Orthogonal polynomials in several variables potentially useful in pde

Tom Koornwinder

University of Amsterdam, T.H.Koornwinder@uva.nl, http://www.science.uva.nl/~thk/

Lecture on 17 January 2012 at the Oberwolfach workshop Recent Developments in the Numerics of Nonlinear Hyperbolic Conservation Laws and their Use in Science and Engineering, 16-20 January 2012.

Last modified 26 September 2014

Orthogonal polynomials

Definition

μ a positive measure on \mathbb{R} such that $\int_{\mathbb{R}}\left|x^{n}\right| d \mu(x)<\infty \quad(n \geq 0)$.
Call $\left\{p_{n}\right\}_{n=0,1,2, \ldots}$ a system of orthogonal polynomials (OP's) with respect to μ if p_{n} is polynomial of degree n and if

$$
\int_{\mathbb{R}} p_{n}(x) q(x) d \mu(x)=0 \quad(q \text { polynomial of degree }<n)
$$

Then p_{n} is unique up to constant factor and for certain $h_{n}>0$:

$$
\int_{\mathbb{R}} p_{n}(x) p_{m}(x) d \mu(x)=h_{n} \delta_{n, m}
$$

Special case: μ is absolutely continuous

 $d \mu(x)=w(x) d x$ on (a, b) and $\mu=0$ outside $[a, b]$. Then$$
\int_{a}^{b} p_{n}(x) p_{m}(x) w(x) d x=h_{n} \delta_{n, m}
$$

Three-term recurrence relation

Orthogonal polynomials p_{n} satisfy a three-term recurrence relation

$$
x p_{n}(x)=A_{n} p_{n+1}(x)+B_{n} p_{n}(x)+C_{n} p_{n-1}(x)
$$

with $A_{n} C_{n+1}>0$. Thus OP's $p_{n}(x)$ are eigenfunctions of a second order difference equation in n with eigenvalue x.

Conversely, solutions of such a recurrence relation wih starting values $p_{-1}(x)=0, p_{0}(x)=1$ are orthogonal polynomials with respect to a certain positive measure (Favard's theorem).

Classical orthogonal polynomials

	$p_{n}(x)$	$w(x)$	(a, b)	
Jacobi	$P_{n}^{(\alpha, \beta)}(x)$	$(1-x)^{\alpha}(1+x)^{\beta}$	$(-1,1)$	$\alpha, \beta>-1$
Laguerre	$L_{n}^{\alpha}(x)$	$x^{\alpha} e^{-x}$	$(0, \infty)$	$\alpha>-1$
Hermite	$H_{n}(x)$	$e^{-x^{2}}$	$(-\infty, \infty)$	

Theorem (Bochner, 1929)

Above are essentially the only systems of OP's p_{n} for which $L p_{n}=\lambda_{n} p_{n} \quad$ (L some second order differential operator).

	$(L f)(x)$	λ_{n}
Jacobi	$\left(1-x^{2}\right) f^{\prime \prime}(x)+(\beta-\alpha-(\alpha+\beta+2) x) f^{\prime}(x)$	$-n(n+\alpha+\beta+1)$
Laguerre	$x f^{\prime \prime}(x)+(\alpha+1-x) f^{\prime}(x)$	$-n$
Hermite	$\frac{1}{2} f^{\prime \prime}(x)-x f^{\prime}(x)$	$-n$

Special cases of Jacobi polynomials

Legendre polynomials

$$
P_{n}(x):=P_{n}^{(0,0)}(x), \quad w(x)=1 \text { on }(-1,1)
$$

Chebyshev polynomials of first kind
$T_{n}(x):=$ const. $P_{n}^{\left(-\frac{1}{2},-\frac{1}{2}\right)}(x), \quad w(x)=\frac{1}{\sqrt{1-x^{2}}}, \quad T_{n}(\cos \theta)=\cos (n \theta)$.
Chebyshev polynomials of second kind
$U_{n}(x):=$ const. $P_{n}^{\left(\frac{1}{2}, \frac{1}{2}\right)}(x), w(x)=\sqrt{1-x^{2}}, U_{n}(\cos \theta)=\frac{\sin ((n+1) \theta)}{\sin \theta}$.

Orthogonal polynomials in d variables

Definition

μ a positive measure on \mathbb{R}^{d} such that $\int_{\mathbb{R}}\left|x^{\alpha}\right| d \mu(x)<\infty$ $\left(\alpha \in\left(\mathbb{Z}_{\geq 0}\right)^{d}\right)$. Call $\left\{\mathcal{P}_{n}\right\}_{n=0,1,2, \ldots}$ a system of orthogonal polynomials (OP's) with respect to μ if \mathcal{P}_{n} is a linear space of dimension $\binom{n+d-1}{n}$ consisting of polynomials of degree n and if

$$
\int_{\mathbb{R}^{d}} p(x) q(x) d \mu(x)=0 \quad\left(p \in \mathcal{P}_{n}, q \in \mathcal{P}_{m}, n \neq m\right)
$$

Note $\binom{n+d-1}{n}$ is the dimension of the space of homogeneous polynomials of degree n in d variables.
Refinement Choose an orthogonal basis $\left\{p_{\alpha}\right\}_{\alpha_{1}+\cdots+\alpha_{d}=n}$ for each space \mathcal{P}_{n}. Then

$$
\int_{\mathbb{R}^{d}} p_{\alpha}(x) p_{\beta}(x) d \mu(x)=0 \quad\left(\alpha, \beta \in\left(\mathbb{Z}_{\geq 0}\right)^{d}, \alpha \neq \beta\right)
$$

Let $\left\{\mathcal{P}_{n}\right\}_{n=0,1,2, \ldots}$ be a system of OP's. By the orthogonality measure μ there is an inner product on each space \mathcal{P}_{n}. Denote by \mathcal{M}_{i} the operator of multiplication by x_{i}. Then

$$
\left.\mathcal{M}_{i}\right|_{\mathcal{P}_{n}}=\mathcal{A}_{n, i}+\mathcal{B}_{n, i}+\mathcal{C}_{n, i},
$$

where
$\mathcal{A}_{n, i}: \mathcal{P}_{n} \rightarrow \mathcal{P}_{n+1}$, injective,
$\mathcal{B}_{n, i}: \mathcal{P}_{n} \rightarrow \mathcal{P}_{n}$, symmetric,
$\mathcal{C}_{n, i}: \mathcal{P}_{n} \rightarrow \mathcal{P}_{n-1}$, transpose of $\mathcal{A}_{n-1, i}$.
Moreover, \mathcal{P}_{n+1} is spanned by the images of $\mathcal{A}_{n, 1}, \ldots \mathcal{A}_{n, d}$.
There are also converse Favard type theorems (Xu, 1993, 1994).

Classical orthogonal polynomials in d variables

Special case of general OP's: μ is absolutely continuous. $d \mu(x)=w(x) d x$ on some open domain U in \mathbb{R}^{d} and $\mu=0$ outside the closure of U. Then

$$
\int_{U} p(x) q(x) w(x) d x=0 \quad\left(p \in \mathcal{P}_{n}, q \in \mathcal{P}_{m}, n \neq m\right)
$$

Definition

A system $\left\{\mathcal{P}_{n}\right\}$ of orthogonal polynomials in d variables is called classical if there is a second order pdo L such that

$$
L p=\lambda_{n} p \quad\left(p \in \mathcal{P}_{n}\right)
$$

Refinement Apart from $L=L_{1}$ there are $d-1$ further pdo's L_{2}, \ldots, L_{d} such that $L_{1}, L_{2}, \ldots, L_{d}$ commute, are self-adjoint with respect to μ, and have one-dimensional joint eigenspaces.
Then we have OP's p_{α} with $L_{j} p_{\alpha}=\lambda_{\alpha}^{(j)} p_{\alpha}$.

Classical orthogonal polynomials in 2 variables

	$w(x, y)$	U	L	λ_{n}
1.	$e^{-x^{2}-y^{2}}$	\mathbb{R}^{2}	$\frac{1}{2}\left(\partial_{x x}+\partial_{y y}\right)-x \partial_{x}-y \partial_{y}$	$-n$
2.	$x^{\alpha} y^{\beta} e^{-x-y}$	$(0, \infty)^{2}$	$x \partial_{x x}+y \partial_{y y}+(1+\alpha-x) \partial_{x}$	$-n$
			$+(1+\alpha-y) \partial_{y}$	
3.	$y^{\beta} e^{-x^{2}-y}$	$\mathbb{R} \times(0, \infty)$	$\frac{1}{2} \partial_{x x}+y \partial_{y y}-x \partial_{x}$	$-n$
4.	$x^{\alpha} y^{\beta}(1-x-y)^{\gamma}$	$x, y>0$,	$+(1+\beta-y) \partial_{y}$	
		L	λ_{n}	
5.	$\left(1-x^{2}-y^{2}\right)^{\alpha}$	$x^{2}+y^{2}<1$	L	λ_{n}

In case 4 (triangular region):
$L=x(1-x) \partial_{x x}+y(1-y) \partial_{y y}-2 x y \partial_{x y}$ $+(\alpha+1-(\alpha+\beta+\gamma+3) x) \partial_{x}+(\beta+1-(\alpha+\beta+\gamma+3) y) \partial_{y}$,
$\lambda_{n}=-n(n+\alpha+\beta+\gamma+2)$.
In case 5 (disk):
$L=\left(1-x^{2}\right) \partial_{x x}+\left(1-y^{2}\right) \partial_{y y}-2 x y \partial_{x y}-(2 \alpha+3)\left(x \partial_{x}+y \partial_{y}\right)$,
$\lambda_{n}=-n(n+2 \alpha+2)$.

Classical orthogonal polynomials in 2 variables, cntd.

Theorem (Krall \& Sheffer, 1967; Kwon, Lee \& Littlejohn, 2001)

The five cases just listed are essentially all classical OP's in two variables.

Special orthogonal basis $\left\{p_{n, k}\right\}_{k=0,1, \ldots, n}$ for \mathcal{P}_{n} in these 5 cases:

	$w(x, y)$	U	$p_{n, k}(x, y)$
1.	$e^{-x^{2}-y^{2}}$	\mathbb{R}^{2}	$H_{n-k}(x) H_{k}(y)$
2.	$x^{\alpha} y^{\beta} e^{-x-y}$	$(0, \infty)^{2}$	$L_{n-k}^{\alpha}(x) L_{k}^{\beta}(y)$
3.	$y^{\beta} e^{-x^{2}-y}$	$\mathbb{R} \times(0, \infty)$	$H_{n-k}(x) L_{k}^{\beta}(y)$
4.	$x^{\alpha} y^{\beta}(1-x-y)^{\gamma}$	$x, y>0$,	$P_{n-k}^{(\alpha, \beta+\gamma+2 k+1)}(1-2 x)$
		$x+y<1$	$\times(1-x)^{k} P_{k}^{(\beta, \gamma)}(1-2 y /(1-x))$
5.	$\left(1-x^{2}-y^{2}\right)^{\alpha}$	$x^{2}+y^{2}<1$	$P_{n-k}^{\left(\alpha+k+\frac{1}{2}, \alpha+k+\frac{1}{2}\right)}(x)$
			$\times\left(1-x^{2}\right)^{k / 2} P_{k}^{(\alpha, \alpha)}\left(y\left(1-x^{2}\right)^{-1 / 2}\right)$

History of triangle polynomials

The orthogonal polynomials of case 4 (on a triangular region) were introduced by Proriol (1957), and included in a survey paper by K (1975). Their special case $\alpha=\beta=\gamma=0$ (constant weight function) also occurred in Munschy \& Pluvinage (1957), and much later again in Dubiner (1991), who was not aware of the earlier results and was motivated by applications to finite elements. Dubiner's paper was much quoted in the context of finite elements. The book Orthogonal polynomials of several variables by Dunkl \& Xu (2001) finally referred to Dubiner's paper. Conversely, Proriol's paper was observed by Hesthaven \& Teng (2000), and later in the book Spectral/hp element methods for computational fluid dynamics by Karniadakis \& Sherwin (second ed., 2005).
The orthogonal polynomials of case 5 (on the unit disk) seem to go back to Hermite. Again, the case $\alpha=0$ (constant weight function) was independently observed by Dubiner (1991).

Classical orthogonal polynomials in 2 variables, cntd.

Put $L_{1}:=L$. There is a pdo L_{2} commuting with L_{1} and splitting up the eigenspaces of L_{1}.

$$
L_{1} p_{n, k}=\lambda_{n} p_{n, k}, \quad L_{2} p_{n, k}=\mu_{k} p_{n, k} .
$$

	$p_{n, k}(x, y)$	L_{2}	μ_{k}
1.	$H_{n-k}(x) H_{k}(y)$	$\frac{1}{2} \partial_{y y}-y \partial_{y}$	$-k$
2.	$L_{n-k}^{\alpha}(x) L_{k}^{\beta}(y)$	$y \partial_{y y}+(1+\alpha-y) \partial_{y}$	$-k$
3.	$H_{n-k}(x) L_{k}^{\beta}(y)$	$y \partial_{y y}+(1+\alpha-y) \partial_{y}$	$-k$
4.	$P_{n-k}^{(\alpha, \beta+\gamma+2 k+1)}(1-2 x)$	$y(1-x-y) \partial_{y y}$	$-k(k+\beta+\gamma+1)$
	$\times P_{k}^{(\beta, \gamma)}(1-2)^{k}$	$+((\beta+1)(1-x)$	
5.	$P_{\left.n-k+\frac{1}{2}, \alpha+k+\frac{1}{2}\right)}^{(\alpha+x)}(x)$	$-(\beta+\gamma+2) y) \partial_{y}$	
	$\times\left(1-x^{2}-y^{2}\right) \partial_{y y}$	$-k(k+2 \alpha+1)$	
	$\left.\times P_{k}^{(\alpha, \alpha)}\left(y\left(1-x^{2}\right)^{k / 2}\right)^{-1 / 2}\right)$	$-2(\alpha+1) y \partial_{y}$	

Orthogonalization

In general, for OP's in 2 variables with respect to a measure μ, orthogonal bases $\left\{p_{n, k}\right\}_{k=0,1, \ldots, n}$ for the successive spaces \mathcal{P}_{n} ($n=0,1,2, \ldots$) can be obtained by Gram-Schmidt orthogonalization of the monomials

$$
1, x, y, x^{2}, x y, y^{2}, \ldots, x^{n}, x^{n-1} y, \ldots, x^{n-k} y^{k}, \ldots
$$

i.e., of the monomials $x^{m-j} y^{j}$ with the (m, j) lexicographically ordered. The classical OP's $p_{n, k}(x, y)$ can also be obtained in this way. However, not all (m, j) below (n, k) are then needed for obtaining $p_{n, k}$.

Orthogonalization, cntd.

In cases 1, 2, 3
$p_{n, k}(x, y)=p_{n-k}(x) q_{k}(y)$ only contains
monomials $x^{m-j} y^{j}$ with $m-j \leq n-k$ and $j \leq k$ (red dots in the picture).

In case $4 p_{n, k}(x, y)$ of form $p_{n-k}^{k}(x)(1-x)^{k} q_{k}\left(\frac{y}{1-x}\right)$ only contains monomials $x^{m-j} y^{j}$ with $m \leq n$ and $j \leq k$ (red dots in the picture). Similarly for case 5 .

Thus $p_{n, k}$ of case 4 can already be characterized as a polynomial

$$
p_{n, k}(x, y)=\sum_{j=0}^{k} \sum_{m=j}^{n} c_{m, j} x^{m-j} y^{j}
$$

such that $c_{n, k} \neq 0$ and

$$
\int_{\mathbb{R}^{2}} p_{n, k}(x, y) x^{m-j} y^{j} d \mu(x, y)=0
$$

if $0 \leq j \leq k, j \leq m \leq n,(m, j) \neq(n, k)$.
For an arbitrary measure μ on \mathbb{R}^{2} this would not guarantee that always $\int_{\mathbb{R}^{2}} p_{n, k}(x, y) p_{m, j}(x, y) d \mu(x, y)=0$ for $(n, k) \neq(m, j)$, but for the special measure of case 4 it yields full orthogonality.

More general triangle polynomials

Let the polynomials $q_{n}(x)$ be orthogonal with respect to a weight function $w_{2}(x)$ on $(0,1)$ and let for $k=0,1,2, \ldots$ the polynomials $p_{n}^{k}(x)$ be orthogonal with respect to a weight function $w_{1}(x)(1-x)^{2 k+1}$ on $(0,1)$. Then the polynomials

$$
p_{n, k}(x, y):=p_{n-k}^{k}(x)(1-x)^{k} q_{k}(y /(1-x))
$$

are orthogonal on the triangular region $x, y>0, x+y<1$ with respect to the weight function

$$
w(x, y):=w_{1}(x) w_{2}(y /(1-x))
$$

These OP's generalize the classical OP's of case 4. The expansion of $p_{n, k}(x, y)$ in monomials has the same type for all generalized triangle prolynomials.
The recurrence relations are also of simple nature:

$$
\begin{array}{ll}
x p_{n, k} \in \operatorname{Span}\left\{p_{m, k}\right\}_{|m-n| \leq 1} & \text { (3 terms) } \\
y p_{n, k} \in \operatorname{Span}\left\{p_{m, j}\right\}_{|m-n| \leq 1,|j-k| \leq 1} & \text { (9 terms). }
\end{array}
$$

Other orthogonal bases: Disk polynomials

$$
\begin{aligned}
R_{m, n}^{\alpha}(z):=\text { const. } & \begin{cases}P_{n}^{(\alpha, m-n)}\left(2|z|^{2}-1\right) z^{m-n}, & m \geq n \\
P_{m}^{(\alpha, n-m)}\left(2|z|^{2}-1\right) \bar{z}^{n-m}, & n \geq m\end{cases} \\
& \left((m, n) \in\left(\mathbb{Z}_{\geq 0}\right)^{2}, z \in \mathbb{C}, \alpha>-1\right)
\end{aligned}
$$

$R_{m, n}^{\alpha}(z)=$ const. $z^{m} \bar{z}^{n}+$ polynomial in z, \bar{z} of lower degree.

$$
\begin{array}{r}
\int_{x^{2}+y^{2}<1} R_{m, n}^{\alpha}(x+i y) \overline{R_{k, l}^{\alpha}(x+i y)}\left(1-x^{2}-y^{2}\right)^{\alpha} d x d y=0 \\
((m, n) \neq(k, l))
\end{array}
$$

For $\alpha=0$ called Zernike polynomials, introduced by Zernike (1934) in view of applications in optics. Also in Dubiner (1991). Still much used, for instance in design of chip machines at ASML. Zernike got Nobel prize in physics in 1953. Disk polynomials for general α first in Zernike \& Brinkman (1935).

Monomial bases and biorthogonal systems

For OP's in 2 variables of the form $p_{n, k}(x)=p_{n-k}(x) q_{k}(y)$ we have seen that only the monomials corresponding to red dots occur. In particular, $p_{n, k} \in \mathcal{P}_{n}$ such that $p_{n, k}(x, y)=$ const. $x^{n-k} y^{k}+$ polynomial of lower degree.

For general OP's in 2 variables we can also define a basis of such $p_{n, k}$ for \mathcal{P}_{n} (a monomial basis), but then, for fixed n, the $p_{n, k}$ are usually not mutually orthogonal. We may then consider a basis of $q_{n, k}(k=0,1, \ldots, n)$ for \mathcal{P}_{n} which is biorthogonal to the $p_{n, k}$, i.e., $\int_{\mathbb{R}^{2}} p_{n, k}(x, y) q_{n, j}(x, y) d \mu(x, y)=0 \quad(k \neq j)$.
Appell gave explicit biorthogonal systems on the disk and for $\gamma=0$ on the triangle (1882). Fackerell \& Littler (1974) gave them for general α, β, γ.

Positive convolution structures

Let $\left\{p_{\alpha}\right\}$ be a complete orthogonal system in $L^{2}(X, \mu)$:

$$
\int_{X} p_{\alpha}(x) p_{\beta}(x) d \mu(x)=\omega_{\alpha}^{-1} \delta_{\alpha, \beta} .
$$

Suppose that there are positive measures $\nu_{x, y}(x, y \in X)$ such that for all α and all $x, y \in X$ there holds the product formula

$$
p_{\alpha}(x) p_{\alpha}(y)=\int_{X} p_{\alpha}(z) d \nu_{x, y}(z) .
$$

Then the following generalized convolution is positive:

$$
\left(\sum_{\alpha} a_{\alpha} \omega_{\alpha} p_{\alpha}\right) *\left(\sum_{\alpha} b_{\alpha} \omega_{\alpha} p_{\alpha}\right):=\sum_{\alpha} a_{\alpha} b_{\alpha} \omega_{\alpha} p_{\alpha} .
$$

This is the case for Jacobi polynomials normalized by $P_{n}^{(\alpha, \beta)}(1)=1$ while $\alpha \geq \beta \geq-\frac{1}{2}$ (Gasper, 1972).
It is also the case for triangle polynomials normalized by $p_{n, k}^{\alpha, \beta, \gamma}(0,1)=1$ while $\alpha \geq \beta+\gamma+1$ and $\gamma \geq \beta \geq-\frac{1}{2}$ (K \& Schwartz, 1997).

Classical orthogonal polynomials on the simplex

Define the simplex T^{d} in \mathbb{R}^{d} by

$$
0 \leq x_{d} \leq x_{d-1} \ldots \leq x_{1} \leq 1
$$

The OP's on T^{d} with respect to the weight function

$$
w\left(x_{1}, \ldots, x_{d}\right):=\left(1-x_{1}\right)^{\alpha_{1}}\left(x_{1}-x_{2}\right)^{\alpha_{2}} \ldots\left(x_{d-1}-x_{d}\right)^{\alpha_{d}} x_{d}^{\alpha_{d+1}}
$$

are classical. An orthogonal basis $\left\{p_{n_{1}, \ldots, n_{d}}^{\alpha_{1}, \ldots, \alpha_{d+1}}\right\}_{n=n_{1} \geq n_{2} \geq \ldots \geq n_{d}}$ of \mathcal{P}_{n} can be defined recursively by

$$
\begin{aligned}
& p_{n_{1}, \ldots, n_{d}}^{\alpha_{1}, \ldots, \alpha_{d+1}}\left(x_{1}, \ldots, x_{d}\right)=P_{n_{1}-n_{2}}^{\left(\alpha_{1}, \alpha_{2}+\cdots+\alpha_{d+1}+2 n_{2}+d-1\right)}\left(2 x_{1}-1\right) \\
& \times x_{1}^{n_{2}} p_{n_{2}, \ldots, n_{d}}^{\alpha_{2}, \ldots, \alpha_{d+1}}\left(\frac{x_{2}}{x_{1}}, \ldots, \frac{x_{d}}{x_{1}}\right)
\end{aligned}
$$

(Kalnins, Miller \& Tratnik, 1991). Here $p_{n}^{\alpha, \beta}(x):=P_{n}^{(\alpha, \beta)}(2 x-1)$. Then the recursion for $d=2$ essentially gives the triangle polynomials.

Askey scheme

Some limits in the Askey scheme

Jacobi \rightarrow Laguerre $\quad(\beta \rightarrow \infty)$

$$
P_{n}^{(\alpha, \beta)}\left(1-2 \beta^{-1} x\right) \rightarrow L_{n}^{\alpha}(x), \quad x^{\alpha}\left(1-\beta^{-1} x\right)^{\beta} \rightarrow x^{\alpha} e^{-x}
$$

triangle \rightarrow product Laguerre $\quad(\gamma \rightarrow \infty)$

$$
\begin{aligned}
& p_{n, k}^{\alpha, \beta, \gamma}\left(\gamma^{-1} x, \gamma^{-1} y\right) \\
& \quad=P_{n-k}^{(\alpha, \beta+\gamma+2 k+1)}\left(1-2 \gamma^{-1} x\right)\left(1-\gamma^{-1} x\right)^{k} P_{k}^{(\beta, \gamma)}(1-2 y /(\gamma-x)) \\
& \quad \rightarrow L_{n-k}^{\alpha}(x) L_{k}^{\beta}(y), \\
& x^{\alpha} y^{\beta}\left(1-\gamma^{-1}(x+y)\right)^{\gamma} \rightarrow x^{\alpha} y^{\beta} e^{-x-y} .
\end{aligned}
$$

Some limits in the Askey scheme, cntd.

Pochhammer symbol:

$$
(a)_{n}:=a(a+1) \ldots(a+n-1)=\frac{\Gamma(a+n)}{\Gamma(a)} .
$$

Hahn polynomials $Q_{n}(x ; \alpha, \beta, N) \quad(n=0,1, \ldots, N)$:

$$
\sum_{x=0}^{N}\left(Q_{n} Q_{m}\right)(x ; \alpha, \beta, N) \frac{(\alpha+1)_{x}}{x!} \frac{(\beta+1)_{N-x}}{(N-x)!}=0 \quad(n \neq m)
$$

Hahn \rightarrow Jacobi $\quad(N \rightarrow \infty)$

$$
\begin{aligned}
Q_{n}(N x ; \alpha, \beta, N) \rightarrow & P_{n}^{(\alpha, \beta)}(1-2 x) \\
\frac{1}{N} \sum_{x \in\left\{0, \frac{1}{N}, \frac{2}{N}, \ldots, 1\right\}} f(x) \frac{\Gamma(N x+\alpha+1)}{N^{\alpha} \Gamma(N x+1)} & \frac{\Gamma(N(1-x)+\beta+1)}{N^{\beta} \Gamma(N(1-x)+1)} \\
& \rightarrow \int_{0}^{1} f(x) x^{\alpha}(1-x)^{\beta} d x .
\end{aligned}
$$

Discrete triangle polynomials

OP's on the set $\left\{(x, y) \in \mathbb{Z}^{2} \mid x, y \geq 0, x+y \leq N\right\}$ with respect to the weights

$$
w(x, y ; \alpha, \beta, \gamma, N):=\frac{(\alpha+1)_{x}}{x!} \frac{(\beta+1)_{y}}{y!} \frac{(\gamma+1)_{N-x-y}}{(N-x-y)!}
$$

(for $\alpha=\beta=\gamma=0$ constant weights). There is a second order difference operator in x and y for which the spaces \mathcal{P}_{n} are eigenspaces. An orthogonal basis of \mathcal{P}_{n} is given by

$$
\begin{aligned}
Q_{n, k}(x, y ; \alpha, \beta, \gamma, N):=Q_{n-k} & (x ; \alpha, \beta+\gamma+2 k+1, N-k) \\
& \times(-N+x)_{k} Q_{k}(y ; \beta, \gamma, N-x)
\end{aligned}
$$

(Karlin \& McGregor, 1964, 1975; Rahman, 1981).

$$
\lim _{N \rightarrow \infty} Q_{n, k}(N x, N y ; \alpha, \beta, \gamma, N)=p_{n, k}^{\alpha, \beta, \gamma}(x, y)
$$

From discrete to continuum triangle

Some literature

- J. Proriol, Sur une famille de polynomes à deux variables orthogonaux dans un triangle, C. R. Acad. Sci. Paris 245 (1957), 2459-2461.
- T. Koornwinder, Two-variable analogues of the classical orthogonal polynomials, in Theory and Application of Special Functions, R. Askey (ed.), Academic Press, 1975, pp. 435-495.
- M. Dubiner, Spectral methods on triangles and other domains, J. Sci. Comput. 6 (1991), 345-390.
- Ch. F. Dunkl \& Y. Xu, Orthogonal polynomials of several variables, Cambridge University Press, 2001.
- G. E. Karniadakis \& S. J. Sherwin, Spectral/hp element methods for computational fluid dynamics, Oxford University Press, 2005, second ed.
- S. Karlin \& J. McGregor, Linear growth models with many types and multidimensional Hahn polynomials, in Theory and Application of Special Functions, R. Askey (ed.), Academic Press, 1975, pp. 261-288.

