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Toulouse and Thomas Stieltjes

Thomas J. Stieltjes, 1856–1894
until 1885 in the Netherlands;
assistant at Leiden observatory;
many letters exchanged with Hermite;
1885–1886 in Paris;
from 1886 in Toulouse:
1886–1889 maître de conférences;
1889–1894 professeur

His tomb is at the cemetery of Terre Cabade in Toulouse.

Stieltjes prize: an annual prize for the best PhD thesis in
mathematics defended at a Dutch university, see
http://testweb.science.uu.nl/WONDER/prizes.html
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Askey’s sabbatical, Amsterdam, 1969–1970

Mathematisch Centrum, 2e Boerhaavestraat 49, Amsterdam
(earlier situation; in 1969 the top floor looked different)

http://beeldbank.amsterdam.nl/afbeelding/010003018854
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Askey’s sabbatical, Amsterdam, 1969–1970 (cntd.)

Dick Askey reading a math book in his Dutch home,
Amstelveen, 1970
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Askey’s sabbatical, Amsterdam, 1969–1970 (cntd.)

In his lectures in Amsterdam, 1969–1970, Askey emphasized
positivity properties of (special) orthogonal polynomials related
to generalized translation and convolution. Thus he presented
special hypergroups avant la lettre.

These results were presented with a much wider scope in his
1975 SIAM Lecture Notes.
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Askey’s 1975 SIAM Lecture Notes
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Four canonical problems

{pn} and {qn} systems of orthogonal polynomials;∫
pm(x)pn(x) dµ(x) = hn δm,n.

Often pn(x0) = 1 = qn(x0) for some special x0.
product formula:

pn(x)pn(y) =

∫
pn(z)K (x , y , z) dµ(z).

transmutation: qn(x) =

∫
pn(y)A(x , y) dµ(y).

linearization of products:

pm(x)pn(x) =
m+n∑

k=|m−n|

cm,n,k pk (x)/hk .

connection formula: qn(x) =
n∑

k=0

an,k pk (x)/hk .

Find the integral and summation kernels explicitly and/or see
when these kernels are nonnegative.
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Four canonical problems (cntd.)

A product formula with nonnegative kernel is a necessary
aspect of a hypergroup associated with orthogonal polynomials.
Similarly, nonnegative linearization coefficients are necessary
for a dual hypergroup associated with orthogonal polynomials.
Transmutations and connection formulas with positive kernel
have some hypergroup flavour, in particular when they connect
with cosine functions or Chebyshev polynomials of the first kind.
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Product formulas

pn(x) pn(y) =

∫
pn(z) K (x , y , z) dµ(z)

K (x , y , z) =
∞∑

n=0

pn(x) pn(y) pn(z)

hn
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Gegenbauer product formula
Jacobi polynomials (α, β > −1) :

R(α,β)
n (x) :=

P(α,β)
n (x)

P(α,β)
n (1)

, dµα,β(x) :=
(1− x)α(1 + x)β dx∫ 1
−1(1− x)α(1 + x)β dx

,

1
∫
−1

R(α,β)
m (x)R(α,β)

n (x) dµα,β(x) = h(α,β)
n δm,n.

Gegenbauer product formula (α > −1
2) : R(α,α)

n (x)R(α,α)
n (y)

=
1
∫
−1

R(α,α)
n

(
xy + (1− x2)

1
2 (1− y2)

1
2 t
)

dµα− 1
2 ,α−

1
2
(t).

For α = −1
2 : cos nφ cos nψ = 1

2

(
cos n(φ+ ψ) + cos n(φ− ψ)

)
.

Generalized translation (Levitan, Bochner, Hirschman):

Ty [f ](x) :=
1
∫
−1

f
(
xy + (1− x2)

1
2 (1− y2)

1
2 t
)

dµα− 1
2 ,α−

1
2
(t).

Positivity of generalized translation:

f (x) =
∞∑

n=0

f̂ (n)R(α,α)
n (x)

hn
≥ 0⇔ Ty [f ](x) =

∞∑
n=0

f̂ (n)R(α,α)
n (x)R(α,α)

n (y)

hn
≥ 0
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Gegenbauer product formula (cntd.)

Product formula and generalized translation in kernel form:

R(α,α)
n (x)R(α,α)

n (y) =

∫ 1

−1
R(α,α)

n (z) Kα,α(x , y , z) dµα,α(z),

Ty [f ](x) =

∫ 1

−1
f (z) Kα,α(x , y , z) dµα,α(z), where

Kα,α(x , y , z) =
∞∑

n=0

R(α,α)
n (x)R(α,α)

n (y)R(α,α)
n (z)/h(α,α)

n

=
Γ(α + 1)2

Γ(α + 1
2)Γ(α + 3

2)

(1− x2 − y2 − z2 + 2xyz)
α− 1

2
+(

(1− x2)(1− y2)(1− z2)
)α ≥ 0.

Convolution:

(f ∗ g)(x) :=

∫ 1

−1
Ty [f ](x) g(y) dµα,α(y) =

∫ 1

−1

∫ 1

−1
f (z) g(y)

× Kα,α(x , y , z) dµα,α(y) dµα,α(z) =
∞∑

n=0

f̂ (n)ĝ(n)R(α,α)
n (x)

h(α,α)
n

.
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Convolution algebra

Put ‖f‖1 :=

∫ 1

−1
|f (x)|dµα,α(x). Then we conclude:

‖f∗g‖1 ≤ ‖f‖1 ‖g‖1, ‖f∗g‖∞ ≤ ‖f‖∞ ‖g‖1, f ,g ≥ 0⇒ f∗g ≥ 0.

The same machinery would work for other orthogonal systems,
provided we have a product formula with positive kernel.

Gegenbauer case α = 1
2(d − 3) by group theory:

G = O(d), K = O(d − 1), Ω = G/K = Sd−1 (Gelfand pair).

(f ∗ g)(x) = (g ∗ f )(x) =

∫
G

f (y) g(y−1x) dy (f ,g K -biinvariant),

(F ∗G)(〈x , y〉) =

∫
Ω

F (〈x , z〉) G(〈z, y〉) dω(z) (x , z ∈ Ω),

φ(x)φ(y) =

∫
K
φ(xky) dk (x , y ∈ G, φ(x) = R(α,α)

n (〈xe1,e1〉) ).

φ is spherical function (Gelfand); immediate positivity results;
works also for certain other Jacobi parameters (Gangolli).
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Jacobi product formula

In the analogous Jacobi problem for α > β > −1
2 Gasper

(1971) showed that

R(α,β)
n (x)R(α,β)

n (y) =

∫ 1

−1
R(α,β)

n (z) Kα,β(x , y , z) dµα,β(z)

with Kα,β(x , y , z) ≥ 0 as a definite integral of an explicit
nonnegative elementary function.

In fact he found this by combining two formulas in Watson’s
Treatise on the theory of Bessel functions, see there pages 411
and 413.
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Jacobi product formula (cntd.)

Watson essentially has the same nonnegative kernel in the
following two product formulas (α > β > −1

2 ):

Jα(x)

xα
Jβ(y)

yβ
=

1
2αΓ(α + 1)

∫ ∞
0

Jβ(z)

zβ
K̃α,β(x , y , z) z2β+1 dz,

R(α,β)
n (cos 2θ1) R(α,β)

n (cos 2θ2) =

∫ π/2

0
R(α,β)

n (cos 2θ3)

× K̃α,β(sin θ1 sin θ2, cos θ1 cos θ2, cos θ3) (cos θ3)2β+1 sin θ3 dθ3.

Askey’s question
Rewrite the Gasper-Watson Jacobi product formula as
something similar to the Gegenbauer product formula

R(α,α)
n (x)R(α,α)

n (y)

=
1
∫
−1

R(α,α)
n

(
xy + (1− x2)

1
2 (1− y2)

1
2 t
)

dµα− 1
2 ,α−

1
2
(t).

For this purpose work with addition formulas and group theory.
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Gegenbauer addition formula

The Gegenbauer product formula gives the constant term in the
Gegenbauer addition formula:

R(α,α)
n

(
xy+(1−x2)

1
2 (1−y2)

1
2 t
)

=
n∑

k=0

(−1)k (−n)k (n + 2α + 1)k

22k ((α + 1)k )2 h
(α− 1

2 ,α−
1
2 )

k

×(1−x2)k/2R(α+k ,α+k)
n−k (x) (1−y2)k/2R(α+k ,α+k)

n−k (y) R
(α− 1

2 ,α−
1
2 )

k (t).

For α = 1
2(d −3) by group theory: G = O(d) ⊃ K = O(d −1) ⊃

M = O(d − 2), A = SO(2) ⊂ G commuting with M;
φ spherical function for (G,K ) and ψδ for (K ,M) (Gelfand pairs):

φ(a1ka2) =
∑

δ∈(K/M)̂
φ̂a1,a2(δ) dδ ψδ(k) (k ∈ K , a1,a2 ∈ A).

Or as reproducing kernel for spherical harmonics of degree n:

R(α,α)
n (〈x , y〉) =

1
dn

dn∑
k=1

Yn,k (x) Yn,k (y) (x , y ∈ Sd−1 = O(d)/O(d−1)).
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disk polynomials

Gangolli: Jacobi polynomials R(d−2,0)
n are spherical functions on

complex projective space Pd−1(C) = U(d)/(U(1)× U(d − 1))
(a compact Riemannian symmetric space of rank one).
But this is the space of U(1)-orbits on S2d−1 = U(d)/U(d − 1)
(unit sphere in Cd ). Functions on Pd−1(C) are U(1)-invariant
functions on S2d−1.
Moreover (U(d),U(d − 1)) is Gelfand pair with Zernike’s disk
polynomials Rα

m,n(z) (α = d − 2) as spherical functions.

Rα
m,n(reiφ) := R(α,|m−n|)

min(m,n) (2r2 − 1) r |m−n| ei(m−n)φ,∫
D

Rα
m,n(x + iy) Rα

k ,l(x + iy) (1− x2 − y2)α dx dy = 0

((m,n) 6= (k , l); D unit disk).

Work with complex spherical harmonics on Cd : refinement of
ordinary spherical harmonics on R2d .
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disk polynomials (cntd.)

The disk polynomials, introduced by the Dutch Nobel prize
winner Zernike, find important applications at the Dutch world
leading chip machine maker ASML.
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Addition formula for disk polynomials

R. L. Šapiro (1968), K (1972):

Rα
m,n
(
z1z2 + (1− |z1|2)

1
2 (1− |z2|2)

1
2 w
)

=
m∑

k=0

n∑
l=0

cαm,n,k ,l (1− |z1|2)
1
2 (k+l)Rα+k+l

m−k ,n−l(z1)

× (1− |z2|2)
1
2 (k+l)Rα+k+l

m−k ,n−l(z2) Rα−1
k ,l (w).

This yields an addition formula for Jacobi polynomials R(α,0)
n

and next, by differentiation and by analytic continuation in the
parameters, an addition formula for Jacobi polynomials R(α,β)

n
(α > β > −1

2). It involves an expansion in terms of orthogonal
polynomials in two variables on a parabolic biangle.
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Orthogonal polynomials on the parabolic biangle

R(α,β)
n,k (x , y) := R

(α,β+n−k+ 1
2 )

k (2y − 1)y
1
2 (n−k)R(β,β)

n−k (y−
1
2 x).∫ 1

y=0

∫ y
1
2

x=−y
1
2

R(α,β)
n,k (x , y)R(α,β)

m,l (x , y)

× (1− y)α (y − x2)β dx dy = 0 ((n.k) 6= (m, l)).

Parametrize this region by

(x , y) = (r cosφ, r2)

(0 ≤ r ≤ 1, 0 ≤ φ ≤ π).

Put dνα,β(r , φ) :=
r2β+2(1− r2)α (sinφ)2β+1 dr dφ∫ 1

r=0

∫ π
φ=0 r2β+2(1− r2)α (sinφ)2β+1 dr dφ

.
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Addition formula for Jacobi polynomials

Λ(x , y , r , φ) := 1
2(1 + x)(1 + y) + 1

2(1− x)(1− y) r2

+ (1− x2)
1
2 (1− y2)

1
2 r cosφ− 1.

R(α,β)
n (Λ(x , y , r , φ)) =

n∑
k=0

k∑
l=0

c(α,β)
n,k ,l (1− x)

1
2 (k+l)(1 + x)

1
2 (k−l)

× R(α+k+l,β+k−l)
n−k (x) (1− y)

1
2 (k+l)(1 + y)

1
2 (k−l)R(α+k+l,β+k−l)

n−k (y)

× R
(α−β− 1

2 ,β−
1
2 )

k ,l (r cosφ, r2).

Constant term in the expansion is the Jacobi product formula

R(α,β)
n (x)R(α,β)

n (y) =

∫ 1

r=0

∫ π

φ=0
R(α,β)

n (Λ(x , y , r , φ)) dνα−β− 1
2 ,β−

1
2
(r , φ).

Conversely, the product formula implies the addition formula by
integration by parts and Rodrigues type formulas.
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Laplace type integral representation

(Askey, 1974; K, 1974)
The Gegenbauer Laplace type integral representation is a
degenerate case of the Gegenbauer product formula:

R(α,α)
n (x) =

∫ 1

−1
(x + i(1− x2)

1
2 t)n dµα− 1

2 ,α−
1
2
(t).

Combine this with a fractional integral or degenerate the Jacobi
product formula for obtaining

Jacobi Laplace type integral representation: R(α,β)
n (x) =∫ 1

r=0

∫ π

φ=0

(1
2(1 + x)− 1

2(1− x)r2 + i(1− x2)
1
2 r cosφ

)n dνα−β− 1
2 ,β−

1
2
(r , φ).

One can go back and forth between this integral representation
and the Jacobi product formula by Bateman’s bilinear sum and
its inverse.

Tom Koornwinder Hypergroups made concrete



Bateman’s bilinear sum and its inverse

(x + y)n R(α,β)
n

(
1 + xy
x + y

)
=

n∑
k=0

an,kR(α,β)
k (x)R(α,β)

k (y),

where (x + 1)n =
n∑

k=0

an,kR(α,β)
k (x);

R(α,β)
n (x)R(α,β)

n (y) =
n∑

k=0

bn,k (x + y)k R(α,β)
k

(
1 + xy
x + y

)
,

where R(α,β)
n (x) =

n∑
k=0

bn,k (x + 1)k .

These connect

(x + y)n R(α,β)
n

(
1 + xy
x + y

)
=

∫ 1

r=0

∫ π

φ=0
(Λ(x , y , r , φ) + 1)n dνα−β− 1

2 ,β−
1
2
(r , φ)

and R(α,β)
n (x)R(α,β)

n (y) =

∫ 1

r=0

∫ π

φ=0
R(α,β)

n (Λ(x , y , r , φ)) dνα−β− 1
2 ,β−

1
2
(r , φ).
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Hypergroups

The term hypergroup seems to have been used first in the
paper
H. S. Wall, Hypergroups, Amer. J. Math. 59 (1937), 77–98.
It generalizes the definition of a group in the sense that the
product of two elements is a sum of finitely many elements.
Commutativity is not required and each element has an inverse.

Dunkl (TAMS, 1973) first defines a hypergroup as a locally
compact space on which the space of finite regular Borel
measures has a convolution structure preserving the probability
measures. He requires commutativity and there is no inverse.

Similar but differently phrased definitions were given by Jewett
(Adv. Math., 1975) and Spector (TAMS, 1978). An imported
added axiom involves the so-called Michael topology of the
collection of compact subsets of a locally compact space.

Hypergroups according to Dunkl, Jewett and Spector are
sometimes called DJS-hypergroups.
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Further developments

Gasper (1972): Extension of Jacobi generalized translation
to absolutely bounded (not necessarily positive) case.
Dunkl: Addition formulas for Krawtchouk, Hahn and
q-Hahn polynomials from interpretation on finite groups.
D. Stanton: Similarly for q-Krawtchouk polynomials.
K: Addition formula for little q-Legendre polynomials from
quantum group interpretation.
Floris: Addition formula for q-disk polynomials in non-
commuting variables from quantum group interpretation.
Koelink: addition formulas in many q-cases, both from
quantum groups and analytic.
Rahman: analytic proofs of q-addition formulas.
K & A. Schwartz: positive convolution for orthogonal
polynomials on triangle and simplex.
Carlen, Geronimo & Loss (2011) proved Gssper’s positivity
of Jacobi generalized translation by probabilistic means.
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Heckman-Opdam Jacobi polynomials

The big open problem: Show the positivity of convolution for
Heckman-Opdam Jacobi polynomials.

Partial results by Rösler and by Remling & Rösler in BCn case

Partial, yet unpublished results in A2 case by Dominique Bakry
and co-workers.
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Transmutation

qn(x) =

∫
pn(y) A(x , y) dµ(y)

A(x , y) =
∞∑

n=0

qn(x) pn(y)

hn
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Fractional integrals

Riemann-Liouville:

(Rµf )(x) :=
1

Γ(µ)

∫ x

0
f (y) (x − y)µ−1 dy (Reµ > 0).

Weyl:

(Wµf )(x) :=
1

Γ(µ)

∫ ∞
x

f (y) (y − x)µ−1 dy (Reµ > 0).

Askey & Fitch (1969) emphasized Bateman’s integral:

xc+µ−1

Γ(c + µ)
2F1

(
a,b

c + µ
; x
)

=
1

Γ(µ)

∫ x

0

yc−1

Γ(c)
2F1

(
a,b
c

; y
)

(x−y)µ−1 dy ,

(Reµ,Re c > 0). Hence, for Reµ > 0:

(1− x)α+µ

Γ(α + µ+ 1)
R(α+µ,β−µ)

n (x) =
1

Γ(µ)

∫ 1

x

(1− y)α

Γ(α + 1)
R(α,β)

n (y) (y−x)µ−1 dy .
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Transmutation property

Bateman’s integral in kernel form:

R(α+µ,β−µ)
n (x) =

∫
R(α,β)

n (y) A(x , y) dµα,β(y),

where A(x , y) =
2α+β+1 Γ(α + µ+ 1) Γ(β + 1)

Γ(α + β + 2) Γ(µ)

(y − x)µ−1
+

(1− x)α+µ(1 + y)β
.

Transmutation Theorem. Let {pn} and {qn} be complete
orthogonal systems with respect to measures dµ and dν,
respectively. Let D and E be operators having the pn
repectively the qn as eigenfunctions with the same
eigenvalue λn. Suppose that qn(x) =

∫
pn(y) A(x , y) dµ(y).

Then the operator A given by (Af )(y) :=
∫

f (x) A(x , y) dν(x)
satisfies the transmutation property A ◦ E = D ◦ A.

Hence in case of Bateman’s integral : D = Dα,β, E = Dα+µ,β−µ,
where Dα,βR(α,β)

n = −n(n + α + β + 1) R(α,β)
n .
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Feldheim-Vilenkin integral

Feldheim-Vilenkin integral
(not of the desired transmutation form):

(x − 1)α+µ

Γ(α + µ+ 1)
x

1
2 n R(α+µ,α+µ)

n (x−
1
2 )

=
1

Γ(µ)

∫ x

1

(y − 1)α

Γ(α + 1)
y

1
2 n R(α,α)

n (y−
1
2 ) (x − y)µ−1 dy (µ > 0).

Remark. Both the Bateman and Feldheim-Vilenkin integral
can be obtained from spherical harmonics. For Bateman also
use that

(x2
1 +· · ·+x2

q+p)n R
( 1

2 p−1, 1
2 q−1)

n

(
(x2

1 + · · ·+ x2
q )− (x2

q+1 + · · ·+ x2
q+p)

x2
1 + · · ·+ x2

q+p

)

is an O(q)×O(p)-invariant homogeneous harmonic polynomial
of degree 2n on Rq+p.
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Transmutation in the non-compact case

Jacobi functions (surveyed by K, 1984). These form a
continuous orthogonal system of Gauss hypergeometric
functions. They are noncompact analogues of Jacobi
polynomials. They have richer transmutation properties.

φ
(α,β)
λ (t) := 2F1

(
1
2(ρ+ iλ), 1

2(ρ− iλ)

α + 1
;− sinh2 t

)
, ρ := α + β + 1;

f̂ (λ) =

∫ ∞
0

f (t) ∆α,β(t) dt , f (t) =

∫ ∞
0

f̂ (λ) |cα,β(λ)|−2 dλ.

Dα,β φ
(α,β)
λ = −λ2 φ

(α,β)
λ ; φ

(− 1
2 ,−

1
2 )

λ (t) = cos(λt).

Transmutation: φ
(α+µ,β±µ)
λ (t) =

∫ t

0
φ

(α,β)
λ (s) A(s, t) ∆α,β(s) ds

with A(s, t) positive and elementary if µ > 0. Relationship with
Abel transform on noncompact semisimple Lie groups.
Generalization to Chébli-Trimèche hypergroups.
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Linearization of products

pm(x) pn(x) =
m+n∑

k=|m−n|

cm,n,k pk (x)/hk

cm,n,k =

∫
pm(x) pn(x) pk (x) dµ(x)
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Linearization of products (cntd.)

Jacobi polynomials:

R(α,β)
m (x) R(α,β)

n (x) =
∑m+n

k=|m−n| c
(α,β)
m,n,k R(α,β)

k (x)/h(α,β)
k

Theorem (Gasper, 1970) (a)⇐⇒ (b)⇐= (c)

(a) c(α,β)
m,n,k ≥ 0 for all m,n, k .

(b) some quartic polynomial in α, β is nonnegative.
(c) α ≥ β > −1 and α + β > −1.

General monic orthogonal polynomials pn :

p1(x) pn(x) = pn+1(x) + anpn(x) + bnpn−1(x),

pm(x)pn(x) =
∑m+n

k=|m−n| cm,n,k pk (x)/hk .

Theorem (Askey, 1970)
∀n an,bn,an+1 − an,bn+1 − bn ≥ 0 =⇒ ∀m,n, k cm,n,k ≥ 0.

This covers: If α ≥ β and α + β ≥ 1 then c(α,β)
m,n,k ≥ 0.
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Linearization of products (cntd.)

Remark 1. A function f on a group G is called positive definite
if for all x1, . . . , xk ∈ G and all c1, . . . , ck ∈ C

k∑
i,j=1

f (xix−1
j )cicj ≥ 0.

If (G,K ) is a Gelfand pair with G,K compact and with spherical
functions φλ then φλφµ =

∑
ν cλ,µ,νφν with cλ,µ,ν ≥ 0.

Indeed, spherical functions are elementary positive definite
functions, a product of positive definite functions is again
positive definite, and a K -biinvariant positive definite function is
a nonnegative linear combination of spherical functions.

Thus for special parameter values the theorems of Gasper and
Askey also follow from group theory.
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Linearization of products (cntd.)

Remark 2. K (1978):
An addition formula obtained for a spherical function on a
Gelfand pair carries the essential information making it positive
definite and leading to nonnegative linearization coefficients.

This last information is preserved in an addition formula for
other parameter values which do not come from group theory.
The addition formula needs to have certain properties. In
particular, the expansion coefficients in the addition formula
should be nonnegative. Then it implies the nonnegativity of the
linearization coefficients.

This works in the Jacobi case for α ≥ β ≥ −1
2 .
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An application to Laguere polynomials

This works also for disk polynomials.
If these are rewritten in terms of Jacobi polynomials and next
the limit to the Laguerre case is taken then:∫ ∞

0
Lαk (x) Lαm(λx) Lαn ((1−λ)x) xα e−x dx ≥ 0 (α ≥ 0, λ ∈ [0,1]).

By iteration:∫ ∞
0

Lαn1
(x) Lαn2

(x) Lαn3
(x) Lαn4

(x) xα e−2x dx > 0 (α > 0).

This leads to the four boxes paper by Askey, Ismail & K (1978).
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Connection formula

qn(x) =
n∑

k=0

an,k pk (x)/hk

an,k =

∫
qn(x) pk (x) dµ(x)
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Connection formula (cntd.)

R(γ,δ)
n (x) =

n∑
k=0

an,k R(α,β)
k (x)/h(α,β)

k =⇒ an,k = stuff× 3F2(1).

In particular, an,k is elementary and nonnegative in the cases

R(γ,γ)
n (x) =

n∑
k=0

an,k R(α,α)
k (x)/h(α,α)

k (γ > α > −1),

R(γ,β)
n (x) =

n∑
k=0

an,k R(α,β)
k (x)/h(α,β)

k (γ > α > −1).

Askey & Gasper (1971) give sufficient conditions for
nonnegativity of an,k = a(γ,δ),(α,β)

n,k . For given (α, β) this includes
an infinite region in the (γ, δ) plane bounded by three lines with
(γ, δ) = (2α + 1,2β + 1) as one of the vertices.
Askey (1968): Certain of these positivity cases from isometric
embeddings of projective spaces.
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Connection formula (cntd.)

Nevai (1979): Connection coefficients for pn in terms of
Chebyshev polynomials Tk are limits of linearization
coefficients for pn.
Lasser (1994): Under certain assumptions positivity of
linearization coefficients implies positivity of connection
coefficients with Chebyshev.
Further work by Szwarc.

It seems that certain conditions on the coefficients in the
three-term recurrence relation can identify a class of orthogonal
polynomials giving rise to the dual case of the Chébli-Trimèche
hypergroups.
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