Dualities in the q-Askey scheme and degenerate DAHA

Tom Koornwinder

Korteweg-de Vries Institute, University of Amsterdam
T.H.Koornwinder@uva.nl
https://staff.fnwi.uva.nl/t.h.koornwinder/

Lecture on 10 July 2018 at XXXII International Colloquium on Group Theoretical Methods in Physics (Group32), Prague, Czech Republic
last modified: 19 July 2018

Work joint with Marta Mazzocco.

Preprint on arXiv:1803.02775v2.
Version v2 is much improved compared to v1..

Askey-Wilson polynomials (AW polynomials):

$R_{n}[z]=R_{n}[z ; a, b, c, d \mid q]:={ }_{4} \phi_{3}\left(\begin{array}{c}q^{-n}, q^{n-1} a b c d, a z, a z^{-1} \\ a b, a c, a d\end{array} ; q, q\right)$.
$R_{n}[z]=R_{n}\left[z^{-1}\right]$ is symmetric Laurent polynomial of degree n. Hence ordinary polynomial of degree n in $x=\frac{1}{2}\left(z+z^{-1}\right)$. Under constraints on parameters orthogonal polynomials:

$$
\int_{|z|=1} R_{m}[z] R_{n}[z]\left|\frac{\left(z^{2} ; q\right)_{\infty}}{(a z, b z, c z, d z ; q)_{\infty}}\right|^{2} \frac{d z}{i z}=0 \quad(m \neq n) .
$$

Eigenfunction of second order q-difference operator:

$$
L_{z}\left(R_{n}[z]\right)=\lambda_{n} R_{n}[z], \quad \lambda_{n}:=q^{-n}+a b c d q^{n-1},
$$

where L acts on symmetric Laurent polynomials $f[z]$ by

$$
\begin{aligned}
(L f)[z]= & L_{z}(f[z]):=\left(1+q^{-1} a b c d\right) f[z] \\
+ & \frac{(1-a z)(1-b z)(1-c z)(1-d z)}{\left(1-z^{2}\right)\left(1-q z^{2}\right)}(f[q z]-f[z]) \\
& +\frac{(a-z)(b-z)(c-z)(d-z)}{\left(1-z^{2}\right)\left(q-z^{2}\right)}\left(f\left[q^{-1} z\right]-f[z]\right) .
\end{aligned}
$$

Zhedanov algebra (AW algebra):

$$
\begin{equation*}
\left(K_{0} f\right)[z]:=L_{z}(f[z]), \quad\left(K_{1} f\right)[z]:=\left(z+z^{-1}\right) f[z] \tag{1}
\end{equation*}
$$

Then

$$
\begin{align*}
& \left(q+q^{-1}\right) K_{1} K_{0} K_{1}-K_{1}^{2} K_{0}-K_{0} K_{1}^{2}=B K_{1}+C_{0} K_{0}+D_{0} \\
& \left(q+q^{-1}\right) K_{0} K_{1} K_{0}-K_{0}^{2} K_{1}-K_{1} K_{0}^{2}=B K_{0}+C_{1} K_{1}+D_{1} \tag{2}
\end{align*}
$$

with structure constants $B, C_{0}, C_{1}, D_{0}, D_{1}$ explicitly given in terms of a, b, c, d, q.
The abstract algebra generated by K_{0}, K_{1} with relations (2) is the AW algebra

$$
\mathrm{AW}=\mathrm{AW}_{a, b, c, d ; q}\left(K_{0}, K_{1}\right)
$$

and (1) defines its basic representation.

Duality for AW polynomials and for the AW algebra

Dual parameters:

$$
\tilde{a}=\left(q^{-1} a b c d\right)^{\frac{1}{2}}, \quad \tilde{b}=a b / \tilde{a}, \quad \tilde{c}=a c / \tilde{a}, \quad \tilde{d}=a d / \tilde{a} .
$$

Recall

$$
R_{n}[z ; a, b, c, d \mid q]={ }_{4} \phi_{3}\left(\begin{array}{c}
q^{-n}, q^{n-1} a b c d, a z, a z^{-1} \\
a b, a c, a d
\end{array} ; q, q\right) .
$$

Hence the duality relation

$$
R_{n}\left[a^{-1} q^{-m} ; a, b, c, d \mid q\right]=R_{m}\left[\tilde{a}^{-1} q^{-n} ; \tilde{a}, \tilde{b}, \tilde{c}, \tilde{d} \mid q\right] \quad\left(m, n \in \mathbb{Z}_{\geq 0}\right) .
$$

Recall the relations for the AW algebra:

$$
\begin{aligned}
& \left(q+q^{-1}\right) K_{1} K_{0} K_{1}-K_{1}^{2} K_{0}-K_{0} K_{1}^{2}=B K_{1}+C_{0} K_{0}+D_{0}, \\
& \left(q+q^{-1}\right) K_{0} K_{1} K_{0}-K_{0}^{2} K_{1}-K_{1} K_{0}^{2}=B K_{0}+C_{1} K_{1}+D_{1}
\end{aligned}
$$

Hence we have for the AW algebra the duality (both isomorphism and anti-isomorphism):

$$
\mathrm{AW}_{a, b, c, c ; ; q}\left(K_{0}, K_{1}\right) \simeq \operatorname{AW}_{\tilde{a}, \tilde{b}, \tilde{c}, \tilde{a} ; \tilde{q} ;}\left(a K_{1}, \tilde{a}^{-1} K_{0}\right),
$$

Duality in a small part of the q-Askey scheme

Marta Mazzocco's motivation

The Painlevé differential equations are eight non-linear ODE's whose solutions are encoded by points in the so-called monodromy manifolds (a different manifold for each Painlevé equation). Each of these monodromy manifolds carries a natural Poisson structure which quantizes to a special degeneration of the AW algebra that regulates a specific family in the q-Askey scheme.

Continous dual q-Hahn and Big q-Jacobi:

Askey-Wilson:

$$
R_{n}[z ; a, b, c, d \mid q]=4 \phi_{3}\left(\begin{array}{c}
q^{-n}, q^{n-1} a b c d, a z, a z^{-1} \\
a b, a c, a d
\end{array} ; q, q\right),
$$

$R_{n}\left[a^{-1} q^{-m} ; a, b, c, d \mid q\right]=R_{m}\left[\tilde{a}^{-1} q^{-n} ; \tilde{a}, \tilde{b}, \tilde{c}, \tilde{d} \mid q\right] \quad$ (duality).
Continuous dual q-Hahn:

$$
\begin{aligned}
R_{n}[z ; a, b, c \mid q] & =\lim _{d \rightarrow 0} R_{n}[z ; a, b, c, d \mid q] \\
& ={ }_{3} \phi_{2}\left(\begin{array}{c}
q^{-n}, a z, a z^{-1} \\
a b, a c
\end{array} ; q, q\right) .
\end{aligned}
$$

Big q-Jacobi:

$$
\begin{aligned}
P_{n}(x ; a, b, c ; q) & =\lim _{\lambda \rightarrow 0} R_{n}\left[\lambda^{-1} x ; \lambda, q a \lambda^{-1}, q c \lambda^{-1}, b c^{-1} \lambda \mid q\right] \\
& ={ }_{3} \phi_{2}\left(\begin{array}{c}
q^{-n}, q^{n+1} a b, x \\
a q, c q
\end{array} q, q\right) .
\end{aligned}
$$

Duality between Continuous dual q-Hahn and Big q-Jacobi:

$$
R_{n}\left[a^{-1} q^{-m} ; a, b, c \mid q\right]=P_{m}\left(q^{-n} ; q^{-1} a b, a b^{-1}, q^{-1} a c ; q\right) .
$$

AI-Salam-Chihara and Little q-Jacobi

Al-Salam-Chihara is Continuous dual q-Hahn for $c=0$:

$$
R_{n}[z ; a, b, 0 \mid q]={ }_{3} \phi_{2}\left(\begin{array}{c}
q^{-n}, a z, a z^{-1} \\
a b, 0
\end{array} ; q, q\right)
$$

Little q-Jacobi is Big q-Jacobi for $c=0$:

$$
P_{n}(x ; a, b, 0 ; q)={ }_{3} \phi_{2}\left(\begin{array}{c}
q^{-n}, q^{n+1} a b, x \\
a q, 0
\end{array} q, q\right)
$$

Duality between AI-Salam-Chihara and Little q-Jacobi:

$$
R_{n}\left[a^{-1} q^{-m} ; a, b, 0 \mid q\right]=P_{m}\left(q^{-n} ; q^{-1} a b, a b^{-1}, 0 ; q\right)
$$

Degenerate AW-algebras

Continuous dual q-Hahn:

$$
\mathrm{AW}_{a, b, c ; q}^{\mathrm{CDqH}}\left(K_{0}, K_{1}\right)=\lim _{d \rightarrow 0} \mathrm{AW}_{a, b, c, d ; q}\left(K_{0}, K_{1}\right)
$$

Big q-Jacobi:

$$
\mathrm{AW}_{a, b, c ; q}^{\mathrm{BqJ}}\left(K_{0}, K_{1}\right)=\lim _{\lambda \rightarrow 0} \mathrm{AW}_{\lambda, q a \lambda^{-1}, q c \lambda^{-1}, b c^{-1} \lambda ; q}\left(K_{0}, \lambda^{-1} K_{1}\right)
$$

Duality between both algebras:

$$
\mathrm{AW}_{a, b, c ; q}^{\mathrm{CDqH}}\left(K_{0}, K_{1}\right) \simeq \mathrm{AW}_{q^{-1} a b, a b^{-1}, q^{-1} a c ; q}^{\mathrm{BqJ}}\left(a K_{1}, K_{0}\right)
$$

For the duality beteween AI-Salam-Chihara and Little q-Jacobi put $c=0$.

Remark

Our dualities between orthogonal polynomials in the q-Askey scheme are not completely bispectral. Instead one can identify, for instance, Al-Salam-Chihara polynomials for base q^{-1} with dual little q-Jacobi polynomials, see for instance Atakishyiev \& Klimyk.
On the level of AW algebras this would need

$$
\mathrm{AW}_{a, b, c, d ; q}\left(K_{0}, K_{1}\right) \simeq \mathrm{AW}_{a^{-1}, b^{-1}, c^{-1}, d^{-1} ; q^{-1}}\left(\frac{q}{a b c d} K_{0}, K_{1}\right) .
$$

and its limit cases.

Askey-Wilson DAHA (Sahi; Noumi \& Stokman)
Algebra \mathcal{H} with generators $T_{1}, T_{0}, \check{T}_{1}, \check{T}_{0}$ and with relations

$$
\begin{aligned}
\left(T_{1}+a b\right)\left(T_{1}+1\right) & =0, \\
\left(T_{0}+q^{-1} c d\right)\left(T_{0}+1\right) & =0, \\
\left(a \check{T}_{1}+1\right)\left(b \check{T}_{1}+1\right) & =0, \\
\left(c \check{T}_{0}+q\right)\left(d \check{T}_{0}+q\right) & =0, \\
\check{T}_{1} T_{1} T_{0} \check{T}_{0} & =1 .
\end{aligned}
$$

Put $\check{T}_{0}=T_{0}^{-1} Z, \quad \check{T}_{1}=Z^{-1} T_{1}^{-1}, \quad T_{0}=T_{1}^{-1} Y$.
Then we get the presentation $\mathcal{H}_{a, b, c, d ; q}\left\langle T_{1}, Y, Z^{-1}\right\rangle$:

$$
\begin{array}{r}
\left(T_{1}+a b\right)\left(T_{1}+1\right)=0, \\
\left(T_{1}^{-1} Y+q^{-1} c d\right)\left(T_{1}^{-1} Y+1\right)=0, \\
\left(a Z^{-1} T_{1}^{-1}+1\right)\left(b Z^{-1} T_{1}^{-1}+1\right)=0, \\
\left(c+q Z^{-1} T_{1}^{-1} Y\right)\left(d+q Z^{-1} T_{1}^{-1} Y\right)=0, \\
Z Z^{-1}=1=Z^{-1} Z .
\end{array}
$$

Basic representation of \mathcal{H} on Laurent polynomials

$$
\begin{aligned}
(Z f)[z]= & z f[z], \\
\left(T_{1} f\right)[z]= & \frac{(a+b) z-(1+a b)}{1-z^{2}} f[z]+\frac{(1-a z)(1-b z)}{1-z^{2}} f\left[z^{-1}\right], \\
(Y f)[z]= & \frac{z(1+a b-(a+b) z)((c+d))-(c d+q) z)}{q\left(1-z^{2}\right)\left(q-z^{2}\right)} f[z] \\
& +\frac{(1-a z)(1-b z)(1-c z)(1-d z)}{\left(1-z^{2}\right)\left(1-q z^{2}\right)} f[q z] \\
& +\frac{(1-a z)(1-b z)((c+d) q z-(c d+q))}{q\left(1-z^{2}\right)\left(1-q z^{2}\right)} f\left[z^{-1}\right] \\
& +\frac{(c-z)(d-z)(1+a b-(a+b) z)}{\left(1-z^{2}\right)\left(q-z^{2}\right)} f\left[q z^{-1}\right] .
\end{aligned}
$$

Non-symmetric AW polynomials:

$$
\begin{aligned}
& E_{n}[z ; a, b, c, d \mid q]:=R_{n}[z ; a, b, c, d \mid q]- \\
& \frac{a\left(1-q^{n}\right)\left(1-q^{n-1} c d\right)(1-a z)(1-b z)}{q^{n-1}(1-q a b)(1-a b)(1-a c)(1-a d) z} R_{n-1}[z ; q a, q b, c, d \mid q] \\
& \quad\left(n \geq 0,\left(1-q^{n}\right) E_{n-1}:=0 \text { for } n=0\right) \\
& E_{-n}[z ; a, b, c, d \mid q]:=R_{n}[z ; a, b, c, d \mid q]- \\
& \frac{\left(1-q^{n} a b\right)\left(1-q^{n-1} a b c d\right)(1-a z)(1-b z)}{q^{n-1} b(1-q a b)(1-a b)(1-a c)(1-a d) z} R_{n-1}[z ; q a, q b, c, d \mid q] \\
& \quad(n \geq 1)
\end{aligned}
$$

Symmetric AW polynomial R_{n} is linear combination of E_{n} and E_{-n}.

$$
\begin{aligned}
Y E_{n} & =q^{n-1} a b c d E_{n} & & (n=0,1,2, \ldots), \\
Y E_{-n} & =q^{-n} E_{-n} & & (n=1,2, \ldots), \\
\left(Y+q^{-1} a b c d Y^{-1}\right) R_{n} & =L R_{n}=\lambda_{n} R_{n} & & (n=0,1,2, \ldots) .
\end{aligned}
$$

Duality for non-symmetric AW polynomials:
$E_{n}\left[z_{a, q}(m)^{-1} ; a, b, c, d \mid q\right]=E_{m}\left[z_{\tilde{a}, q}(n)^{-1} ; \tilde{a}, \tilde{b}, \tilde{c}, \tilde{d} \mid q\right] \quad(m, n \in \mathbb{Z})$,
where

$$
\begin{aligned}
z_{\mathrm{a}, \mathrm{q}}(n) & : & =a q^{n} & (n \geq 0), \\
z_{\mathrm{a}, q}(-n) & :=a^{-1} q^{-n} & & (n>0) .
\end{aligned}
$$

Duality for the Askey-Wilson DAHA:

$$
\mathcal{H}_{a, b, c, d ; q}\left\langle T_{1}, Y, Z^{-1}\right\rangle \simeq \mathcal{H}_{\tilde{a}, \tilde{b}, \tilde{c}, \tilde{a} ; q}\left\langle T_{1}, a Z^{-1}, \tilde{a}^{-1} Y\right\rangle,
$$

an anti-isomorphism.

DAHA degeneration from AW to continuous dual q-Hahn

 (Mazzocco)Write the AW DAHA as $\mathcal{H}_{a, b, c, d ; q}\left\langle T_{1}, Y, Y^{-1}, Z, Z^{-1}\right\rangle$, rescale $Y^{-1}=q c^{-1} d^{-1} Y^{\prime}$, and let $d \rightarrow 0$.
Then we get the degenerate DAHA for continuous dual q-Hahn
$\mathcal{H}_{a, b, c ; q}^{\mathrm{CDqH}}\left\langle T_{1}, Y, Y^{\prime}, Z, Z^{-1}\right\rangle=\lim _{d \rightarrow 0} \mathcal{H}_{a, b, c, d ; q}\left\langle T_{1}, Y, q c^{-1} d^{-1} Y^{\prime}, Z, Z^{-1}\right\rangle$
with generators $T_{1}, Y, Y^{\prime}, Z, Z^{-1}$ and relations

$$
\begin{array}{r}
\left(T_{1}+a b\right)\left(T_{1}+1\right)=0 \\
T_{1}^{-1} Y+Y^{\prime} T_{1}+1=0 \\
\left(a Z^{-1} T_{1}^{-1}+1\right)\left(b Z^{-1} T_{1}^{-1}+1\right)=0 \\
q Z^{-1} T_{1}^{-1} Y+Y^{\prime} T_{1} Z+c=0 \\
Y Y^{\prime}=0=Y^{\prime} Y, \quad Z Z^{-1}=1=Z^{-1} Z .
\end{array}
$$

Further degeneration to Al-Salam-Chihara by $c \rightarrow 0$.

DAHA degeneration from AW to big q-Jacobi (Mazzocco)
In $\mathcal{H}_{a, b, c, d ; q}\left\langle T_{1}, Y, Y^{-1}, Z, Z^{-1}\right\rangle$ rescale
$(a, b, c, d) \rightarrow\left(\lambda, q a \lambda^{-1}, q c \lambda^{-1}, b c^{-1} \lambda\right), Z \rightarrow \lambda^{-1} X$, $Z^{-1} \rightarrow \lambda^{-1} X^{\prime}$, and let $\lambda \rightarrow 0$.
Then we get the degenerate DAHA for big q-Jacobi:

$$
\begin{aligned}
& \mathcal{H}_{a, b, b ; c}^{\mathrm{BqJ}}\left\langle T_{1}, Y, Y^{-1}, X, X^{\prime}\right\rangle \\
& \quad=\lim _{\lambda \rightarrow 0} \mathcal{H}_{\lambda, q a \lambda^{-1}, q c \lambda^{-1}, b c^{-1} \lambda ; q^{\prime}}\left\langle T_{1}, Y, Y^{-1}, \lambda^{-1} X, \lambda^{-1} X^{\prime}\right\rangle
\end{aligned}
$$

with generators $T_{1}, Y, Y^{-1}, X, X^{\prime}$ and with relations

$$
\begin{array}{r}
\left(T_{1}+q a\right)\left(T_{1}+1\right)=0, \\
\left(T_{1}^{-1} Y+b\right)\left(T_{1}^{-1} Y+1\right)=0, \\
T_{1} X+q a X^{\prime} T_{1}^{-1}+q a=0, \\
b Y^{-1} T_{1} X+q X^{\prime} T_{1}^{-1} Y+q c=0, \\
X X^{\prime}=0=X^{\prime} X .
\end{array}
$$

Further degeneration to little q-Jacobi by $c \rightarrow 0$.

Duality for degenerate DAHA's (Mazzocco)

$$
\begin{aligned}
& \mathcal{H}_{a, b, c ; q}^{\mathrm{CDqH}}\left\langle T_{1}, X^{\prime}, a^{-1} b^{-1} X, a Y^{-1}, a^{-1} Y\right\rangle \\
& \simeq \mathcal{H}_{q^{-1} a b, a b^{-1}, q^{-1} a c ; q}^{\mathrm{BqJ}}\left\langle T_{1}, Y, Y^{-1}, X, X^{\prime}\right\rangle .
\end{aligned}
$$

Also for $c \rightarrow 0$.

Non-symmetric dual q-Hahn polynomials:

$$
E_{n}[z ; a, b, c \mid q]=\lim _{d \rightarrow 0} E_{n}[z ; a, b, c, d \mid q] .
$$

In basic representation of $\mathcal{H}_{a, b, c ; q}^{\mathrm{CDqH}}\left\langle T_{1}, Y, Y^{\prime}, Z, Z^{-1}\right\rangle$:

$$
\begin{array}{rlrl}
Y E_{n} & =0 & & (n=0,1,2, \ldots), \\
Y E_{-n} & =q^{-n} E_{-n} & & (n=1,2, \ldots), \\
Y^{\prime} E_{n} & =q^{-n} a^{-1} b^{-1} E_{n} & (n=0,1,2, \ldots), \\
Y^{\prime} E_{-n} & =0 & & (n=1,2, \ldots) .
\end{array}
$$

Also for $c \rightarrow 0$.

Non-symmetric big q-Jacobi polynomials

Recall that

$$
P_{n}(x ; a, b, c ; q)=\lim _{\lambda \rightarrow 0} R_{n}\left[\lambda^{-1} x ; \lambda, q a \lambda^{-1}, q c \lambda^{-1}, b c^{-1} \lambda \mid q\right] .
$$

$E_{ \pm n}[z ; a, b, c, d \mid q]$ is linear combination of $R_{n}[z ; a, b, c, d \mid q]$ and $z^{-1}(1-a z)(1-b z) R_{n-1}[z ; q a, q b, c, d \mid q]$.
So the non-symmetric big q-Jacobi polynomial would be the limit for $\lambda \rightarrow 0$ of a linear combination of
$R_{n}\left[\lambda^{-1} x ; \lambda, q a \lambda^{-1}, q c \lambda^{-1}, b c^{-1} \lambda \mid q\right]$ and
$x^{-1}(1-x)(1-q a x) R_{n-1}\left[\lambda^{-1} x ; q \lambda, q^{2} a \lambda^{-1}, q c \lambda^{-1}, b c^{-1} \lambda \mid q\right]$.
This would introduce undesired dependencies.

Non-symmetric AW polynomials as vector-valued polynomials (K \& Bouzeffour)

A way around. First write the non-symmetric AW polynomials as 2-vector-valued symmetric Laurent polynomials, and then take limit to non-symmetric big q-Jacobi polynomials as 2-vector-valued ordinary polynomials.

$$
f[z]=f_{1}[z]+a z^{-1}(1-a z)(1-b z) f_{2}[z] \leftrightarrow \vec{f}[z]=\binom{f_{1}[z]}{f_{2}[z]}
$$

where $f_{1}[z]$ and $f_{2}[z]$ are symmetric Laurent polynomials.

Then

$$
\begin{aligned}
{\overrightarrow{E_{n}}}[z]=\binom{R_{n}[z ; a, b, c, d \mid q]}{-\frac{\sigma(n) R_{n-1}[z ; q a, q b, c, d \mid q]}{(1-q a b)(1-a b)(1-a c)(1-a d)}} & (n \geq 0) \\
\overrightarrow{E_{-n}}[z]=\binom{R_{n}[z ; a, b, c, d \mid q]}{-\frac{\sigma(-n) R_{n-1}[z ; q a, q b, c, d \mid q]}{(1-q a b)(1-a b)(1-a c)(1-a d)}} & (n>0)
\end{aligned}
$$

where

$$
\begin{aligned}
\sigma(n) & :=q^{1-n}\left(1-q^{n}\right)\left(1-q^{n-1} c d\right) & (n \geq 0) \\
\sigma(-n) & :=(a b)^{-1} q^{1-n}\left(1-q^{n} a b\right)\left(1-q^{n-1} a b c d\right) & (n>0)
\end{aligned}
$$

and where $\sigma(n) R_{n-1}=$ const. $\left(1-q^{n}\right) R_{n-1}:=0$ for $n=0$.

For f a Laurent polynomial and A an operator acting on Laurent polynomials:

$$
A f \leftrightarrow\left(\begin{array}{ll}
A_{11} & A_{12} \\
A_{21} & A_{22}
\end{array}\right)\binom{f_{1}}{f_{2}}=\mathbf{A} \vec{f}
$$

where the $A_{i j}$ are operators acting on symmetric Laurent polynomials. Then

$$
\begin{aligned}
\mathbf{T}_{\mathbf{1}} & =\left(\begin{array}{cc}
-a b & 0 \\
0 & -1
\end{array}\right), \\
\mathbf{Y} & =\left(\begin{array}{ll}
Y_{11} & Y_{12} \\
Y_{21} & Y_{22}
\end{array}\right),
\end{aligned}
$$

where the $Y_{i j}$ are q-difference operators acting on symmetric Laurent polynomials.
$\mathbf{Z}=\frac{1}{a b-1}\left(\begin{array}{cc}a+b-z-z^{-1} & -a(1-a z)\left(1-a z^{-1}\right)(1-b z)\left(1-b z^{-1}\right) \\ a^{-1} & a b\left(z+z^{-1}\right)-(a+b)\end{array}\right)$

Vector-valued non-symmetric big q-Jacobi:

$$
\overrightarrow{E_{n}}(x ; a, b, c ; q):=\lim _{\lambda \rightarrow 0} \overrightarrow{E_{n}}\left[\lambda^{-1} x ; \lambda, q a \lambda^{-1}, q c \lambda^{-1}, b c^{-1} \lambda \mid q\right] \quad(n \in \mathbb{Z}) .
$$

Then

$$
\overrightarrow{E_{n}(x)=\binom{P_{n}(x ; a, b, c \mid q)}{-\frac{q^{1-n}\left(1-q^{n}\right)\left(1-q^{n} b\right)}{(1-q a)\left(1-q^{2} a\right)(1-q c)} P_{n-1}\left(q x, q^{2} a, b, q c ; q\right)}} \begin{aligned}
(n \geq 0),
\end{aligned}
$$

$$
\overrightarrow{E_{-n}}(x)=\left(\begin{array}{c}
P_{n}(x ; a, b, c \mid q) \\
\\
-\frac{q^{-n}\left(1-q^{n+1} a\right)\left(1-q^{n+1} a b\right)}{a(1-q a)\left(1-q^{2} a\right)(1-q c)} P_{n-1}\left(q x, q^{2} a, b, q c ; q\right)
\end{array}\right)
$$

where $\left(1-q^{n}\right) P_{n-1}:=0$ for $n=0$. Also for $c \rightarrow 0$.
Can also take limit of the AW \mathbf{Y} matrix operator, has the $\overrightarrow{E_{ \pm n}}$ as eigenfunctions.

Duality between non-symmetric continuous dual q-Hahn and non-symmetric big q-Jacobi:

$$
\begin{align*}
& E_{n}\left(z_{a, q}(m)^{-1} ; a, b, c \mid q\right) \\
& =\left(\begin{array}{ll}
1 & \left.\mu_{a b, q}(n)\right) \\
\overrightarrow{E_{m}}\left(q^{-n} ; q^{-1} a b, a b^{-1},\right. & \left.q^{-1} a c ; q\right) \\
\quad(m, n \in \mathbb{Z})
\end{array}\right. \tag{3}
\end{align*}
$$

where

$$
\begin{aligned}
z_{a, q}(n) & :=a q^{n} & & (n \geq 0) \\
z_{a, q}(-n) & :=a^{-1} q^{-n} & & (n>0)
\end{aligned}
$$

and

$$
\begin{aligned}
\mu_{a b, q}(n) & :=a b q^{-n}\left(1-q^{n}\right) & & (n \geq 0) \\
\mu_{a b, q}(-n) & :=q^{-n}\left(1-q^{n} a b\right) & & (n>0)
\end{aligned}
$$

In (3) on the left nonsymmetric continuous dual q-Hahn polynomials and on the right row vector times column vector of non-symmetric big q-Jacobi polynomials.

Remark

$\overrightarrow{E_{n}}(x ; c, a b / c, a)$
$\left(P_{n}(x ; a, b, c \mid q)\right.$
$=\left(-\frac{q^{1-n}\left(1-q^{n}\right)\left(c-q^{n} a b\right)}{c(1-q a)(1-q c)\left(1-q^{2} c\right)} P_{n-1}\left(q x, q a, q b, q^{2} c ; q\right)\right)$
$(n \geq 0)$,
$\overrightarrow{E_{-n}}(x ; c, a b / c, a)$
$=\binom{P_{n}(x ; a, b, c \mid q)}{-\frac{q^{-n}\left(1-q^{n+1} c\right)\left(1-q^{n+1} a b\right)}{c(1-q a)(1-q c)\left(1-q^{2} c\right)} P_{n-1}\left(q x, q a, q b, q^{2} c ; q\right)}$
$(n>0)$
q-shifts in parameters here are different from the ones in $\overrightarrow{E_{n}}(x ; a, b, c ; q)$.
No clear limit of corresponding degenerate DAHA for $c \rightarrow 0$.

