Zhedanov's Askey-Wilson algebra, Cherednik's double affine Hecke algebras, and bispectrality. Lecture 1: The Askey and q-Askey scheme

Tom Koornwinder

University of Amsterdam, T.H.Koornwinder@uva.nl, http://www.science.uva.nl/~thk/
course of 3 lectures during the International Mathematical Meeting IMM'09 on Harmonic Analysis \& Partial Differential Equations, Marrakech, Morocco, April 1-4, 2009

Version of 6 April 2009

Plan of the course

(1) The Askey and q-Askey scheme
(2) Zhedanov's algebra
(3) Double affine Hecke algebra in the rank one case

General orthogonal polynomials

Definition

Let $\left\{p_{n}(x)\right\}_{n=0,1, \ldots}$ be a system of real-valued polynomials $p_{n}(x)$ of degree n in x. Let μ be a positive Borel measure on \mathbb{R} such that $\int_{\mathbb{R}}|x|^{n} d \mu(x)<\infty$ for all n. Then $\left\{p_{n}(x)\right\}$ is called a system of orthogonal polynomials (OP's) if

$$
\begin{equation*}
\int_{\mathbb{R}} p_{n}(x) x^{k} d \mu(x)=0 \quad(k=0,1, \ldots, n-1) \tag{1}
\end{equation*}
$$

Theorem

Any system of orthogonal polynomials (with $p_{-1}(x):=0$, $\left.p_{0}(x):=1\right)$ satisfies a recurrence relation of the form

$$
\begin{equation*}
x p_{n}(x)=A_{n} p_{n+1}(x)+B_{n} p_{n}(x)+C_{n} p_{n-1}(x) \tag{2}
\end{equation*}
$$

Conversely, if $\left\{p_{n}(x)\right\}$ satisfies (2) with $C_{n} A_{n-1}>0$ then there exists a positive Borel measure μ on \mathbb{R} such that (1) holds.

General orthogonal polynomials (continued)

Notation

- Write $p_{n}(x)=k_{n} x^{n}+\cdots$.
- Write $h_{n}:=\int_{\mathbb{R}} p_{n}(x)^{2} d \mu(x)$. Then

$$
\int_{\mathbb{R}} p_{n}(x) p_{m}(x) d \mu(x)=h_{n} \delta_{n, m}
$$

Remarks

- The orthogonality measure μ is not necessarily uniquely determined (up to constant factor) by the recurrence relation (2). But if there exists an orthogonality measure μ with compact support then we have certainly uniqueness.
- Let M be a linear operator acting on sequences $u=\left\{u_{n}\right\}_{n=0,1, \ldots}$ by $(M(u))_{n}:=A_{n} u_{n+1}+B_{n} u_{n}+C_{n} u_{n-1}$. Then, if $\left\{p_{n}(x)\right\}$ satisfies the recurrence relation (2), then for each x the sequence $\left\{p_{n}(x)\right\}$ is an eigenfunction of M with eigenvalue x.

Bispectrality

We speak about bispectrality if we have a linear operator L_{x} acting on functions in the variable x and a linear operator M_{ξ} acting on functions in the variable ξ such that there exists a function $\phi(x, \xi)$ in the two variables x, ξ for which

$$
\begin{align*}
& L_{x}(\phi(x, \xi))=\sigma(\xi) \phi(x, \xi), \tag{3}\\
& M_{\xi}(\phi(x, \xi))=\tau(x) \phi(x, \xi) . \tag{4}
\end{align*}
$$

where $\sigma(\xi)$ and $\tau(x)$ are suitable eigenvalues. In the case of OP's the variable ξ becomes the discrete variable n and we have in general only equation (4). We are interested in OP's which also satisfy (3).
Structure equation implied by (3) and (4):

$$
\left[L_{x}, \tau(x)\right](\phi(x, \xi))=\left[M_{\xi}, \sigma(\xi)\right](\phi(x, \xi)) .
$$

Here $[A, B]:=A B-B A$ (commutator).

Classical orthogonal polynomials

These are essentially the only OP's which are eigenfunctions of a second order differential operator (Bochner's theorem).

- Hermite polynomials $H_{n}(x), \quad H_{n}(x)=2^{n} x^{n}+\cdots$,

$$
d \mu(x):=e^{-x^{2}} d x, \quad\left(\frac{1}{2} \frac{d^{2}}{d x^{2}}-x \frac{d}{d x}\right) H_{n}(x)=-n H_{n}(x) .
$$

- Laguerre polynomials $L_{n}^{\alpha}(x), L_{n}^{\alpha}(0)=(\alpha+1)_{n} / n!$, where $(a)_{n}:=a(a+1) \ldots(a+n-1)$ (Pochhammer symbol). $d \mu(x):=\chi_{(0, \infty)}(x) x^{\alpha} e^{-x} d x \quad(\alpha>-1)$,

$$
\left(x \frac{d^{2}}{d x^{2}}+(\alpha+1-x) \frac{d}{d x}\right) L_{n}^{\alpha}(x)=-n L_{n}^{\alpha}(x) .
$$

- Jacobi polynomials $P_{n}^{(\alpha, \beta)}(x), \quad P_{n}^{(\alpha, \beta)}(1)=(\alpha+1)_{n} / n$!,

$$
\begin{aligned}
& d \mu(x):=\chi_{(-1,1)}(x)(1-x)^{\alpha}(1+x)^{\beta} d x \quad(\alpha, \beta>-1), \\
& \quad \begin{array}{l}
\left.\left(1-x^{2}\right) \frac{d^{2}}{d x^{2}}+(\beta-\alpha-(\alpha+\beta+2) x) \frac{d}{d x}\right) P_{n}^{(\alpha, \beta)}(x) \\
=-n(n+\alpha+\beta+1) P_{n}^{(\alpha, \beta)}(x) .
\end{array}
\end{aligned}
$$

Structure relation for OP's satisfying an eigenvalue equation

Let $\left\{p_{n}(x)\right\}$ be a system of OP's such that there is a linear operator L acting on polynomials in x for which the p_{n} are eigenfunctions with eigenvalues λ_{n}. Write $(X f)(x):=x f(x)$. Then, from

$$
\begin{aligned}
& L p_{n}=\lambda_{n} p_{n} \\
& X p_{n}=A_{n} p_{n+1}+B_{n} p_{n}+C_{n} p_{n-1}
\end{aligned}
$$

we have the structure relation

$$
[L, X] p_{n}=A_{n}\left(\lambda_{n+1}-\lambda_{n}\right) p_{n+1}-C_{n}\left(\lambda_{n}-\lambda_{n-1}\right) p_{n-1} .
$$

Remark Since L and X are symmetric operators with respect to the inner product $\quad\langle f, g\rangle:=\int_{\mathbb{R}} f(x) g(x) d \mu(x)$, the structure operator $[L, X]$ is anti-symmetric with respect to this inner product.

Structure relation for the classical OP's

- Hermite polynomials:

$$
\left(\frac{d}{d x}-x\right) H_{n}(x)=-\frac{1}{2} H_{n+1}(x)+n H_{n-1}(x)
$$

- Laguerre polynomials:

$$
\left(2 x \frac{d}{d x}+\alpha+1-x\right) L_{n}^{\alpha}(x)=(n+1) L_{n+1}^{\alpha}(x)-(n+\alpha) L_{n-1}^{\alpha}(x) .
$$

- Jacobi polynomials:

$$
\begin{aligned}
& \left(2\left(1-x^{2}\right) \frac{d}{d x}+\beta-\alpha-(\alpha+\beta+2) x\right) P_{n}^{(\alpha, \beta)}(x)= \\
- & \frac{2(n+1)(n+\alpha+\beta+1)}{2 n+\alpha+\beta+1} P_{n+1}^{(\alpha, \beta)}(x)+\frac{2(n+\alpha)(n+\beta)}{2 n+\alpha+\beta+1} P_{n-1}^{(\alpha, \beta)}(x) .
\end{aligned}
$$

Combine with 3 -term recurrence relation. Then get the form $\pi(x) p_{n}^{\prime}(x)=a_{n} p_{n+1}(x)+b_{n} p_{n}(x)+c_{n} p_{n-1}(x)$ for a polynomial $\pi(x)$. Al-Salam \& Chihara (1972) characterized the classical OP's as OP's with such a structure relation.

Algebra generated by L and X for the classical OP's

Let $\left\{p_{n}(x)\right\}$ be a system of classical OP's and let L be the second order differential operator for which they are eigenfunctions. Then L and X will generate an associative algebra with identity of linear operators. Certainly the structure operator $S:=[L, X]$ will belong to this algebra. Are there further relations in the algebra? Let us try the commutators of S with L and X.

Algebra generated by L and X for the classical OP's (continued)

- Hermite:

$$
[L, X]=S, \quad[X, S]=-1, \quad[S, L]=-X
$$

- Laguerre:

$$
[L, X]=S, \quad[X, S]=-2 X, \quad[S, L]=-2 L-X+\alpha+1
$$

- Jacobi:

$$
\begin{aligned}
& {[L, X]=S, \quad[X, S]=2 X^{2}-2} \\
& {[S, L]=2(X L+L X)-(\alpha+\beta)(\alpha+\beta+2) X+\beta^{2}-\alpha^{2}}
\end{aligned}
$$

Lie algebras and representations involved:

- Hermite: Heisenberg Lie algebra and its standard representation on a space of suitable functions on \mathbb{R}.
- Laguerre: the Lie algebra $s l(2, \mathbb{R})$ and its discrete series representation in a suitable model.
- Jacobi: quadratic terms; no (finite dimensional) Lie algebra.

The scheme of classical OP's

$$
\begin{aligned}
\lim _{\beta \rightarrow \infty} P_{n}^{(\alpha, \beta)}\left(1-2 \beta^{-1} x\right) & =L_{n}^{\alpha}(x) \\
\lim _{\alpha \rightarrow \infty} \alpha^{-\frac{1}{2} n} P_{n}^{(\alpha, \alpha)}\left(\alpha^{-\frac{1}{2}} x\right) & =H_{n}(x) /\left(2^{n} n!\right) \\
\lim _{\alpha \rightarrow \infty} \alpha^{-\frac{1}{2} n} L_{n}^{\alpha}\left((2 \alpha)^{\frac{1}{2}} x+\alpha\right) & =(-1)^{n} H_{n}(x) /\left(2^{\frac{1}{2} n} n!\right)
\end{aligned}
$$

Discrete OP's

A system $\left\{p_{n}(x)\right\}_{n=0}^{\infty}$ of OP's is called discrete if the orthogonality measure μ has discrete support $\left\{x_{k}\right\}_{k=0}^{\infty}$. Then

$$
\int_{\mathbb{R}} f(x) d \mu(x)=\sum_{k=0}^{\infty} f\left(x_{k}\right) w_{k}
$$

for certain positive weights w_{k}.
We will also admit finite systems $\left\{p_{n}\right\}_{n=0,1, \ldots, N}$ of OP's, where the orthogonality measure μ has finite support $\left\{x_{k}\right\}_{k=0,1, \ldots, N}$. Then

$$
\int_{\mathbb{R}} f(x) d \mu(x)=\sum_{k=0}^{N} f\left(x_{k}\right) w_{k}
$$

for certain positive weights w_{k}.

The Askey scheme

Extend the scheme of classical OP's with the following classes:

- OP's of Hahn class are OP's which are eigenfunctions of a second order difference operator L of one of the forms

$$
\begin{array}{lr}
(L f)(x):=a_{n} f(x-1)+b_{n} f(x)+c_{n} f(x+1) \quad \text { (discrete), } \\
(L f)(x):=a_{n} f(x-i)+b_{n} f(x)+c_{n} f(x+i) \quad \text { (continuous). }
\end{array}
$$

These are the Hahn, continuous Hahn, Meixner-Pollaczek, Meixner, Krawtchouk and Charlier polynomials.

- OP's of quadratic lattice class are OP's which are eigenfunctions of a second order difference operator L of one of the forms

$$
\begin{array}{lll}
(L f)\left(y^{2}\right):=a_{n} f\left((y-1)^{2}\right)+b_{n} f\left(y^{2}\right)+c_{n} f\left((y+1)^{2}\right) & \text { (discr.), } \\
(L f)\left(y^{2}\right):=a_{n} f\left((y-i)^{2}\right)+b_{n} f\left(y^{2}\right)+c_{n} f\left((y+i)^{2}\right) & \text { (cont.). }
\end{array}
$$

These are the Wilson, Racah, dual Hahn and continuous dual Hahn polynomials.

Askey scheme

Hypergeometric functions

All OP's in the Askey scheme are hypergeometric functions. The general hypergeometric function is defined by:

$$
{ }_{r} F_{s}\left(\begin{array}{l}
a_{1}, \ldots, a_{r} \\
b_{1}, \ldots, b_{s}
\end{array} ; z\right):=\sum_{k=0}^{\infty} \frac{\left(a_{1}\right)_{k} \ldots\left(a_{r}\right)_{k}}{\left(b_{1}\right)_{k} \ldots\left(b_{s}\right)_{k}} \frac{z^{k}}{k!}
$$

where $(a)_{k}:=a(a+1) \ldots(a+k-1)$ (Pochhammer symbol). If $a_{1}=-n(n=0,1,2, \ldots)$ then the series terminates after the term with $k=n$. A hypergeometric function becomes undefined (singular) if one of the bottom parameters is a non-positive integer, say $b_{s}=-N$, but the function remains well-defined if $a_{1}=-n$ with $n=0,1, \ldots, N$, because the series then terminates before the term with $k=N$.

Example: Hahn polynomials

Hahn polynomials are given by

$$
Q_{n}(x ; \alpha, \beta, N):={ }_{3} F_{2}\left(\begin{array}{c}
-n, n+\alpha+\beta+1,-x \\
\alpha+1,-N
\end{array} ; \quad(n=0,1, \ldots, N) .\right.
$$

They have a limit to Jacobi polynomials by

$$
\begin{aligned}
& Q_{n}(N x ; \alpha, \beta, N)={ }_{3} F_{2}\binom{-n, n+\alpha+\beta+1,-N x}{\alpha+1,-N} \\
& \xrightarrow{N \rightarrow \infty}{ }_{2} F_{1}\left(\begin{array}{c}
-n, n+\alpha+\beta+1 \\
\alpha+1
\end{array} ; x\right)=\frac{P_{n}^{(\alpha, \beta)}(1-2 x)}{P_{n}^{(\alpha, \beta)}(1)} .
\end{aligned}
$$

q-Pochhammer symbol

Let $0<q<1$. Define the q-Pochhammer symbol by

$$
(a ; q)_{k}:=(1-a)(1-a q) \ldots\left(1-a q^{k-1}\right)
$$

Also for $k=\infty$:

$$
(a ; q)_{\infty}=(1-a)(1-a q)\left(1-a q^{2}\right) \ldots \quad \text { (convergent). }
$$

Put

$$
\left(a_{1}, \ldots, a_{r} ; q\right)_{k}:=\left(a_{1} ; q\right)_{k} \ldots\left(a_{r} ; q\right)_{k}
$$

The q-Pochhammer symbol is a q-analogue of the Pochhammer symbol:

$$
\begin{aligned}
& \frac{\left(q^{a} ; q\right)_{k}}{(1-q)^{k}}=\frac{1-q^{a}}{1-q} \frac{1-q^{a+1}}{1-q} \cdots \frac{1-q^{a+k-1}}{1-q} \\
& \quad \xrightarrow{q \rightarrow 1} a(a+1) \ldots(a+k-1)=(a)_{k}
\end{aligned}
$$

q-Hypergeometric series

Define the q-hypergeometric series by
${ }_{r} \phi_{s}\left(\begin{array}{l}a_{1}, \ldots, a_{r} \\ b_{1}, \ldots, b_{s}\end{array} ; q, z\right):=\sum_{k=0}^{\infty} \frac{\left(a_{1} ; q\right)_{k} \ldots\left(a_{r} ; q\right)_{k}\left((-1)^{k} q^{\frac{1}{2} k(k-1)}\right)^{s-r+1} z^{k}}{\left(b_{1} ; q\right)_{k} \ldots,\left(b_{s} ; q\right)_{k}(q ; q)_{k}}$.
If $a_{1}=q^{-n}$ with n non-negative integer, then the series terminates after the term with $k=n$.

The q-hypergeometric series is formally a q-analogue of ordinary hypergeometric series:

$$
\left.\begin{array}{rl}
\lim _{q \uparrow 1} r \phi_{s}\left(\begin{array}{l}
q^{a_{1}}, \ldots, q^{a_{r}} \\
q^{b_{1}}, \ldots, q^{b_{s}}
\end{array} ; q,(1-q)^{s-r+1} z\right) \\
& ={ }_{r} F_{s}\left(\begin{array}{l}
a_{1}, \ldots, a_{r} \\
b_{1}, \ldots, b_{s}
\end{array} ; z\right.
\end{array}\right) . . ~ .
$$

The q-Askey scheme

Parallel to the Askey scheme there is a q-Askey scheme in which the OP's are expressed as terminating q-hypergeometric series. There are limit relations within the q-Askey scheme, and also from families in the q-Askey scheme to families in the Askey scheme. The q-Askey scheme consists of two classes:

- OP's of q-Hahn class are OP's which are eigenfunctions of a second order q-difference operator L of the form

$$
(L f)(x):=a_{n} f\left(q^{-1} x\right)+b_{n} f(x)+c_{n} f(q x)
$$

- OP's of quadratic q-lattice class are OP's which are eigenfunctions of a second order q-difference operator L of the form

$$
\begin{aligned}
(L f)\left(\frac{1}{2}\left(z+z^{-1}\right)\right):=a_{n} f[& \left.q^{-1} z\right]+b_{n} f[z]+c_{n} f[q z] \\
& \text { where } \quad f[z]:=f\left(\frac{1}{2}\left(z+z^{-1}\right) .\right.
\end{aligned}
$$

Askey-Wilson polynomials

On the top level of the q-Askey scheme are the Askey-Wilson polynomials:

$$
\begin{aligned}
& P_{n}[z]=P_{n}[z ; a, b, c, d \mid q]=P_{n}\left(\frac{1}{2}\left(z+z^{-1}\right) ; a, b, c, d \mid q\right) \\
& :=\frac{(a b, a c, a d ; q)_{n}}{a^{n}\left(a b c d q^{n-1} ; q\right)_{n}} 4 \phi_{3}\left(\begin{array}{c}
q^{-n}, q^{n-1} a b c d, a z, a z^{-1} \\
a b, a c, a d
\end{array} q, q\right)
\end{aligned}
$$

The right-hand side gives a symmetric Laurent polynomial in z :

$$
P_{n}[z]=\sum_{k=-n}^{n} c_{k} z^{k}=P_{n}\left[z^{-1}\right] \quad\left(c_{k}=c_{-k}, c_{n} \neq 0\right)
$$

Therefore it is an ordinary polynomial $P_{n}\left(\frac{1}{2}\left(z+z^{-1}\right)\right)$ of degree n in the variable $x:=\frac{1}{2}\left(z+z^{-1}\right)$. We have normalized $P_{n}[z]$ such that it is monic in z, i.e., $c_{n}=1$.

Askey-Wilson polynomials: orthogonality

Askey-Wilson polynomials $P_{n}[z]$ satisfy the orthogonality relation

$$
\begin{aligned}
& \frac{1}{4 \pi i} \oint_{C} P_{n}[z] P_{m}[z] w[z] \frac{d z}{z}=h_{n} \delta_{n, m}, \quad \text { where } \\
& w(z):=\frac{\left(z^{2}, z^{-2} ; q\right)_{\infty}}{\left(a z, a z^{-1}, b z, b z^{-1}, c z, c z^{-1}, d z, d z^{-1} ; q\right)_{\infty}}, \\
& h_{0}=\frac{(a b c d ; q)_{\infty}}{(q, a b, a c, a d, b c, b d, c d ; q)_{\infty}}, \\
& \frac{h_{n}}{h_{0}}=\frac{(q, a b, a c, a d, b c, b d, c d ; q)_{n}}{(a b c d ; q)_{2 n}\left(q^{n-1} a b c d ; q\right)_{n}} .
\end{aligned}
$$

Here C is the unit circle traversed in positive direction with deformations to separate the sequences of poles converging to zero from the sequences of poles diverging to ∞.
For suitable a, b, c, d this can be rewritten as an orthogonality relation for the $P_{n}(x)$ with respect to a positive measure μ supported on $[-1,1]$ (or on its union with a finite discrete set).

Askey-Wilson polynomials as eigenfunctions of L

Askey-Wilson polynomials are OP's of quadratic q-lattice class.
They are eigenfunctions of a second order q-difference operator L :
$\left(L P_{n}\right)[z]:=A[z] P_{n}[q z]+A\left[z^{-1}\right] P_{n}\left[q^{-1} z\right]-\left(A[z]+A\left[z^{-1}\right]\right) P_{n}[z]$ $=\left(q^{-n}-1\right)\left(1-a b c d q^{n-1}\right) P_{n}[z]$,
where $A[z]:=\frac{(1-a z)(1-b z)(1-c z)(1-d z)}{\left(1-z^{2}\right)\left(1-q z^{2}\right)}$.
With $(X f)[z]):=\left(Z+Z^{-1}\right) f[z]$, we obtain for the structure operator:
$([L, X] f)[z]:=a[z] f[q z]-a\left[z^{-1}\right] f\left[q^{-1} z\right]$,
where $\quad a[z]:=\frac{\left(q^{-1}-1\right)(1-a z)(1-b z)(1-c z)(1-d z)}{z\left(1-z^{2}\right)}$.

Generalized Bochner theorem

There is a generalized Bochner theorem which characterizes the Askey-Wilson polynomials and their limit cases as the only polynomial solutions $p_{n}(x)$ of a second order difference equation of the form
$A(s) P_{n}(x(s+1))+B(s) P_{n}(x(s))+C(s) P_{n}(x(s-1))=\lambda_{n} P_{n}(x(s))$.
See Grünbaum \& Haine (1996), Ismail (2003), Vinet \& Zhedanov (2008).

