Sklyanin algebra, part 2

Tom Koornwinder

Korteweg-de Vries Institute, University of Amsterdam
T.H.Koornwinder@uva.nl

Seminar on

Elliptic integrable systems and hypergeometric functions Nijmegen, 17 December 2012

Last modified: 24 January 2014

Jacobi theta functions

C. G. J. Jacobi (1829),

Fundamenta Nova Theoriae Functionum Ellipticarum

Jacobi

Weierstrass

Whittaker

Watson

[WW]

Jacobi theta functions (cntd.)

Let $q=e^{i \pi \tau} \quad(0<|q|<1, \operatorname{Im} \tau>0)$.
Modified theta function (as in Gasper \& Rahman):

$$
\begin{aligned}
\theta(w ; q) & :=(w, q / w ; q)_{\infty}=\frac{1}{(q ; q)_{\infty}} \sum_{k=-\infty}^{\infty}(-1)^{k} q^{\frac{1}{2} k(k-1)} w^{k} . \\
\theta\left(w^{-1} ; q\right) & =-w^{-1} \theta(w ; q)=\theta(q w ; q) .
\end{aligned}
$$

Jacobi theta functions $\theta_{a}(a=1,2,3,4)$, or ϑ_{a} in [WW].

$$
\begin{aligned}
& \theta_{a}(z)=\theta_{a}(z, q)=\theta_{a}(z \mid \tau)=\vartheta_{a}(\pi z, q) . \\
& \theta_{1}(z):=i q^{1 / 4}\left(q^{2} ; q^{2}\right)_{\infty} e^{-\pi i z} \theta\left(e^{2 \pi i z} ; q^{2}\right), \\
& \theta_{2}(z):=q^{1 / 4}\left(q^{2} ; q^{2}\right)_{\infty} e^{-\pi i z} \theta\left(-e^{2 \pi i z} ; q^{2}\right)=\theta_{1}\left(z+\frac{1}{2}\right), \\
& \theta_{3}(z):=\left(q^{2} ; q^{2}\right)_{\infty} \theta\left(-q e^{2 \pi i z} ; q^{2}\right)=\sum_{k=-\infty}^{\infty} q^{k^{2}} e^{2 \pi i k z}, \\
& \theta_{4}(z):=\left(q^{2} ; q^{2}\right)_{\infty} \theta\left(q e^{2 \pi i z} ; q^{2}\right)=\theta_{3}\left(z+\frac{1}{2}\right) .
\end{aligned}
$$

$\theta_{1}(z)$ is odd; $\theta_{2}(z), \theta_{3}(z), \theta_{4}(z)$ are even.

Fundamental theta identities: Weierstrass' formula

Weierstrass' fundamental theta identity is the three-term identity

$$
\begin{aligned}
& \theta\left(x y, x / y, u v, u / v ; q^{2}\right)-\theta\left(x v, x / v, u y, u / y ; q^{2}\right) \\
&=u y^{-1} \theta\left(y v, y / v, x u, x / u ; q^{2}\right),
\end{aligned}
$$

see Gasper \& Rahman, (11.4.3). It was first obtained by Weierstrass in terms of the function $\sigma(z)$, see references to Weierstrass (1882) and Schwarz (1893) in arXiv:1401.5368, and [WW, p.451, Ex. 5 and p.473, §21.43]. Some authors call it the Riemann identity, but it can't be found in Riemann's works.
For a quick proof divide the left-hand side by the right-hand side and consider the resulting expression as a meromorphic function $F(x)$ of x (the other variables generically fixed).
Observe that the numerator vanishes at all (generically simple) zeros of the denominator. Thus F is entire analytic. It is also bounded (use that $F\left(q^{2} x\right)=F(x)$). By Liouville's theorem F is constant, which is 1 because $F(v)=1$.

Fundamental theta identities: Jacobi's formulas

Jacobi's fundamental formulas [WW, §21.22] involve sums of products of four theta functions of the form

$$
[a]:=\theta_{a}(w) \theta_{a}(x) \theta_{a}(y) \theta_{a}(z), \quad[a]^{\prime}:=\theta_{a}\left(w^{\prime}\right) \theta_{a}\left(x^{\prime}\right) \theta_{a}\left(y^{\prime}\right) \theta_{a}\left(z^{\prime}\right)
$$

where

$$
\begin{array}{rlrl}
2 w^{\prime} & =-w+x+y+z, & & 2 x^{\prime}=w-x+y+z \\
2 y^{\prime} & =w+x-y+z, & 2 z^{\prime}=w+x+y-z .
\end{array}
$$

Then (the first one implies the others):

$$
\begin{array}{ll}
2[1]=[1]^{\prime}+[2]^{\prime}-[3]^{\prime}+[4]^{\prime}, & 2[2]=[1]^{\prime}+[2]^{\prime}+[3]^{\prime}-[4]^{\prime}, \\
2[3]=-[1]^{\prime}+[2]^{\prime}+[3]^{\prime}+[4]^{\prime}, & 2[4]=[1]^{\prime}-[2]^{\prime}+[3]^{\prime}+[4]^{\prime} .
\end{array}
$$

These are easily seen to be equivalent with:
$[1]+[2]=[1]^{\prime}+[2]^{\prime}$,
$[1]+[3]=[2]^{\prime}+[4]^{\prime}$,
$[1]+[4]=[1]^{\prime}+[4]^{\prime}$,
$[1]-[2]=[4]^{\prime}-[3]^{\prime}$,
$[1]-[3]=[1]^{\prime}-[3]^{\prime}$,
$[1]-[4]=[2]^{\prime}-[3]^{\prime}$.

Fundamental theta identities: their equivalence

$$
\begin{aligned}
& W(x, y, u, v ; q):=\theta\left(x y, x / y, u v, u / v ; q^{2}\right)-\theta\left(x v, x / v, u y, u / y ; q^{2}\right) \\
& -u y^{-1} \theta\left(y v, y / v, x u, x / u ; q^{2}\right), \\
& J(x, y, u, v ; q):=2 \theta\left(x y, x / y, u v, u / v ; q^{2}\right)-\theta\left(x v, x / v, u y, u / y ; q^{2}\right) \\
& -\theta\left(-x v,-x / v,-u y,-u / y ; q^{2}\right)-q^{-1} x u \theta\left(q x v, q x / v, q u y, q u / y ; q^{2}\right) \\
& +q^{-1} x u \theta\left(-q x v,-q x / v,-q u y,-q u / y ; q^{2}\right) .
\end{aligned}
$$

Then

$$
\begin{aligned}
& W(x, y, u, v ; q)+W(-x, y,-u, v ; q)-x y W(q x, q y, u, v ; q) \\
& \quad-x y W(-q x, q y,-u, v ; q)=J(x, y, u, v ; q) \\
& J(x, y, u, v ; q)-u y^{-1} J(x, u, y, v ; q)=2 W(x, y, u, v ; q)
\end{aligned}
$$

Hence the two identities $W=0$ and $J=0$ are equivalent.
See also K, arXiv:1401.5368.

Relations between squares of theta functions

$[1]-[4]=[2]^{\prime}-[3]^{\prime}$. Put $(x, y, u, v):=(y, y, z, z)$.
Then $\left(x^{\prime}, y^{\prime}, u^{\prime}, v^{\prime}\right)=(y, y, z, z)$. Hence

$$
\begin{array}{r}
\theta_{1}^{2}(y) \theta_{1}^{2}(z)-\theta_{2}^{2}(y) \theta_{2}^{2}(z)+\theta_{3}^{2}(y) \theta_{3}^{2}(z)-\theta_{4}^{2}(y) \theta_{4}^{2}(z)=0 \\
\theta_{3}^{2}(y) \theta_{1}^{2}(z)+\theta_{4}^{2}(y) \theta_{2}^{2}(z)-\theta_{1}^{2}(y) \theta_{3}^{2}(z)-\theta_{2}^{2}(y) \theta_{4}^{2}(z)=0 \\
\left(\theta_{1}^{4}(y)+\theta_{3}^{4}(y)\right) \theta_{1}^{2}(z)+\left(\theta_{3}^{2}(y) \theta_{4}^{2}(y)-\theta_{1}^{2}(y) \theta_{2}^{2}(y)\right) \theta_{2}^{2}(z) \\
-\left(\theta_{1}^{2}(y) \theta_{4}^{2}(y)+\theta_{2}^{2}(y) \theta_{3}^{2}(y)\right) \theta_{4}^{2}(z)=0 .
\end{array}
$$

By the first equation the functions $\theta_{1}^{2}, \theta_{2}^{2}, \theta_{3}^{2}, \theta_{4}^{2}$ span a linear space of dimension at most 2 , hence equal to 2 . In fact,

$$
\begin{aligned}
\theta_{1}^{2}\left(\frac{1}{2}\right) \theta_{1}^{2}(z) & =-\theta_{3}^{2}\left(\frac{1}{2}\right) \theta_{3}^{2}(z)+\theta_{4}^{2}\left(\frac{1}{2}\right) \theta_{4}^{2}(z) \\
\theta_{2}^{2}(0) \theta_{2}^{2}(z) & =\theta_{3}^{2}(0) \theta_{3}^{2}(z)-\theta_{4}^{2}(0) \theta_{4}^{2}(z)
\end{aligned}
$$

Some theta addition formulas

$$
\begin{aligned}
\theta\left(x y, x / y, u v, u / v ; q^{2}\right)-\theta\left(x v, x / v, u y, u / y ; q^{2}\right)
\end{aligned} \quad \begin{aligned}
& \quad u y^{-1} \theta\left(y v, y / v, x u, x / u ; q^{2}\right),
\end{aligned}
$$

By the substitution $(x, u, v, y) \rightarrow\left(q^{\frac{1}{2}} y, q^{-\frac{1}{2}} z, q^{\frac{1}{2}},-q^{\frac{1}{2}}\right)$ we get $\theta\left(y z, q y / z,-1,-q ; q^{2}\right)=\theta\left(y, q y,-z,-q z ; q^{2}\right)+\theta\left(-y,-q y, z, q z ; q^{2}\right)$. Hence

$$
\begin{aligned}
& \theta_{1}(y+z) \theta_{4}(y-z) \theta_{2}(0) \theta_{3}(0) \\
& \quad=\theta_{1}(y) \theta_{4}(y) \theta_{2}(z) \theta_{3}(z)+\theta_{2}(y) \theta_{3}(y) \theta_{1}(z) \theta_{4}(z), \\
& \theta_{2}(y+z) \theta_{3}(y-z) \theta_{2}(0) \theta_{3}(0) \\
& \quad=\theta_{2}(y) \theta_{3}(y) \theta_{2}(z) \theta_{3}(z)-\theta_{1}(y) \theta_{4}(y) \theta_{1}(z) \theta_{4}(z) .
\end{aligned}
$$

Hence $\theta_{2}(z) \theta_{3}(z)\left(\theta_{1}(y+z) \theta_{4}(y-z)-\theta_{1}(y-z) \theta_{4}(y+z)\right)$
$-\theta_{1}(z) \theta_{4}(z)\left(\theta_{2}(y+z) \theta_{3}(y-z)+\theta_{2}(y-z) \theta_{3}(y+z)\right)=0$.

Variety associated with a set of relations

I follow the approach in S. P. Smith \& J. T. Stafford, Regularity in the four dimensional Sklyanin algebra, Compositio Math. 83 (1992), 259-289, Section 2.

Let X_{0}, \ldots, X_{n} be noncommuting variables.
Associate with a word $X_{i_{1}} \ldots X_{i_{m}}$ a monomial $x_{i_{1}, 1} \ldots x_{i_{m}, m}$ in the commuting variables $x_{0,1}, \ldots, x_{n, 1}, \ldots, x_{0, m}, \ldots, x_{n, m}$.
Associate with a set of homogeneous relations of degree m

$$
\sum_{i_{1}, \ldots, i_{m}} c_{i_{1}, \ldots, i_{m}}^{(j)} X_{i_{1}} \ldots X_{i_{m}}=0 \quad(j=1, \ldots, r)
$$

a subset Γ of $\left(\mathbb{P}^{n}(\mathbb{C})\right)^{m}$ defined by the equations

$$
\sum_{i_{1}, \ldots, i_{m}} c_{i_{1}, \ldots, i_{m}}^{(j)} x_{i_{1}, 1} \ldots x_{i_{m}, m}=0 \quad(j=1, \ldots, r)
$$

Sklyanin algebra

α, β, γ means cyclic permutation of $1,2,3$.

Definition

Let J_{12}, J_{23}, J_{31} be complex constants, not equal to 0 or ± 1, such that

$$
J_{12}+J_{23}+J_{31}+J_{12} J_{23} J_{31}=0 .
$$

The Sklyanin algebra is the algebra \mathcal{S} generated by $S_{0}, S_{1}, S_{2}, S_{3}$ with the six relations

$$
\begin{array}{r}
S_{0} S_{\alpha}-S_{\alpha} S_{0}-i J_{\beta \gamma}\left(S_{\beta} S_{\gamma}+S_{\gamma} S_{\beta}\right)=0, \\
S_{0} S_{\alpha}+S_{\alpha} S_{0}+i\left(S_{\beta} S_{\gamma}-S_{\gamma} S_{\beta}\right)=0 .
\end{array}
$$

The associated subset Γ of $\mathbb{P}^{3} \times \mathbb{P}^{3}:=\mathbb{P}^{3}(\mathbb{C}) \times \mathbb{P}^{3}(\mathbb{C})$ is defined by the six equations

$$
\begin{aligned}
x_{0} y_{\alpha}-x_{\alpha} y_{0}-i J_{\beta \gamma}\left(x_{\beta} y_{\gamma}+x_{\gamma} y_{\beta}\right) & =0 \\
x_{0} y_{\alpha}+x_{\alpha} y_{0}+i\left(x_{\beta} y_{\gamma}-x_{\gamma} y_{\beta}\right) & =0
\end{aligned}
$$

Elliptic curve associated with Sklyanin algebra

Let π_{1}, π_{2} be the projections of $\mathbb{P}^{3} \times \mathbb{P}^{3}$ on the first respectively second factor of the direct product. Put $\Gamma_{i}:=\pi_{i}(\Gamma) \subset \mathbb{P}^{3}$.

Theorem

(1) $\pi_{1}: \Gamma \rightarrow \Gamma_{1}$ and $\pi_{2}: \Gamma \rightarrow \Gamma_{2}$ are bijective maps.
(2) $\Gamma_{1}=E \cup\{(1,0,0,0)\} \cup\{(0,1,0,0)\} \cup\{(0,0,1,0)\}$
$\cup\{(0,0,0,1)\}$, where

$$
\begin{aligned}
E & =\left\{x \in \mathbb{P}^{3} \mid g_{1}=0, g_{2}=0\right\}, \\
g_{1} & =-x_{0}^{2}+x_{1}^{2}+x_{2}^{2}+x_{3}^{2}, \\
g_{2} & =\left(1+J_{12}\right) x_{1}^{2}+\left(1+J_{12} J_{23}\right) x_{2}^{2}+\left(1-J_{23}\right) x_{3}^{2}
\end{aligned}
$$

(3) $\Gamma_{1}=\Gamma_{2}$ and thus $\Gamma_{1} \rightarrow \Gamma \rightarrow \Gamma_{2}$ can be considered as a bijective map $\sigma: \Gamma_{1} \rightarrow \Gamma_{2}$. It fixes the four points and leaves E invariant.
4. E is a smooth elliptic curve.

Elliptic curve associated with Sklyanin algebra

Part of the proof of the above Theorem involves writing the six equations

$$
\begin{aligned}
x_{0} y_{\alpha}-x_{\alpha} y_{0}-i J_{\beta \gamma}\left(x_{\beta} y_{\gamma}+x_{\gamma} y_{\beta}\right) & =0 \\
x_{0} y_{\alpha}+x_{\alpha} y_{0}+i\left(x_{\beta} y_{\gamma}-x_{\gamma} y_{\beta}\right) & =0
\end{aligned}
$$

as $A y=0$, where A is a 6×4 matrix with entries wich are homogeneous of degree 1 in $x_{0}, x_{1}, x_{2}, x_{3}$. Then compute all 4×4 minors of A and observe that they are all equal to polynomials which are in the ideal generated by g_{1} and g_{2}. Of course, the computation can be done in Mathematica or Maple.

Parametrizing the elliptic curve

Fix $\eta \in \mathbb{C}$ such that η is not of order 4 in $\mathbb{C} /(\mathbb{Z}+\tau \mathbb{Z})$. Write the structure constants as

$$
J_{12}=\frac{\theta_{4}^{2}(\eta) \theta_{1}^{2}(\eta)}{\theta_{2}^{2}(\eta) \theta_{3}^{2}(\eta)}, \quad J_{23}=\frac{\theta_{2}^{2}(\eta) \theta_{1}^{2}(\eta)}{\theta_{3}^{2}(\eta) \theta_{4}^{2}(\eta)}, \quad J_{31}=-\frac{\theta_{3}^{2}(\eta) \theta_{1}^{2}(\eta)}{\theta_{4}^{2}(\eta) \theta_{2}^{2}(\eta)} .
$$

Theorem

The map $z \mapsto\left(x_{0}, x_{1}, x_{2}, x_{3}\right)$ given by

$$
\begin{array}{ll}
x_{0}=\theta_{1}(\eta) \theta_{3}(2 z), & x_{1}=-i \theta_{2}(\eta) \theta_{4}(2 z), \\
x_{2}=\theta_{3}(\eta) \theta_{1}(2 z), & x_{3}=\theta_{4}(\eta) \theta_{2}(2 z),
\end{array}
$$

sends $\mathbb{C} /(\mathbb{Z}+\tau \mathbb{Z})$ bijectively to $E \subset \mathbb{P}^{3}$.
Part of the proof is to verify: $g_{1}=-x_{0}^{2}+x_{1}^{2}+x_{2}^{2}+x_{3}^{2}=0$ and

$$
\begin{aligned}
& \theta_{3}^{2}(\eta) g_{2}=\left(\theta_{1}^{2}(\eta) \theta_{4}^{2}(\eta)+\theta_{2}^{2}(\eta) \theta_{3}^{2}(\eta)\right) \frac{x_{1}^{2}}{\theta_{2}^{2}(\eta)}+\left(\theta_{1}^{4}(\eta)+\theta_{3}^{4}(\eta)\right) \frac{x_{2}^{2}}{\theta_{3}^{2}(\eta)} \\
& \quad+\left(\theta_{3}^{2}\left(\eta \theta_{4}^{2}(\eta)-\theta_{1}^{2}(\eta) \theta_{2}^{2}(\eta)\right) \frac{x_{3}^{2}}{\theta_{4}^{2}(\eta)}=0 \quad\right. \text { (use (1) and (2)). }
\end{aligned}
$$

Parametrizing the elliptic curve

Theorem

The map $\sigma: E \rightarrow E$ is given by $\sigma(x(z)):=x(z+\eta)$.
Part of the proof consists of checking that the six equations

$$
\begin{array}{r}
x_{0} y_{\alpha}-x_{\alpha} y_{0}-i J_{\beta \gamma}\left(x_{\beta} y_{\gamma}+x_{\gamma} y_{\beta}\right)=0 \\
x_{0} y_{\alpha}+x_{\alpha} y_{0}+i\left(x_{\beta} y_{\gamma}-x_{\gamma} y_{\beta}\right)=0
\end{array}
$$

hold for

$$
\begin{array}{ll}
x_{0}=\theta_{1}(\eta) \theta_{3}(2 z), & x_{1}=-i \theta_{2}(\eta) \theta_{4}(2 z), \\
x_{2}=\theta_{3}(\eta) \theta_{1}(2 z), & x_{3}=\theta_{4}(\eta) \theta_{2}(2 z), \\
y_{0}=\theta_{1}(\eta) \theta_{3}(2 z+2 \eta), & y_{1}=-i \theta_{2}(\eta) \theta_{4}(2 z+2 \eta), \\
y_{2}=\theta_{3}(\eta) \theta_{1}(2 z+2 \eta), & y_{3}=\theta_{4}(\eta) \theta_{2}(2 z+2 \eta),
\end{array}
$$

with

$$
J_{12}=\frac{\theta_{4}^{2}(\eta) \theta_{1}^{2}(\eta)}{\theta_{2}^{2}(\eta) \theta_{3}^{2}(\eta)}, \quad J_{23}=\frac{\theta_{2}^{2}(\eta) \theta_{1}^{2}(\eta)}{\theta_{3}^{2}(\eta) \theta_{4}^{2}(\eta)}, \quad J_{31}=-\frac{\theta_{3}^{2}(\eta) \theta_{1}^{2}(\eta)}{\theta_{4}^{2}(\eta) \theta_{2}^{2}(\eta)}
$$

Parametrizing the elliptic curve

For instance,

$$
x_{0} y_{3}+x_{3} y_{0}+i\left(x_{1} y_{2}-x_{1} y_{2}\right)=0
$$

turns down to

$$
\begin{aligned}
& \theta_{2}\left((\eta) \theta _ { 3 } \left((\eta)\left(\theta_{1}(2 z+2 \eta) \theta_{4}(2 z)-\theta_{1}(2 z) \theta_{4}(2 z+2 \eta)\right)\right.\right. \\
& \quad-\theta_{1}\left((\eta) \theta _ { 4 } \left((\eta)\left(\theta_{2}(2 z+2 \eta) \theta_{3}(2 z)+\theta_{2}(2 z) \theta_{3}(2 z+2 \eta)\right)=0\right.\right.
\end{aligned}
$$

which is addition formula (3).

Connection with representations of Sklyanin algebra

The result in the above proof is equivalent to stating that $\left(S_{i} f\right)(z):=x_{i}(z) f(z+\eta)$ with the x_{i} as above gives a representation of \mathcal{S} on the space of meromorphic functions. Indeed,

$$
\left(S_{i}\left(S_{j} f\right)\right)(z)=x_{i}(z) x_{j}(z+\eta) f(z+2 \eta)
$$

For a representation we need that for each relation

$$
\sum_{i, j=0}^{3} c_{i j} S_{i} S_{j}=0
$$

we have

$$
\sum_{i, j=0}^{3} c_{i j} x_{i}(z) x_{j}(z+\eta) f(z+2 \eta)=0
$$

In fact, in my previous notes (part 1), I already sketched the proof that we then have a representation. There, in formula (4), omit the term with $f(z-\eta)$ and take $\ell=0$. We then still have a representation on the space of meromorphic functions.

