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Jacobi theta functions

C. G. J. Jacobi (1829),
Fundamenta Nova Theoriae Functionum Ellipticarum

Jacobi Weierstrass Whittaker Watson [WW]
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Jacobi theta functions (cntd.)

Let q = eiπτ (0 < |q| < 1, Im τ > 0).

Modified theta function (as in Gasper & Rahman):

θ(w ; q) := (w ,q/w ; q)∞ =
1

(q; q)∞

∞∑
k=−∞

(−1)kq
1
2 k(k−1)wk .

θ(w−1; q) = −w−1θ(w ; q) = θ(qw ; q).
Jacobi theta functions θa (a = 1,2,3,4), or ϑa in [WW].

θa(z) = θa(z,q) = θa(z | τ) = ϑa(πz,q).

θ1(z) :=i q1/4(q2; q2)∞ e−πiz θ(e2πiz ; q2),

θ2(z) :=q1/4(q2; q2)∞ e−πiz θ(−e2πiz ; q2) = θ1(z + 1
2),

θ3(z) :=(q2; q2)∞ θ(−q e2πiz ; q2) =
∞∑

k=−∞
qk2

e2πikz ,

θ4(z) :=(q2; q2)∞ θ(q e2πiz ; q2) = θ3(z + 1
2).

θ1(z) is odd; θ2(z), θ3(z), θ4(z) are even.
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Fundamental theta identities: Weierstrass’ formula

Weierstrass’ fundamental theta identity is the three-term identity

θ(xy , x/y ,uv ,u/v ; q2)− θ(xv , x/v ,uy ,u/y ; q2)

= uy−1θ(yv , y/v , xu, x/u; q2),

see Gasper & Rahman, (11.4.3). It was first obtained by
Weierstrass in terms of the function σ(z), see references to
Weierstrass (1882) and Schwarz (1893) in arXiv:1401.5368,
and [WW, p.451, Ex.5 and p.473, §21.43]. Some authors call it
the Riemann identity, but it can’t be found in Riemann’s works.

For a quick proof divide the left-hand side by the right-hand side
and consider the resulting expression as a meromorphic
function F (x) of x (the other variables generically fixed).
Observe that the numerator vanishes at all (generically simple)
zeros of the denominator. Thus F is entire analytic. It is also
bounded (use that F (q2x) = F (x)). By Liouville’s theorem F is
constant, which is 1 because F (v) = 1.
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Fundamental theta identities: Jacobi’s formulas

Jacobi’s fundamental formulas [WW, §21.22] involve sums of
products of four theta functions of the form

[a] := θa(w)θa(x)θa(y)θa(z), [a]′ := θa(w ′)θa(x ′)θa(y ′)θa(z ′),

where

2w ′ = −w + x + y + z, 2x ′ = w − x + y + z,
2y ′ = w + x − y + z, 2z ′ = w + x + y − z.

Then (the first one implies the others):

2 [1] = [1]′ + [2]′ − [3]′ + [4]′, 2 [2] = [1]′ + [2]′ + [3]′ − [4]′,

2 [3] = −[1]′ + [2]′ + [3]′ + [4]′, 2 [4] = [1]′ − [2]′ + [3]′ + [4]′.

These are easily seen to be equivalent with:

[1] + [2] = [1]′ + [2]′, [1] + [3] = [2]′ + [4]′, [1] + [4] = [1]′ + [4]′,

[1]− [2] = [4]′ − [3]′, [1]− [3] = [1]′ − [3]′, [1]− [4] = [2]′ − [3]′.
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Fundamental theta identities: their equivalence

W (x , y ,u, v ; q) := θ(xy , x/y ,uv ,u/v ; q2)− θ(xv , x/v ,uy ,u/y ; q2)

− uy−1θ(yv , y/v , xu, x/u; q2),

J(x , y ,u, v ; q) := 2θ(xy , x/y ,uv ,u/v ; q2)− θ(xv , x/v ,uy ,u/y ; q2)

− θ(−xv ,−x/v ,−uy ,−u/y ; q2)− q−1xu θ(qxv ,qx/v ,quy ,qu/y ; q2)

+ q−1xu θ(−qxv ,−qx/v ,−quy ,−qu/y ; q2).

Then

W (x , y ,u, v ; q) + W (−x , y ,−u, v ; q)− xyW (qx ,qy ,u, v ; q)

− xyW (−qx ,qy ,−u, v ; q) = J(x , y ,u, v ; q),

J(x , y ,u, v ; q)− uy−1J(x ,u, y , v ; q) = 2W (x , y ,u, v ; q).

Hence the two identities W = 0 and J = 0 are equivalent.
See also K, arXiv:1401.5368.
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Relations between squares of theta functions

[1]− [4] = [2]′ − [3]′. Put (x , y ,u, v) := (y , y , z, z).
Then (x ′, y ′,u′, v ′) = (y , y , z, z). Hence

θ2
1(y)θ2

1(z)− θ2
2(y)θ2

2(z) + θ2
3(y)θ2

3(z)− θ2
4(y)θ2

4(z) = 0,

θ2
3(y)θ2

1(z) + θ2
4(y)θ2

2(z)− θ2
1(y)θ2

3(z)− θ2
2(y)θ2

4(z) = 0,(
θ4

1(y) + θ4
3(y)

)
θ2

1(z) +
(
θ2

3(y)θ2
4(y)− θ2

1(y)θ2
2(y)

)
θ2

2(z)

−
(
θ2

1(y)θ2
4(y) + θ2

2(y)θ2
3(y)

)
θ2

4(z) = 0.

By the first equation the functions θ2
1, θ

2
2, θ

2
3, θ

2
4 span a linear

space of dimension at most 2, hence equal to 2. In fact,

θ2
1(1

2)θ2
1(z) = −θ2

3(1
2)θ2

3(z) + θ2
4(1

2)θ2
4(z),

θ2
2(0)θ2

2(z) = θ2
3(0)θ2

3(z)− θ2
4(0)θ2

4(z).
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Some theta addition formulas

θ(xy , x/y ,uv ,u/v ; q2)− θ(xv , x/v ,uy ,u/y ; q2)

= uy−1θ(yv , y/v , xu, x/u; q2),

By the substitution (x ,u, v , y)→ (q
1
2 y ,q−

1
2 z,q

1
2 ,−q

1
2 ) we get

θ(yz,qy/z,−1,−q; q2) = θ(y ,qy ,−z,−qz; q2)+θ(−y ,−qy , z,qz; q2).

Hence

θ1(y + z)θ4(y − z)θ2(0)θ3(0)

= θ1(y)θ4(y)θ2(z)θ3(z) + θ2(y)θ3(y)θ1(z)θ4(z),

θ2(y + z)θ3(y − z)θ2(0)θ3(0)

= θ2(y)θ3(y)θ2(z)θ3(z)− θ1(y)θ4(y)θ1(z)θ4(z).

Hence θ2(z)θ3(z)
(
θ1(y + z)θ4(y − z)− θ1(y − z)θ4(y + z)

)
− θ1(z)θ4(z)

(
θ2(y + z)θ3(y − z) + θ2(y − z)θ3(y + z)

)
= 0.
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Variety associated with a set of relations

I follow the approach in S. P. Smith & J. T. Stafford, Regularity
in the four dimensional Sklyanin algebra, Compositio Math. 83
(1992), 259–289, Section 2.

Let X0, . . . ,Xn be noncommuting variables.
Associate with a word Xi1 . . .Xim a monomial xi1,1 . . . xim,m in the
commuting variables x0,1, . . . , xn,1, . . . , x0,m, . . . , xn,m.
Associate with a set of homogeneous relations of degree m∑

i1,...,im

c(j)
i1,...,im

Xi1 . . .Xim = 0 (j = 1, . . . , r).

a subset Γ of (Pn(C))m defined by the equations∑
i1,...,im

c(j)
i1,...,im

xi1,1 . . . xim,m = 0 (j = 1, . . . , r).
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Sklyanin algebra

α, β, γ means cyclic permutation of 1,2,3.

Definition
Let J12, J23, J31 be complex constants, not equal to 0 or ±1,
such that

J12 + J23 + J31 + J12 J23 J31 = 0.

The Sklyanin algebra is the algebra S generated by
S0,S1,S2,S3 with the six relations

S0Sα − SαS0 − i Jβγ(SβSγ + SγSβ) = 0,
S0Sα + SαS0 + i(SβSγ − SγSβ) = 0.

The associated subset Γ of P3 × P3 := P3(C)× P3(C) is defined
by the six equations

x0yα − xαy0 − i Jβγ(xβyγ + xγyβ) = 0,
x0yα + xαy0 + i(xβyγ − xγyβ) = 0.
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Elliptic curve associated with Sklyanin algebra

Let π1, π2 be the projections of P3 × P3 on the first respectively
second factor of the direct product. Put Γi := πi(Γ) ⊂ P3.

Theorem
1 π1 : Γ→ Γ1 and π2 : Γ→ Γ2 are bijective maps.
2 Γ1 = E ∪ {(1,0,0,0)} ∪ {(0,1,0,0)} ∪ {(0,0,1,0)}
∪ {(0,0,0,1)}, where

E = {x ∈ P3 | g1 = 0, g2 = 0},
g1 = −x2

0 + x2
1 + x2

2 + x2
3 ,

g2 = (1 + J12)x2
1 + (1 + J12J23)x2

2 + (1− J23)x2
3 .

3 Γ1 = Γ2 and thus Γ1 → Γ→ Γ2 can be considered as a
bijective map σ : Γ1 → Γ2. It fixes the four points and leaves
E invariant.

4 E is a smooth elliptic curve.
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Elliptic curve associated with Sklyanin algebra

Part of the proof of the above Theorem involves writing the six
equations

x0yα − xαy0 − i Jβγ(xβyγ + xγyβ) = 0,
x0yα + xαy0 + i(xβyγ − xγyβ) = 0.

as Ay = 0, where A is a 6× 4 matrix with entries wich are
homogeneous of degree 1 in x0, x1, x2, x3. Then compute all
4× 4 minors of A and observe that they are all equal to
polynomials which are in the ideal generated by g1 and g2.
Of course, the computation can be done in Mathematica or
Maple.
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Parametrizing the elliptic curve

Fix η ∈ C such that η is not of order 4 in C/(Z + τZ). Write the
structure constants as

J12 =
θ2

4(η)θ2
1(η)

θ2
2(η)θ2

3(η)
, J23 =

θ2
2(η)θ2

1(η)

θ2
3(η)θ2

4(η)
, J31 = −

θ2
3(η)θ2

1(η)

θ2
4(η)θ2

2(η)
.

Theorem
The map z 7→ (x0, x1, x2, x3) given by

x0 = θ1(η)θ3(2z), x1 = −i θ2(η)θ4(2z),

x2 = θ3(η)θ1(2z), x3 = θ4(η)θ2(2z),

sends C/(Z + τZ) bijectively to E ⊂ P3.

Part of the proof is to verify: g1 = −x2
0 + x2

1 + x2
2 + x2

3 = 0 and

θ2
3(η) g2 =

(
θ2

1(η)θ2
4(η)+θ2

2(η)θ2
3(η)

) x2
1

θ2
2(η)

+
(
θ4

1(η)+θ4
3(η)

) x2
2

θ2
3(η)

+
(
θ2

3(ηθ2
4(η)− θ2

1(η)θ2
2(η)

) x2
3

θ2
4(η)

= 0 (use (1) and (2)).
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Parametrizing the elliptic curve

Theorem
The map σ : E → E is given by σ(x(z)) := x(z + η).

Part of the proof consists of checking that the six equations

x0yα − xαy0 − i Jβγ(xβyγ + xγyβ) = 0,
x0yα + xαy0 + i(xβyγ − xγyβ) = 0.

hold for

x0 = θ1(η)θ3(2z), x1 = −i θ2(η)θ4(2z),

x2 = θ3(η)θ1(2z), x3 = θ4(η)θ2(2z),

y0 = θ1(η)θ3(2z + 2η), y1 = −i θ2(η)θ4(2z + 2η),

y2 = θ3(η)θ1(2z + 2η), y3 = θ4(η)θ2(2z + 2η),

with

J12 =
θ2

4(η)θ2
1(η)

θ2
2(η)θ2

3(η)
, J23 =

θ2
2(η)θ2

1(η)

θ2
3(η)θ2

4(η)
, J31 = −

θ2
3(η)θ2

1(η)

θ2
4(η)θ2

2(η)
.
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Parametrizing the elliptic curve

For instance,

x0y3 + x3y0 + i(x1y2 − x1y2) = 0

turns down to

θ2((η)θ3((η)
(
θ1(2z + 2η)θ4(2z)− θ1(2z)θ4(2z + 2η)

)
− θ1((η)θ4((η)

(
θ2(2z + 2η)θ3(2z) + θ2(2z)θ3(2z + 2η)

)
= 0,

which is addition formula (3).
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Connection with representations of Sklyanin algebra

The result in the above proof is equivalent to stating that
(Si f )(z) := xi(z)f (z + η) with the xi as above gives a
representation of S on the space of meromorphic functions.
Indeed,

(Si(Sj f ))(z) = xi(z)xj(z + η)f (z + 2η).

For a representation we need that for each relation
3∑

i,j=0

cijSiSj = 0

we have
3∑

i,j=0

cijxi(z)xj(z + η)f (z + 2η) = 0.

In fact, in my previous notes (part 1), I already sketched the
proof that we then have a representation. There, in formula (4),
omit the term with f (z − η) and take ` = 0. We then still have a
representation on the space of meromorphic functions.
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