can make the identifications:

X ≃ (X, H) mod k: g ≃ D/k, Y ≃ (Y, 0): g∗ ≃ k⊥.

Let X = X+ + X0 + X− and X ′ = X ′
− + X ′

0 + X ′
− (X±, X ′

± ∈ n±, X0, X
′
0 ∈ h) be

arbitrary elements of g. The induced quasitriangular bialgebra structure on g is:
• the Lie algebra structure of g;
• the pairing between g and g∗ obtained from the Kiling form;
• the Lie bracket on g∗ given by

[X, X ′]g∗ = [X+ + 1
2
X0, X

′
+ + 1

2
X ′

0]g − [X− + 1
2
X0, X

′
− + 1

2
X ′

0]g;

• the element r ∈ g ⊗ g given by

〈r, X ⊗ X ′〉 = κ(X−, X ′
+) + 1

2
κ(X0, X

′
0).

The antisymmetric part of r is given by

〈 1
2
(r12 − r21), X ⊗ X ′〉 = 1

2
κ(X−, X ′

+) − 1
2
κ(X+, X ′

−).

Then it follows from Theorem K13 that

1
2
(r12 − r21) =

∑

α∈∆+

〈α, α〉

2
Xα ∧ X−α.

Exercises (submit 25)

Exercise 21 Let 〈 . , . 〉 be the bilinear symmetric form on q defined by (K5). Show that
this form is nondegenerate and adq-invariant, and that the form restricted to q+ or q−
vanishes.
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Exercise 22 Let 〈 . , . 〉 be the bilinear symmetric form on gR defined by (K6). Show
that this form is nondegenerate and adgR

-invariant, and that the form restricted to u or
b0 vanishes.

Exercise 23 With the assumptions of Definition-Theorem K17, choose a basis {Xr} of
g and let {ξs} be the dual basis for g∗. Show that r =

∑
t Xt ⊗ ξt.

Exercise 24 If k is a linear subspace of a finite dimensional vector space g, put k⊥ :=
{ξ ∈ g∗ | 〈ξ, K〉 = 0 ∀K ∈ k}. Now suppose that g is a finite dimensional Lie bialgebra
and k is a linear subspace of g. Prove the following statements.
(a) k is a Lie bialgebra ideal of g iff k⊥ is a Lie subbialgebra of g∗.
(b) If k is a Lie bialgebra ideal of g then the quotient space g/k inherits a Lie bialgebra

structure from g and we can identify (g/k)∗ ≃ k⊥ as Lie bialgebras.
(c) If g is a quasitriangular Lie bialgebra with respect to r ∈ h ⊗ g, (i.e., such that

δ(X) = X.r and [[r, r]] = 0) and if k is a Lie bialgebra ideal of g, then the Lie
bialgebra g/k is quasitriangular with respect to r mod (g ⊗ k + k ⊗ g).

Exercise 25 Show that the example of Exercise 16 can be considered as a special case
of the Lie bialgebra g obtained in Example K19. Also show that the example of Exercise
17 can be considered as a special case of the Lie bialgebra u obtained in Example K16.
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Normal real form Let g be a complex semisimple Lie algebra. In Corollary K14 we
gave a compact real form u of g. Theorem K13 immediately implies another real form of
g: the normal real form of g which is the real span of h0 together with the elements Xα

(α ∈ ∆). We will notate this normal real form by g0. (So g0 will no longer be used as
a notation for h.) The Killing form restricted to g0 is real and nondegenerate, but it is
indefinite: κ is positive definite on the real span of h0 together with the elements Xα+X−α

(α ∈ ∆+) and κ is negative definite on the real span of the elements Xα −X−α (α ∈ ∆+).

Two remarks on Lie bialgebras Let g be a complex Lie bialgebra, so, in particular,
both g and its complex linear dual g∗ have the structure of a complex Lie algebra. Let the
real Lie algebra g0 be a real form of the Lie algebra g, consider the real linear dual g∗0 of
g0 as a real linear subspace of g∗ and suppose that g∗0 is a real Lie subalgebra of g∗, so the
real Lie algebra g∗0 is a real form of the Lie algebra g∗. Then it follows immediately that
(g0, g

∗

0) is a real Lie bialgebra. We call it a real form of the complex Lie bialgebra (g, g∗).
In particular, for the Lie bialgebra (g, g∗) given by Example K19 (g a complex semisim-

ple Lie algebra) we obtain as a real form the Lie bialgebra (g0, g
∗

0) (g0 normal real form)

If (g, g∗) is a Lie bialgebra over F = C or R then, for c ∈ F\{0}, we obtain again a Lie
bialgebra if we introduce a new Lie bracket [ξ, η]′ := c[ξ, η] on g∗. In particular, if F := C

and c /∈ R then (g, g∗) with modified Lie algebra structure on g∗ may allow an essentially
different real form than (g, g∗) with the original Lie algebra structure on g∗.

Example K20 (compact real form of the Lie bialgebra (g, g∗) of Example K19)
Let for the moment g be any complex Lie algebra, write gR for g considered as a real Lie
algebra, let the real Lie algebra g0 be a real form of g, and define the real linear map
τ : gR → gR by τ(X + iY ) := X − iY (X, Y ∈ g0). We call τ the conjugation on g with
respect to g0. It follows immediately that τ is a real Lie algebra automorphism of gR

satisfying τ(zX) = z τ(X) (z ∈ C, X ∈ g).
Let now g be a complex semisimple Lie algebra. We will make contact between

Examples K16 and K19. Let u be a compact real form of g as in Corollary K14 and let τ
be the conjugation on g with respect to u. Then

κ(X, τ(Y )) = κ(X, Y ) (X ∈ u, Y ∈ g).

(For the proof write Y = Y1 + iY2 with Y1, Y2 ∈ u, and use that κ is a real form on u.)
Hence

κ(X, 1
2i

(Y − τ(Y ))) = Im κ(X, Y ) (X ∈ u, Y ∈ g).

In Example K16 we have seen that the pair of Lie algebras (u, b0) (both considered as real
Lie subalgebras of g) is a real Lie bialgebra if we consider u and b0 as linear duals of each
other via the pairing (K6). Thus we can also write this pairing as

〈X, Y 〉 = κ(X, 1
2i

(Y − τ(Y ))) (X ∈ u, Y ∈ b0).

By the definitions of u (Corollary K14) and b0 (Example K16) we see that the map Y 7→
1
2i

(Y − τ(Y )): b0 → u is a real linear bijection. Now identify u with its linear dual u∗
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via the (negative definite) Killing form on u and make u∗ into a Lie algebra such that
Y 7→ 1

2i
(Y − τ(Y )): b0 7→ u∗ is a Lie algebra isomorphism, i.e.,

[ 1
2i

(Y − τY ), 1
2i

(Y ′ − τY ′)]u∗ := 1
2i

([Y, Y ′]g − τ [Y, Y ′]g) (Y, Y ′ ∈ b0).

Then the pair (u, u∗) will be a real Lie bialgebra isomorphic to (u, b0).
Now we will show that

[X, X ′]u∗ = [X, X ′]′
g∗ := 2i[X, X ′]g∗ (X, X ′ ∈ u), (K7)

where [ . , . ]g∗ is the Lie bracket on g∗ considered in Example K19. Note that the pair
(g, g∗) is still a complex Lie bialgebra with respect to the Lie bracket [ . , . ]′

g∗ on g∗. So we
obtain that the real Lie bialgebra (u, u∗) is a real form of the thus modified complex Lie
bialgebra (g, g∗).

For the proof of (K7) write a general element Y of b0 as Y = Y0 + Y+ (Y0 ∈ h0,
Y+ ∈ n+). Then 1

2i
(Y − τ(Y )) = 1

i
Y0 + 1

2i
Y+ − 1

2i
τ(Y+), where the first term is in h,

the second term in n+ and the third term in n−. Hence, by Example K19, we have for
Y, Y ′ ∈ b0 that

[ 1
2i

(Y − τY ), 1
2i

(Y ′ − τY ′)]g∗ = −1
4 [Y, Y ′]g + 1

4 [τ(Y ), τ(Y ′)]g

= −1
4
[Y, Y ′]g + 1

4
τ [Y, Y ′]g = 1

2i
[ 1
2i

(Y − τY ), 1
2i

(Y ′ − τY ′)]u∗ .

Poisson-Hopf algebras See the definitions of a Poisson algebra and of a Poisson-

Hopf algebra in C&P, §6.2A. Similarly, by omitting the antipode axiom, we can define a
Poisson bialgebra. See the statements of Exercise 30. We also have in a Poisson-Hopf
algebra A that

S({a, b}) = −{S(a), S(b)} (a, b ∈ A).

This will later be given as an exercise, with some hints.

Poisson-Hopf algebras in connection with Hopf algebras deforming a commu-

tative algebra Let C[q, q−1] be the commutative C-algebra of Laurent polynomials
in q. Let Aq be a C[q, q−1]-module. Put

A := Aq/((q − 1)Aq).

Then A is a C-module. Also write

a := a mod (q − 1) (a ∈ Aq),

where mod (q−1) means mod ((q−1)Aq). We call Aq a deformation (or rather a C[q, q−1]-
deformation) of A if Aq and A[q, q−1] are isomorphic as C[q, q−1]-modules.

If Aq is a deformation of A then further structure (over C[q, q−1]) of Aq induces similar
structure (over C) of A:

• If Aq is an associative algebra with unit 1 then A is an associative algebra with unit
1, where

a b := ab mod (q − 1), 1 := 1 mod (q − 1).

• If Aq is a coassociative coalgebra with counit ε then A is an coassociative coalgebra
with counit ε, where

∆(a) := ∆(a) mod (q − 1), ε(a) := ε(a) mod (q − 1).

• If Aq is a bialgebra then A is a bialgebra.

• If Aq is a Hopf algebra with antipode S then A is a Hopf algebra with antipode S ,
where

S(a) := S(a) mod (q − 1).



–32–

Now suppose that Aq is an associative algebra with 1 and that Aq is a deformation of
A and that A is a commutative algebra, i.e., ab = ba mod (q − 1) for all a, b ∈ Aq. Then
(q − 1)−1(ab − ba) is a well-defined element of Aq for all a, b ∈ Aq. Define:

{a, b} := (q − 1)−1(ab − ba) mod (q − 1) (a, b ∈ Aq).

Then { . , . } is a well-defined C-bilinear antisymmetric map of A×A to A. Moreover, this
bracket satisfies the Leibniz rule and the Jacobi identity. Hence we have made A into a
Poisson algebra. In a similar way we can make A⊗A into a Poisson algebra with

{a1⊗a2, b1⊗b2} := (q−1)−1[a1⊗a2, b1⊗b2] mod (q−1) = {a1, b1}⊗a2 b2+a1 b1⊗{a2, b2}.

If, with the above assumptions, Aq is moreover a bialgebra (or Hopf algebra) then A
becomes a Poisson bialgebra (or Poisson-Hopf algebra).

Exercises (submit 26 and 27)

Exercise 26 Use the notation of Example K19. Show that

〈 1
2(r12 + r21), X ⊗ X ′) = 1

2κ(X, X ′).

Conclude that 1
2 (r12 + r21) = 1

2 t, where t is the Casimir element defined by (K2) (with
〈X, Y 〉 := κ(X, Y ) in (K2)). Show also that

t = 1
2

∑

α∈∆+

〈α, α〉 (Xα ⊗ X−α + X−α ⊗ Xα) +

l
∑

i=1

Hi ⊗ Hi,

where the Hi form a basis of h0 satisfying κ(Hi, Hj) = δij .

Exercise 27 Consider the real Lie bialgebra (u, b0) of Example K16. Show that this is
a quasitriangular Lie bialgebra with r given by

r = 1
2

∑

α∈∆+

〈α, α〉(Xα − X−α) ∧ (iXα + iX−α) + it,

where t is the Casimir element given in Exercise 26.
Hint Use Exercise 26 and Example K20.

Exercise 28 Specify the structure of a general semisimple Lie algebra (as given on pp.
24, 25) for the case g := sl(n, C):

(a) κ(X, Y ) = 2n tr (XY ) (X, Y ∈ sl(n, C)).

(b) h = {
∑n

i=1 hi Eii | h1, . . . , hn ∈ C,
∑n

i=1 hi = 0}, where Eij is the (n × n) matrix
with 1 at place ij and with 0 elsewhere.

(c) h∗ = {(λ1, . . . , λn) :=
∑n

j=1 λjεj | λ1, . . . , λn ∈ C,
∑n

j=1 λj = 0}, where

εj :
∑n

i=1 hiEii 7→ hj .

(d) ∆ = {εi − εj | i, j = 1, . . . , n, i 6= j}.

(e) gεi−εj
= C Eij.
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(f) κ(
∑n

i=1 hiEii,
∑n

j=1 h′

jEjj) = 2n
∑n

k=1 hkh′

k.

(g) T(λ1,...,λn) = 1
2n

∑n

i=1 λiEii.

(h) 〈λ, µ〉 = 1
2n

∑n

i=1 λiµi.

(i) Hεi−εj
= Eii − Ejj.

(j) sεi−εj
exchanges the ith and jth coordinate in (λ1, . . . , λn).

(k) ∆+ = {εi − εj}i<j .

(l) Xεi−εj
= Eij .

(m) Let i 6= j, k 6= l. Then

[Eij, Ekl] =











Eil if j = k, i 6= l;
−Ekj if i = l, j 6= k;
Hεi−εj

if i = l, j = k;
0 otherwise.

(n) κ(Eij , Eji) = 2n.

(o) A compact real form is u = su(n) consisting of the skew-hermitian matrices of trace
0. A normal real form is g0 = sl(n, R).

Exercise 29 Specify Example K19 for the case that g = sl(n, C). Thus show that
X = X+ + X0 + X− is the decomposition of X ∈ sl(n, C) into upper triangular matrices
X+, lower triangular matrices X− and diagonal matrices X0. Also show that

r = 1
2 t + 1

2n

∑

i<j

Eij ∧ Eji.

Exercise 30 Show that in a Poisson algebra A we have {1, a} = 0 for all a ∈ A. Show
also that in a Poisson-Hopf algebra A we have ε({a, b}) = 0 for all a, b ∈ A.
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Comment to pp.31,32 Suppose that Aq is a C[q, q−1]-algebra (or bialgebra or Hopf
algebra) and that the algebra structure induced on A := Aq/(q − 1)Aq is commutative.
Then A becomes a Poisson algebra (or Poisson bialgebra or Poisson-Hopf algebra) as
indicated at p.32. For this it is not necessary that Aq is a quantization of A.

Bergman’s diamond lemma (see G. M. Bergman, The diamond lemma for ring theory,
Advances in Math. 29 (1978), 178–218).
The diamond lemma is a useful tool for finding explicit bases of algebras presented by gen-
erators and relations. We will formulate the lemma in the case of finitely many generators.

Let X := {x1, . . . , xn} be the set of generators. These generators are considered a
prioiri as formal variables which do not commute with each other. Let 〈X〉 be the set
of monomials xi1xi2 . . . xil

in the generators. Here l is an arbitrary nonnegative integer
and i1, . . . , il ∈ {1, 2, . . . , n}. We can multiply two monomials A and B by just putting
the factors of B after the factors of A. This monomial is denoted by AB. The empty
monomial (l = 0) is denoted by 1. It acts as an identity for this multiplication. Thus 〈X〉
is a semigroup with 1: the free semigroup with 1 generated by X .

Let k be a commutative ring with 1. Typically this can be a field like C or an algebra
of Laurent polynomials C[q, q−1] or an algebra of formal power series C[[h]]. Let k〈X〉 be
the set of polynomials in the generators, i.e., the set of elements

∑

A∈〈X〉

cA A or more explicitly
∑

l; i1,...,il

ci1,...,il
xi1xi2 . . . xil

,

where the coefficients cA = ci1,...,il
are in the ring k and only finitely many coefficients are

nonzero. Note that k〈X〉 is an associative algebra over k with 1: the free k-algebra with
1 generated by X .

Next we take a set S = {(W1, f1), . . . , (Ws, fs)}, where each Wi is a monomial and
each fi is a polynomial. This set gives rise to relations W1 = f1, . . . , Ws = fs and to the
two-sided ideal J in k〈X〉 which is generated by the elements W1 − f1, . . . , Ws − fs. Let
A be the quotient algebra: A := k〈X〉/J , again an associative k-algebra with 1. We are
looking for a k-basis of A consisting of suitable monomials.

We suppose that “≤” is a partial order on 〈X〉 such that:

(i) It satisfies the descending chain condition, i.e., there are no infinite descending chains
A1 > A2 > . . .;

(ii) It is a semigroup partial ordering, i.e., if B and B′ are monomials with B < B′ then
ABC < AB′C for all monomials A, C.

A typical choice for such a partial order is to fix a linear order on X , say x1 < x2 < . . . < xn,
to take the resulting lexicographic order on monomials of equal length, and to take A < B
if A has smaller length than B. We call this order on 〈X〉 the standard order corresponding
to the given order on X . Assume also that

(iii) The partial order is compatible with S, i.e., for all i ∈ {1, . . . , s} the polynomial fi is
a linear combination of monomials less than Wi.

We say that a polynomial b is a reduction of a polynomial a if a contains a monomial of
the form AWiB wih nonzero coefficient and if b is obtained from a by replacing AWiB by
AfiB. Clearly, b = a mod J and, because of the assumptions (ii) and (iii), the monomials
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in AfiB are < AWiB. We say that a polynomial a is irreducible if no reduction of a
is possible. Because of assumption (i), each polynomial is brought into irreducible form
after finitely many steps. It follows that the algebra A is spanned as a k-module by
the irreducible monomials (modJ). The diamond lemma will give sufficient conditions in
order that the irreducible monomials (modJ) are linearly independent. These sufficient
conditions concern the resolvability of two types of ambiguity:
(a) An overlap ambiguity is a monomial of the form ABC (with A, B, C ∈ 〈X〉\{1}) such

that AB = Wi and BC = Wj for certain i, j ∈ {1, . . . , s}. Thus the polynomials
fiC and Afj are reductions of ABC. The ambiguity is called resolvable if there are
successive reductions of fiC and successive reductions of Afj which end at the same
polynomial.

(b) An inclusion ambiguity is a monomial of the form ABC (with A, B, C ∈ 〈X〉) such
that Wi = B and Wj = ABC for certain i, j ∈ {1, . . . , s} with i 6= j. Thus the
polynomials AfiC and fj are reductions of ABC. The ambiguity is called resolvable

if there are successive reductions of AfiC and successive reductions of fj which end
at the same polynomial.

Theorem K21 (diamond lemma) Let X,k, S, J,A be as above and let a partial
order “≤” on 〈X〉 satisfy conditions (i), (ii), (iii). If all overlap ambiguities and inclusion
ambiguities are resolvable then the irreducible monomials (modJ) form a k-basis of A.

For the proof we refer to Bergman (l.c). In an application which is met quite often,
one has the standard order on 〈X〉 corresponding to x1 < x2 < . . . < xn, and one has
relations of the form

xjxi =
∑

(k,l)<(j,i)

ck,l
j,ixkxl +

∑

k

bk
j,ixk + aj,i (i < j),

where the coefficients ck,l
j,i , bk

j,i, aj,i are in k. Then there are no inclusion ambiguities. In
each individual case one has to check if the overlap ambiguities are resolvable.

As a standard application of the diamond lemma one can thus prove the PBW theo-
rem, see Exercise 32.

Example K22 Let k := C[q, q−1], X := {α, β, γ, δ} and take the relations

αβ = qβα, αγ = qγα, βδ = qδβ, γδ = qδγ, βγ = γβ, αδ − δα = (q − q−1)βγ.

This yields the bialgebra Aq(Mat(2, C)). If we add the relation αδ − qβγ = 1 then
we obtain the Hopf algebra Aq(SL(2, C)) (quantized function algebra). In both cases
comultiplication is given by

∆

(

α β
γ δ

)

=

(

α β
γ δ

)

⊗

(

α β
γ δ

)

,

where the right-hand side has to be read in the sense of matrix multiplication, e.g., ∆(α) =
α ⊗ α + β ⊗ γ.

Take for instance the standard order on 〈X〉 obtained from β < γ < α < δ. Accord-
ingly the relations have to be rewritten slightly, with the highest term on the left-hand
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side, for instance δγ = q−1γδ, δα = αδ − (q − q−1)βγ. Straightforward application of the
diamond lemma (see Exercise 33) now yields that Aq(Mat(2, C)) has a C[q, q−1]-basis of
elements βiγjαkβl (i, j, k, l nonnegative integers), and that Aq(SL(2, C)) has a C[q, q−1]-
basis of elements βiγj, βiγjαk, βiγjδk (i, j nonnegative integers, k positive integer).

It follows that the bialgebra Aq(Mat(2, C)) is a C[q, q−1]-deformation of A(Mat(2, C))
(the commutative bialgebra of polynomial functions on the semigroup Mat(2, C)) and that
Aq(SL(2, C)) s a C[q, q−1]-deformation of A(SL(2, C)) (the commutative Hopf algebra of
polynomial functions on the group SL(2, C)),

Combination with the construction on top of p.32 immediately yields (see Exercise 34)
the expressions for {α, β}, {α, γ}, etc., by which we get a structure of Poisson bialgebra
for A(Mat(2, C)) (induced by Aq(Mat(2, C))) or a structure of Poisson-Hopf algebra for
A(SL(2, C)) (induced by Aq(SL(2, C))). These are precisely the expressions given in
Exercise 18.

Bialgebras defined by quadratic relations Let k be a commutative ring with 1.
Let A be the k-algebra generated by elements tij (i, j = 1, . . . , n) with relations

n
∑

k,l=1

Rij,kl tkr tls =

n
∑

k,l=1

tjl tik Rkl,rs (i, j, r, s = 1, . . . , n), (K8)

where (Rij,kl) is a n2 × n2 matrix over k. Write T := (tij)i,j=1,...,n. Then relations (K8)
can be rewritten in a shorter and more symbolic notation as

RT1T2 = T2T1R. (K9)

It can be shown (see Exercise 35) that the algebra A can be uniquely made into a bialgebra
over k such that

∆(tij) =

n
∑

k=1

tik ⊗ tkj , ε(tij) = δij (i, j = 1, . . . , n). (K10)

Now suppose that we work over the ring C[q, q−1]. Instead of R we write Rq (with
matrix elements in C[q, q−1]) and instead of A we write Aq (a C[q, q−1]-bialgebra). Suppose
that

Rq = I mod (q − 1), i.e., (Rq)ij,kl = δikδjl mod (q − 1).

Let A := Aq/(q − 1)Aq. Then A is a commutative algebra with the tij as generators. Put

r := (q−1)−1 (Rq−I) mod (q−1), i.e., rij,kl := (q−1)−1 ((Rq)ij,kl−δikδjl) mod (q−1).
(K11)

The bialgebra structure of Aq induces a Poisson bialgebra structure on A. For the Poisson
bracket on the generators we derive from the identity

0 =(q − 1)−1 (RqT1T2 − T2T1Rq) mod (q − 1) = (q − 1)−1(T1T2 − T2T1) mod (q − 1)

+ rT1T2 − T1T2r

that
{T1, T2} = T1T2r − rT1T2, (K12)
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which can be written in terms of matrix elements as

{tik, trs} =
n

∑

k,l=1

tiktjlrkl,rs −
n

∑

k,l=1

rij,kltkrtls. (K13)

Note that (K12), (K13) precisely have the form (K5) at p.19, where we dealt with a linear
coboundary Poisson-Lie group. Note also that there is no garuantee that Aq will be a
quantization of A. There is certainly no guarantee that A = Mat(n, C), i.e., that A is the
algebra generated by the commuting variables tij without further relations.

It seems puzzling that, for a coboundary Poisson-Lie group G, r cannot be arbitrary
but has to satisy the property that [[r, r]] is AdG-invariant (see Proposition K6). On the
other hand, in the derivation of (K12) we obtained r from a matrix Rq which is completely
arbitrary, except that its zero order approximation at q = 1 equals I. However, note that
the quadratic relations (K9) imply certain cubic relations:

R12R13R23 T1T2T3 = T3T2T1 R12R13R23,

R23R13R12 T1T2T3 = T3T2T1 R23R13R12.
(K14)

If R is invertible then (K14) implies the relations

(R12R13R23)
−1R23R13R12 T1T2T3 = T1T2T3 (R12R13R23)

−1R23R13R12,

which become trivial if R satisfies the quantum Yang-Baxter equation (QYBE)

R12R13R23 = R23R13R12.

However, an arbitrary R will not satisfy the QYBE, and then relations (K14) may be
nontrivial.

Suppose that R = Rq = I mod (q − 1) and that r is given by (K11). Then (see
Exercise 36) we have

(q − 1)−2
(

(Rq)12(Rq)13(Rq)23 − (Rq)23(Rq)13(Rq)12
)

= [[r, r]] mod (q − 1). (K15)

Hence, by subtracting the two equations in (K14) from each other, dividing both sides of
the resulting equation by (q − 1)2 and then equating both sides mod(q − 1), we obtain in
A := Aq/(q − 1)Aq the relations

[[r, r]] T1T2T3 = T1T2T3 [[r, r]]. (K16)

The generators tij of the algebra A = Aq/(q − 1)Aq have to satisfy relations (K16).
These relations are trivial if [[r, r]] commutes with Mat(n, C)⊗3, in particular if the classical
Yang-Baxter equation (CYBE) [[r, r]] = 0 is satisfied. However, if these relations are
nontrivial then the monomials in the generators tij will not form a C-basis of A. This will
also imply that, for any order chosen on the generators tij , the monomials in the tij with
factors in this order will not form a C[q, q−1]-basis of Aq.

There will be no essential changes in the story of this section if we add further relations
for the tij to the RTT relations (K9). (Of course, one has to verify that the additional
relations are compatible with comultiplication.) On A one still obtains the Poisson struc-
ture (K12) on the generators, and the additional relations (K16) will be still valid. Of
course, further relations on Aq may give rise to further relations on A.
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Example K23 Put T :=

(

α β
γ δ

)

. Let

R = Rq :=







q−1 0 0 0
0 1 q−1 − q 0
0 0 1 0
0 0 0 q−1






, r :=







−1 0 0 0
0 0 −2 0
0 0 0 0
0 0 0 −1






, σ :=







1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1






.

(K17)
The relations defining Aq(Mat(2, C)) in Example K22 are equivalent to relations (K9) with
R as above. The relations will not change if we add a scalar multiple of σ (the flip) to R.
The resulting Poisson structure on A(Mat(2, C)) is given by (K12) with r as above. This
Poisson structure does not change if we add scalar multiple of σ and of I to r. Compare
with the r-matrix in Exercise 18.

Example K24 Instead of considering Aq(Mat(2, C)) as a deformation of an algebra of
functions, we may consider it as a deformation of a universal enveloping algebra. First we
rescale the relations for α, β, γ, δ defining Aq(Mat(2, C)) in Example K22. We introduce
new generators a, b, c, d by:

(

α β
γ δ

)

=

(

1 0
0 1

)

+ (q − 1)

(

a b
c d

)

.

In terms of a, b, c, d the relations are given by

[a, b] = b + (q − 1)ba, [a, c] = c + (q − 1)ca, [b, d] = b + (q − 1)db,

[c, d] = c + (q − 1)dc, [b, c] = 0, [a, d] = (q − q−1)bc.

The comultiplication takes the form

∆

(

a b
c d

)

=

(

a b
c d

)

⊗

(

1 0
0 1

)

+

(

1 0
0 1

)

⊗

(

a b
c d

)

+ (q − 1)

(

a b
c d

)

⊗

(

a b
c d

)

.

Hence, if we consider this bialgebra mod(q − 1) then we obtain a bialgebra generated as
an algebra by a, b, c, d satisfying relations which certainly include

[a, b] = b, [a, c] = c, [b, d] = b, [c, d] = c, [b, c] = 0, [a, d] = 0,

and with a, b, c, d as primitive elements with respect to the comultiplication. So we get a
non-commutative, cocommutative bialgebra. We will come back to this example later.

Exercises (submit 32 or 35)

Exercise 31 Prove that in a Poisson-Hopf algebra we have S({a, b}) = −{S(a), S(b)}.

This may be done in the following steps:

(a)
∑

(a),(b) ∆({a(1), b(1)})⊗S(a(2))S(b(2)) =
∑

(a),(b) a(1)b(1)⊗{a(2), b(2)}⊗S(a(3))S(b(3))+
∑

(a),(b){a(1),b(1)} ⊗ a(2)b(2) ⊗ S(a(3))S(b(3)).
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(b) Apply first S ⊗ id ⊗ id to both sides in (a) and next apply iterated multiplication to
the threefold tensor products on both sides. This yields

0 =
∑

(a),(b)

S(a(1))S(b(1)) {a(2), b(2)}S(a(3))S(b(3)) + S({a, b}).

(c) 0 =
∑

(a) a(1) {S(a(2)), b} +
∑

(a){a(1), b}S(a(2)).

(d) Iterate (c) in order to obtain:

∑

(a),(b)

S(a(1))S(b(1)) {a(2), b(2)} =
∑

(a),(b)

{S(a(1), S(b(1))} a(2)b(2).

(e) Combine (b) and (d).

Exercise 32 Let g be a finite dimensional Lie algebra over a field k (or over a com-
mutative ring k with 1 such that g is free as a k-module). Let X1, . . . , Xn be a basis
of g. The PBW theorem states that the universal enveloping algebra U(g) has a basis
X i1

1 . . .Xin

n (i1, . . . , in nonnegative integers). Prove this theorem by means of the dia-
mond lemma, by writing [Xi, Xj] =

∑n

r=1 cr
ij Xr amd by taking for S the set of pairs

(XjXi, XiXj −
∑n

r=1 cr
ij Xr) (i < j).

Exercise 33 Prove the statements in Example K22 about the C[q, q−1]-bases.

Exercise 34 Prove the statements in Example K22 about the induced Poisson structures.

Exercise 35 Show that the algebra generated by the tij with relations (K8) becomes a
bialgebra with comultiplication and counit given by (K10).
Hint Show that the comultiplication and counit are compatible with the relations. For
instance, let J the two-sided ideal in k〈T 〉 which is generated by the relations. Show that

n
∑

k,l=1

Rij,kl ∆(tkr) ∆(tls) −
n

∑

k,l=1

∆(tjl) ∆(tik) Rkl,rs ∈ k〈T 〉 ⊗ J + J ⊗ k〈T 〉.

Exercise 36 Prove equations (K15) and (K16).

Exercise 37 Let σ be the flip operator. Show that relations (K9) are equivalent to
(σR)T1T2 = T1T2(σR), and also to (σRσ)T2T1 = T1T2(σRσ).
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College Quantumgroepen, Koornwinder, 12-11-96

co-Poisson-Hopf algebras First read C&P, §6.2A from Definition 6.2.2 onwards.
Next assume notation of pp.31,32 of these notes on Poisson-Hopf algebras in connection
with Hopf algebras deforming a commutative algebra. Instead of assuming a Hopf algebra
Aq over C[q, q−1] we may assume a topological Hopf algebra Uh over C[[h]] and we may
put U := Uh/(hUh), u := u mod h. Then U is a Hopf algebra over C.

Assume that U is a cocommutative Hopf algebra. Then U becomes a co-Poisson-Hopf
algebra with co-Poisson bracket δ:U → U ⊗ U being defined by

δ(u) := h−1
(

∆(u) − σ(∆(u))
)

mod h. (K18)

Almost cocommutative Hopf algebras Suppose that Uh is an almost cocommu-
tative Hopf algebra, i.e., with R ∈ Uh ⊗ Uh (in the topological completion of the tensor
product) such that

R = 1 ⊗ 1 mod h (K19)

and

R ∆(u) = σ(∆(u)) R. (K20)

It follows from (K19) that R is invertible, and (K19) and (K20) together imply that U is
cocommutative. Put

r := h−1(R − 1 ⊗ 1) mod h. (K21)

Then it follows that

δ(u) = ∆(u) r − r ∆(u). (K22)

It follows from (K20) that

X (∆ ⊗ id)∆(u) = (∆op ⊗ id) ∆op(u) X (K23)

if X equals one of the following elements:

(1) R12 (∆ ⊗ id)(R),

(2) R23 (id ⊗ ∆)(R),

(3) R12R13R23,

(4) R23R13R12.

Hence

Y (∆ ⊗ id)∆(u) = (∆ ⊗ id)∆(u) Y (K24)

if Y is one of the following elements:

(i) (R23 (id ⊗ ∆)(R))−1 R12 (∆ ⊗ id)(R),

(ii) (R23R13R12)
−1 R12R13R23,

(iii) (R13R23)
−1 (∆ ⊗ id)(R),

(iv) (R13R12)
−1 (id ⊗ ∆)(R).

It also follows from (K20) that

(v) σ(R) R∆(u) = ∆(u) σ(R) R.
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It follows from (i),(ii),(iii),(iv), respectively that

Z (∆ ⊗ id) ∆(u) = (∆ ⊗ id) ∆(u) Z (K25)

if Z is one of the following elements:

(a) r12 + (∆ ⊗ id)(r) − r23 − (id ⊗ ∆)(r),

(b) [[r, r]],

(c) (∆ ⊗ id)(r) − r13 − r23,

(d) (id ⊗ ∆)(r) − r13 − r12.

It follows from (v) that

(e) (σ(r) + r) ∆(u) = ∆(u) (σ(r) + r).

On the other hand assume that U is a cocommutative Hopf algebra over C (not
necessarily obtained from some Uh) and define for some r ∈ U ⊗ U the map δ by (K22).
Then it follows that δ(uv) = δ(u)∆(v) + ∆(u)δ(v), while the above properties (e), (a),
(b) are respectively equivalent to the antisymmetry of δ, the co-Leibniz identity and the
co-Jacobi identity. Hence U together with δ defined by (K22) defines a co-Poisson-Hopf
algebra iff property (e) holds and identity (K25) holds with Z given by (a) and by (b).

If g is a Lie algebra and U(g) is a co-Poisson-Hopf algebra with δ defined by (K22)
for some r ∈ U(g) ⊗ U(g), then we would like to conclude that r ∈ g ⊗ g. Possibly, this
conclusion is not right in general. However it is right if the expression (a) equals 0 and
σ(r) + r = 0, see C&P, proof of Proposition 6.3.2. See also the definitions of coboundary
Hopf algebra, quasi-triangular Hopf algebra and triangular Hopf algebra in C&P, Definition
4.2.6, and see the statement of Proposition 6.3.2.

By way of example consider Uh(sl(2, C)) (C&P, §6.4) and check the resulting quasi-
triangular Lie bialgebra structure for sl(2, C) with r obtained from the element R = Rh

given in Proposition 6.4.8.
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College Quantumgroepen, Koornwinder, 19-11-96

Hochschild cohomology of associative algebras Let k be a field and let A be
an associative algebra with 1 over k. Let M be a linear space over k which is also an
A-bimodule, i.e., a left and right A-module such that (a.m).b = a.(m.b) for all m ∈ M ,
a, b ∈ A. By definition, the space Cn(A, M) of n-dimensional cochains consists of all

k-linear maps f̃ :A⊗(n+2) → M such that

f̃(aa0 ⊗a1 ⊗· · ·⊗an ⊗an+1b) = a.f̃(a0 ⊗a1 ⊗· · ·⊗an ⊗an+1).b (a, a0, . . . , an+1, b ∈ A).

Define a k-linear map d: Cn(A, M) → Cn+1(A, M) by

(df̃)(a0 ⊗ · · · ⊗ an+2) =

n+1∑

i=0

(−1)i f̃(a0 ⊗ · · · ⊗ ai−1 ⊗ aiai+1 ⊗ ai+2 ⊗ · · · ⊗ an+2).

Then, by easy computation, d ◦ d = 0.
As a k-linear space, the space Cn(A, M) is isomorphic to Homk(A⊗n, M) by the linear

bijection f ↔ f̃ such that

f̃(a0 ⊗· · ·⊗an+1) = a0.f(a1⊗· · ·⊗an).an+1, f(a1⊗· · ·⊗an) = f̃(1⊗a1 ⊗· · ·⊗an ⊗1).

In this picture the map d becomes (again by easy computation):

(df)(a1 ⊗ · · · ⊗ an+1) =a1.f(a2 ⊗ · · · ⊗ an+1) +

n∑

i=1

(−1)i f(a1 ⊗ · · · ⊗ aiai+1 ⊗ · · ·an+1)

+ (−1)n+1 f(a1 ⊗ · · ·an).an+1 (f ∈ Cn(A, M)).

We still have d ◦ d = 0 in this picture. The n-cochains f which satisfy df = 0 are called
n-cocycles, and the n-cochains f of the form dg for some (n − 1)-cochain g, are called
n-coboundaries. The space of n-cocycles modulo the space of n-coboundaries is denoted
by Hn

alg(A, M) (a cohomology group, or rather cohomology k-space).
Clearly, the algebra A itself is an A-bimodule, so we can speak about Hn

alg(A,A). If,

more generally, A is a bialgebra, then A⊗j is an A-bimodule by the rule

a.(b1 ⊗ · · · ⊗ bj) := ∆(j)(a) (b1 ⊗ · · · ⊗ bj), (b1 ⊗ · · · ⊗ bj).a := (b1 ⊗ · · · ⊗ bj) ∆(j)(a).

Here
∆(1)(a) := a, ∆(2)(a) := ∆(a), ∆(j)(a) := (∆ ⊗ id) (∆(j−1)(a)).

For A a bialgebra write Cij := Homk(A⊗i,A⊗j) and write d′
ij or d′ for the map d: Cij →

Ci+1,j . The map d′ is then given in C&P, §6.1B, formula (12).
Bij way of example consider A := U(g), with g a Lie algebra. Any U(g)-bimodule M

is also a g-module in a natural way. Then we have:

Hn
alg(U(g), M) ≃ Hn

Liealg(g, M)

≃ Hn
Liealg(g,k) ⊗ Mg if g is semisimple),

see S. Shnider & S. Sternberg, Quantum groups, from coalgebras to Drinfeld algebras, a

guided tour, International Press, 1993. Also recall the Whitehead lemmas: Hn
Liealg(g, M) =

0 for n = 1, 2 if g is semisimple.
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Cohomology of coalgebras Let A now be a coassociative co-algebra over k with
counit ε and let the k-linear space M be an A-co-bimodule, i.e., with k-linear maps
ρ: M → M ⊗A and λ: M → A⊗ M such that

(ρ ⊗ id) ◦ ρ = (id⊗ ∆) ◦ ρ, (id ⊗ ε) ◦ ρ = id,

(id ⊗ λ) ◦ λ = (∆ ⊗ id) ◦ λ, (ε ⊗ id) ◦ λ = id,

(λ ⊗ id) ◦ ρ = (id ⊗ ρ) ◦ λ.

The definitions in the previous section can now be “dualized” for the case of a coalgebra.
By definition, the space Cn(M,A) of n-dimensional cochains consists of all k-linear

maps f̃ : M → A⊗(n+2) such that

(id ⊗ f̃)(λ(m)) = ∆0(f̃(m)), (f̃ ⊗ id)(ρ(m)) = ∆n+1(f̃(m)).

Here ∆r means ∆ being applied to the rth factor in the tensor product, while id is applied
to the other factors in the tensor product, with the factors being labeled from 0 to n + 1.
Define d: Cn(M,A) → Cn+1(M,A) by

(df̃)(m) :=

n+1∑

i=0

(−1)i ∆i(f̃(m)).

Then d ◦ d = 0.
As a k-linear space, the space Cn(M,A) is isomorphic to Homk(M,A⊗n) by the linear

bijection f ↔ f̃ such that

f̃(m) = (id ⊗ f ⊗ id)((λ ⊗ id) ◦ ρ(m)), f(m) = (ε ⊗ id ⊗ ε)(f̃(m)).

In this picture the map d becomes

(df)(m) = (id ⊗ f)(λ(m)) +

n∑

i=1

(−1)i ∆i(f(m)) + (−1)n+1 (f ⊗ id)(ρ(m)).

We still have d ◦ d = 0 in this picture. As always, with such a complex, the n-cochains f
which satisfy df = 0 are called n-cocycles, and the n-cochains f of the form dg for some
(n− 1)-cochain g, are called n-coboundaries. The space of n-cocycles modulo the space of
n-coboundaries is denoted by Hn

coalg(M,A).
The co-algebra A itself is an A-co-bimodule, so we can speak about Hn

coalg(A,A). If,

more generally, A is a bialgebra, then A⊗i is an A-co-bimodule by the rule

λ(a1 ⊗ · · · ⊗ ai) :=
∑

(a1),...,(ai)

(a1)(1) . . . (ai)(1) ⊗ (a1)(2) ⊗ · · · ⊗ (ai)(2),

ρ(a1 ⊗ · · · ⊗ ai) :=
∑

(a1),...,(ai)

(a1)(1) ⊗ · · · ⊗ (ai)(1) ⊗ (a1)(2) . . . (ai)(2).

For A a bialgebra recall our notation Cij := Homk(A⊗i,A⊗j). Write d′′
ij or d′′ for the map

d: Cij → Ci,j+1. The map d′′ is then given in C&P, §6.1B, formula (13).
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Algebra deformations Let A be a k-algebra and let Ah be the topological k[[h]]-
linear space given by A[[h]]. Thus Ah consists of elements ah = a0 +a1h+a2h

2 + · · · with
a0, a1, a2, . . . ∈ A and we have A ≃ Ah/(hAh) as k-linear spaces. Denote the (associative)
multiplication on A by µ: a⊗ b 7→ ab:A⊗A → A. Let µh:Ah ⊗Ah → Ah be a continuous
k[[h]]-linear map deforming µ, i.e.,

µh(a ⊗ b) = µ(a ⊗ b) + µ1(a ⊗ b) h + µ2(a ⊗ b) h2 + · · · (a, b ∈ A),

where µ1, µ2, . . . are k-linear maps of A⊗A to A. We call µh associative modhn if

µh((µh(a ⊗ b) ⊗ c) = µh(a ⊗ µh(b ⊗ c)) mod hn (a, b, c ∈ A).

An easy calculation shows that µh is associative modh2 iff

a µ1(b ⊗ c) − µ1(ab ⊗ c) + µ1(a ⊗ bc) − µ1(a ⊗ b) c = 0,

i.e., iff the cochain µ1 ∈ C2(A,A) is a 2-cocycle, i.e., iff dµ1 = 0.
Two deformations µh and µ′

h of µ are called equivalent mod hn if there is a continuous
k[[h]]-linear bijection fh:Ah → Ah of the form

fh(a) = a + f1(a) h + f2(a) h2 + · · ·

such that
µ′

h(fh(a) ⊗ fh(b)) = fh(µh(a ⊗ b)) mod hn (a, b ∈ A).

An easy calculation shows that µ1 and µ′
1 are equivalent modh2 under fh iff

µ1(a ⊗ b) − µ′

1(a ⊗ b) = a f1(b) − f1(ab) + f1(a) b,

i.e., iff µ1−µ′
1 = df1. It follows that the space of equivalence classes mod h2 of deformations

of µ which are associative modh2 can be identified with H2
alg(A,A).

Suppose that µh is associative modh2, i.e., dµ1 = 0. Define the 3-cochain ν1 by

ν1(a ⊗ b ⊗ c) := µ1(µ1(a ⊗ b) ⊗ c) − µ1(a ⊗ µ1(b ⊗ c)).

A somewhat longer computation shows that ν1 is a 3-cocycle, i.e., dν1 = 0. An easy
calculation shows that µh is associative modh3 iff dµ2 = ν1. Hence, if H3

alg(A,A) = 0

then, for any µ1 which makes µh associative modh2, we can find µ2 which makes µh

associative modh3. For H3
alg(A,A) not necessarily 0 we call H3

alg(A,A) the obstruction

for extending µh from being associative modh2 to being associative modh3.
Suppose now that µh is associative modhn. Put

νn−1(a ⊗ b ⊗ c) :=

n−1∑

k=1

(
µk(µn−k(a ⊗ b) ⊗ c) − µk(a ⊗ µn−k(b ⊗ c))

)
.

A tedious computation shows that dνn−1 = 0. An easy computation shows that µh is as-
sociative mod hn+1 iff dµn = νn−1. Hence, if H3

alg(A,A) = 0 then, for any µ1 which makes

µh associative modh2, we can find µ2, µ3, . . . such that µh is an associative multiplication
on Ah. Also, for any n, H3

alg(A,A) (not necessarily 0) is the obstruction for extending µh

from being associative modhn to being associative modhn+1.
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Co-algebra deformations Let A be a k-co-algebra and let Ah be the topological
k[[h]]-linear space given by A[[h]]. Denote the (co-associative) co-multiplication on A by
∆. Let ∆h:Ah → Ah ⊗Ah be a continuous k[[h]]-linear map deforming ∆, i.e.,

∆h(a) = ∆(a) + ∆1(a) h + ∆2(a) h2 + · · · (a ∈ A),

where ∆1, ∆2, . . . are k-linear maps of A to A⊗A. We call ∆h co-associative modhn if

(∆h ⊗ id)(∆h(a)) = (id ⊗ ∆h)(∆h(a)) mod hn (a ∈ A).

Then ∆h is co-associative modh2 iff

(id⊗ ∆1)(∆(a))− (∆ ⊗ id)(∆1(a)) + (id⊗ ∆)(∆1(a)) − (∆1 ⊗ id)(∆(a)) = 0 (a ∈ A),

i.e., iff d∆1 = 0. Also,

(fh ⊗ fh)(∆h(a)) = ∆′

h(fh(a)) mod h2

iff
∆′

1(a) − ∆1(a) = (id ⊗ f1)(∆(a))− ∆(f1(a))) + (f1 ⊗ id)(∆(a)),

i.e., iff ∆1 − ∆′
1 = −df1.

Suppose ∆h is co-associative modh2. Put

Γ1 := −(∆1 ⊗ id) ◦ ∆1 + (id⊗ ∆1) ◦ ∆1.

Then dΓ1 = 0. Furthermore, ∆h is co-associative modh3 iff d∆2 = −Γ1.

Gerstenhaber-Schack cohomology of bialgebras Let A be a bialgebra over k.
Recall that Cij := Homk(A⊗i,A⊗j). We can identify the elements f ∈ Cij in a linear way

with elements f̃ ∈ Homk(A⊗(i+2),A⊗(j+2)) such that

f̃(aa0 ⊗ a1 ⊗ · · · ⊗ ai ⊗ ai+1b) = ∆(j+2)(a) f̃(a0 ⊗ · · · ⊗ ai+1) ∆(j+2)(b)

and
∑

(a0),...,(ai+1)

(a0)(1) . . . (ai+1)(1) ⊗ f̃((a0)(2) ⊗ · · · ⊗ (ai+1)(2)) ⊗ (a0)(3) . . . (ai+1)(3)

= (∆0 ⊗ ∆j+1)(f̃(a0 ⊗ · · · ⊗ ai+1)).

The linear bijection f̃ 7→ f is given by

f(a1 ⊗ · · · ⊗ ai) = (ε ⊗ id ⊗ ε)(f̃(1 ⊗ a1 ⊗ · · · ⊗ ai ⊗ 1)).

Recall the maps d′ = d′
ij : C

ij → Ci+1,j and d′′ = d′′
ij : C

ij → Ci,j+1 we defined earlier.

When acting on f̃ these become:

(d′

ij f̃)(a0 ⊗ · · · ⊗ ai+2) =

i+1∑

r=0

(−1)r f̃(a0 ⊗ · · · ⊗ ar−1 ⊗ arar+1 ⊗ ar+2 ⊗ · · · ⊗ ai+2),

(d′′

ij f̃)(a0 ⊗ · · · ⊗ ai+1) =

j+1∑

s=0

(−1)s ∆s(f̃(a0 ⊗ · · · ⊗ ai+1)).

Then it follows immediately that d′ and d′′ commute, i.e., d′′
i+1,j ◦ d′

ij = d′
i,j+1 ◦ d′′

ij .

Put now Cn := Cn,1 ⊕ Cn−1,2 ⊕ · · · ⊕ C1,n and

df := d′

ijf + (−1)i d′′

ijf (f ∈ Cij).

Then d: Cn → Cn+1 and d ◦ d = 0. Put Hn(A,A) := d−1{0}Cn+1/d(Cn−1).
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Bialgebra deformations Let A be a bialgebra over k with multiplication µ and co-
multiplication ∆ and let Ah, µh, ∆h and fh be as before. We have seen earlier that µh

is associative modh2 iff d′µ1 = 0 and that ∆h is co-associative modh2 iff d′′∆1 = 0. An
easy computation shows that ∆h is an algebra homomorphism modh2, i.e.,

∆h(ab) = ∆h(a) ∆h(b) mod h2 (a, b ∈ A),

iff d′∆1+d′′µ1 = 0. We can summarize this by saying that (Ah, µh, ∆h) is a bialgebra mod
h2 iff d(µ, ∆) = 0. Also, (µh, ∆h) and (µ′

h, ∆′
h) are equivalent modh2 by fh iff (µ1, ∆1) −

(µ′
1, ∆

′
1) = df1.

Read now C&P, Proposition 6.1.3, Corollary 6.1.5, Proposition 6.1.6 and Theorem
6.1.8(ii). Theorem 6.2.8 should be skipped, since this result has been withdrawn by the
author mentioned there. Instead consider the paper P. Etingof & D. Kazhdan, Quantiza-

tion of Lie bialgebras, I”, (preprint in q-alg, 1995). Read also Remarks [1] after Corollary
6.5.4 in C&P.

Remark A good reference for the first part of this course is: I. Vaisman, Lectures on

the geometry of Poisson manifolds, Birkhäuser, 1994.

Topics for a final piece of work for this course Extend the idea of quantization of
s Poisson Lie group to the quantization of a Poisson homogeneous space. A very concrete
example of this can be studied in

A, J.-L. Sheu, Quantiztion of the Poisson SU(2) and its Poisson homogeneous space —

The 2-sphere, Comm. Math. Phys. 135 (1991), 217–232.

A much more general case can be found in:

S. Khoroshkin, A. Radul & V. Rubtsov, A family of Poisson structures on Hermitian

symmetric spaces, Comm. Math. Phys. 152 (1993), 299–315.


