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Algebra generated by L and X for bispectral OP’s

Let {pn(x)} be a system of OP’s which are eigenfunctions of
some operator L. Then (with (Xf )(x) := x f (x)):

Lpn = λnpn, Xpn = Anpn+1 + Bnpn + Cnpn−1.

Then L and X will generate an associative algebra with identity
consisting of linear operators acting on the space of
polynomials. Certainly the structure operator [L,X ] will belong
to this algebra. Are there further relations in the algebra?

Consider this for the Askey-Wilson polynomials

Pn(x) = Pn[z] = Pn[z; a,b, c,d | q] (x = 1
2(z + z−1)).

They satisfy (LPn)[z] = λn Pn[z]

with λn = q−n + abcdqn−1 and

(Lf )[z] := A[z] f [qz] + A[z−1] f [q−1z]− (A[z] + A[z−1]) f [z]

+(1+q−1abcd)f [z] with A[z] :=
(1− az)(1− bz)(1− cz)(1− dz)

(1− z2)(1− qz2)
.
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Zhedanov’s algebra AW (3)

Let q ∈ C, q 6= 0, qm 6= 1 (m = 1,2, . . .).

q-commutator: [X ,Y ]q := q
1
2 XY − q−

1
2 YX .

Zhedanov (1991) introduced the algebra AW (3):
generators K0, K1, K2,
structure constants B, C0, C1, D0, D1,
relations

[K0,K1]q = K2,

[K1,K2]q = BK1 + C0K0 + D0,

[K2,K0]q = BK0 + C1K1 + D1.

The Casimir operator

Q := (q−
1
2 −q

3
2 )K0K1K2 +qK 2

2 +B(K0K1 +K1K0)+qC0K 2
0

+ q−1C1K 2
1 + (1 + q)D0K0 + (1 + q−1)D1K1,

commutes in AW (3) with the generators K0,K1,K2.
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Picture of Zhedanov
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Choice of structure constants

Let a,b, c,d be complex parameters.
Let e1,e2,e3,e4 be the elementary symmetric polynomials in
a,b, c,d .
Put for the structure constants:

B := (1− q−1)2(e3 + qe1),

C0 := (q − q−1)2,

C1 := q−1(q − q−1)2e4,

D0 := −q−3(1− q)2(1 + q)(e4 + qe2 + q2),

D1 := −q−3(1− q)2(1 + q)(e1e4 + qe3).
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Basic representation of AW (3)

Let Asym be the space of symmetric Laurent polynomials
f [z] = f [z−1].
Let L be the operator acting on Asym for which the Askey-Wilson
polynomials are eigenfunctions:

(Lf )[z] := A[z]
(
f [qz]− f [z]

)
+ A[z−1]

(
f [q−1z]− f [z]

)
+ (1 + q−1abcd) f [z],

where A[z] :=
(1− az)(1− bz)(1− cz)(1− dz)

(1− z2)(1− qz2)
.

Then K0 and K1 satisfy the relations in AW (3) with the given
structure constants when they are realized as:

(K0f )[z] := (Lf )[z],

(K1f )[z] := (z + z−1)f [z].

The representation of AW (3) thus obtained is called the basic
representation.
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The basic representation realized on the space of
terminating sequences

The Askey-Wilson polynomials can be interpreted as the kernel
of an intertwining operator between the basic representation of
AW (3) and an equivalent representation on the space of
terminating sequences {un}n=0,1,2,....
Concretely, let 〈 . , . 〉 be the inner product for which the
Askey-Wilson polynomials are orthogonal: 〈Pn,Pm〉 = hn δn,m.

Define a map f 7→ f̂ from Asym onto the space of terminating
sequences by f̂ (n) := 〈f ,Pn〉. Then, corresponding to

K0Pn = λnPn, K1Pn = Pn+1 + BnPn + CnPn−1

we have:

(K0f )̂(n) = λn f̂ (n),

(K1f )̂(n) = f̂ (n + 1) + Bn f̂ (n) + Cn f̂ (n − 1).
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Equivalent form of relations for AW (3)

Clearly, AW (3) can equivalently be described as an algebra
with two generators K0,K1 and with two relations

(q + q−1)K1K0K1 − K 2
1 K0 − K0K 2

1 = B K1 + C0 K0 + D0,

(q + q−1)K0K1K0 − K 2
0 K1 − K1K 2

0 = B K0 + C1 K1 + D1.

Then the Casimir operator Q can be written as

Q = K1K0K1K0 − (q2 + 1 + q−2)K0K1K0K1 + (q + q−1)K 2
0 K 2

1

+ (q + q−1)(C0K 2
0 + C1K 2

1 ) + B
(
(q + 1 + q−1)K0K1 + K1K0

)
+ (q + 1 + q−1)(D0K0 + D1K1).
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A duality for Askey-Wilson polynomials

From

Pn[z; a,b, c,d | q]

Pn[a; a,b, c,d | q]
= 4φ3

(
q−n,qn−1abcd ,az,az−1

ab,ac,ad
; q,q

)
we have for m = 0,1,2, . . . that

Pn[qma; a,b, c,d | q]

Pn[a; a,b, c,d | q]
= 4φ3

(
q−n,qn−1abcd ,qma2,q−m

ab,ac,ad
; q,q

)
= 4φ3

(
q−n,qna′2,qm−1a′b′c′d ′,q−m

a′b′,a′c′,a′d ′
; q,q

)
=

Pm[qna′; a′,b′, c′,d ′ | q]

Pm[a′; a′,b′, c′,d ′ | q]
,

where

a′ = (q−1abcd)
1
2 , b′ =

ab
a′
, c′ =

ac
a′
, d ′ =

ad
a′
.
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A duality for AW (3)

Not surprising, there is a similar duality for AW (3).

Concretely, the relations

(q + q−1)K1K0K1 − K 2
1 K0 − K0K 2

1 = B K1 + C0 K0 + D0,

(q + q−1)K0K1K0 − K 2
0 K1 − K1K 2

0 = B K0 + C1 K1 + D1.

with the structure parameters expressed in terms of a,b, c,d as
before, are preserved under the anti-automorphism generated
by:

K0 → aK1, K1 → (q−1abcd)−
1
2 K0, a→ (q−1abcd)

1
2 ,

b → ab

(q−1abcd)
1
2

, c → ac

(q−1abcd)
1
2

, d → ad

(q−1abcd)
1
2

.

Also a−2Q (Q the Casimir operator) is preserved under this
transformation.
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The Casimir operator in the basic representation

In the basic representation the Casimir operator Q can be
computed to become a constant scalar:

(Qf )[z] = Q0 f [z],

where

Q0 := q−4(1− q)2
(

q4(e4 − e2) + q3(e2
1 − e1e3 − 2e2)

− q2(e2e4 + 2e4 + e2) + q(e2
3 − 2e2e4− e1e3) + e4(e1− e2)

)
.

This fits nicely with the fact that the basic representation is
irreducible for generic values of a,b, c,d .

The relation Q = Q0 does not hold generally in AW (3). We will
pass to a quotient algebra of AW (3) with this relation.
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A faithful representation on Asym

Assumptions q 6= 0, qm 6= 1 (m = 1,2, . . .),
a,b, c,d 6= 0, abcd 6= q−m (m = 0,1,2, . . .).

Definition
AW (3,Q0) is the algebra AW (3) with additional relation
Q = Q0.

Theorem (THK, 2007)

AW (3,Q0) has the elements

K n
0 (K1K0)

lK m
1 (m,n = 0,1,2, . . . , l = 0,1)

as a linear basis.
The basic representation of AW (3,Q0) on Asym is faithful.
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More representations of AW (3)

Assume abcd > 0. Recall: [K0,K1]q = K2,

[K1,K2]q = BK1 + C0K0 + D0, [K2,K0]q = BK0 + C1K1 + D1,

realized on Asym by

(K0f )[z] := (q−1abcd)−
1
2 (Lf )[z], (K1f )[z] := (z + z−1)f [z],

where C0 = C1 = (q − q−1)2,

B = q
1
2 (1− q−1)2e

− 1
2

4 (e3 + qe1),

D0 = −q−5/2(1− q)2(1 + q)e
− 1

2
4 (e4 + qe2 + q2),

D1 = −q−2(1− q)2(1 + q)e−1
4 (e1e4 + qe3).

Chosen values of B,D0,D1 impose three algebraic constraints
on a,b, c,d , but abcd can freely vary over the positive reals,
leading to different representations of AW (3) (probably with
different Casimir values).
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More representations of AW (3) (continued)

With (K0f )[z] := (q−1abcd)−
1
2 (Lf )[z] we have

K0 Pn[ . ; a,b, c,d | q] =
(
(abcdq2n−1)

1
2 + (abcdq2n−1)−

1
2
)

× Pn[ . ; a,b, c,d | q].

If a′,b′, c′,d ′ and a,b, c,d give rise to the same structure
constants B,D0,D1, while

a′b′c′d ′ = q2kabcd for some k ∈ Z,

then Pn[ . ; a,b, c,d | q] and Pn−k [ . ; a′,b′, c′,d ′ | q] have
the same eigenvalue for K0.
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Yet another equivalent form for the generators and
relations of AW (3)

Replace K0 by K0 + ν0 and K1 by K1 + ν1 (ν0, ν1 scalars). Also
let K2 := [K0,K1] (the ordinary commutator). Write
R := 2− q − q−1. Also use the notation for the anticommutator:
{X ,Y} := XY + YX . Then

[K1,K2] = R K1K0K1 + Rν1{K0,K1}+ Rν0 K 2
1 + (2Rν0ν1 + B)K1

+(Rν2
1 + C0)K0 + Rν0ν

2
1 + Bν1 + C0ν0 + D0,

[K2,K0] = R K0K1K0 + Rν1 K 2
0 + Rν0{K0,K1}+ (2Rν0ν1 + B)K0

+(Rν2
0 + C1)K1 + Rν2

0ν1 + Bν0 + C1ν1 + D1.

After renaming the structure constants this becomes:

[K1,K2] = R K1K0K1 + S{K0,K1}+ T K 2
1 + BK1 + C0K0 + D0,

[K2,K0] = R K0K1K0 + S K 2
0 + T{K0,K1}+ BK0 + C1K1 + D1.
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Equivalent form of AW (3) (continued)

So we have the algebra generated by K0,K1,K2 and with
relations

[K0,K1] = K2,

[K1,K2] = R K1K0K1 + S{K0,K1}+ T K 2
1 + BK1 + C0K0 + D0,

[K2,K0] = R K0K1K0 + S K 2
0 + T{K0,K1}+ BK0 + C1K1 + D1.

For suitable values of the structure constants R = 2− q − q−1,
S, T , B, C0, C1, D0, D1 any system of OP’s in the (q-)Askey
scheme can be associated with this algebra. For R 6= 0 we are
in the q-Askey scheme, for R = 0 we are in the Askey scheme.
For R = S = T = 0 we are in the case of a Lie algebra.
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AW (3) from Askey-Wilson to Jacobi

1 Restrict a,b, c,d to the case of the continuous q-Jacobi
polynomials:
a = q

1
2α+ 1

4 , b = q
1
2α+ 3

4 , c = −q
1
2β+ 1

4 , d = −q
1
2β+ 3

4 .
2 Then, with x = 1

2(z + z−1),

Pn[z]

Pn
[
q

1
2α+ 1

4
] = 4φ3

(
q−n,qn+α+β+1,q

1
2α+ 1

4 z,q
1
2α+ 1

4 z−1

qα+1,−q
1
2 (α+β+1),−q

1
2 (α+β+2)

; q,q

)
q↑1−→ 2F1

(
−n,n + α+ β + 1

α+ 1
; 1

2(1− x)

)
=

P(α,β)
n (x)

P(α,β)
n (1)

.

3 Consider AW (3) with these a,b, c,d and let
K0 → −(1− q)2K0 + 1 + qα+β+1, K1 → 2K1.

4 There appears the limit case of AW (3) corresponding to
the Jacobi polynomials.
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AW (3) for Jacobi

In the Jacobi case AW (3) is generated by K0,K1,K2 with
relations

[K0,K1] = K2,

[K1,K2] = 2K 2
1 − 2,

[K2,K0] = 2{K0,K1} − (α+ β)(α+ β + 2)K1 + β2 − α2.

This is realized on the space of polynomials by:

(K0f )(x) = (1− x2)f ′′(x) + (β − α− (α+ β + 2)x)f ′(x),

(K1f )(x) = x f (x),

and K0P(α,β)
n = −n(n + α+ β + 1)P(α,β)

n .
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Many representations of AW (3) for Jacobi

Consider AW (3) generated by K0,K1,K2 for Jacobi paramters
(γ,0), i.e.:

[K0,K1] = K2,

[K1,K2] = 2K 2
1 − 2,

[K2,K0] = 2{K0,K1} − γ(γ + 2)K1 − γ2.

For any real t this is realized by:

(K0f )(x) = (1− x2)f ′′(x)− (γe−t + (γet + 2)x)f ′(x)

−
(1

4γ
2(e2t − 1) + 1

2γ(e
t − 1)

)
f (x),

(K1f )(x) = x f (x),

In this realization P(γ cosh t ,γ sinh t)
n is an eigenfunction of K0 with

eigenvalue −n(n + γet + 1)−
(1

4γ
2(e2t − 1) + 1

2γ(e
t − 1)

)
.
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