Sklyanin algebra

Tom Koornwinder

Korteweg-de Vries Institute, University of Amsterdam
T.H.Koornwinder@uva.nl

Seminar on

Elliptic integrable systems and hypergeometric functions
Nijmegen, 12 November 2012
Last modified: 21 December 2012

Evgeni Sklyanin

E. K. Sklyanin,

Some algebraic structures connected with the YangBaxter equation, Functional Anal. Appl. 16 (1982), 263-270.

Idem, Representations of a quantum algebra,
Functional Anal. Appl. 17 (1983), 273-284.

Sklyanin algebra

Put $\quad[A, B]:=A B-B A, \quad\{A, B\}:=A B+B A$.
α, β, γ means cyclic permutation of $1,2,3$.

Definition

Let J_{12}, J_{23}, J_{31} be complex constants such that

$$
\begin{equation*}
J_{12}+J_{23}+J_{31}+J_{12} J_{23} J_{31}=0 \tag{1}
\end{equation*}
$$

The Sklyanin algebra is the algebra \mathcal{S} generated by $S_{0}, S_{1}, S_{2}, S_{3}$ with the six relations

$$
\begin{align*}
& {\left[S_{0}, S_{\alpha}\right]=i J_{\beta \gamma}\left\{S_{\beta}, S_{\gamma}\right\},} \\
& {\left[S_{\alpha}, S_{\beta}\right]=i\left\{S_{0}, S_{\gamma}\right\} .} \tag{2}
\end{align*}
$$

If $J_{1}, J_{2}, J_{3} \neq 0$ and $J_{\alpha \beta}=\left(J_{\beta}-J_{\alpha}\right) / J_{\gamma}$ then (1) holds.
If all $J_{\alpha \beta}=0$ then $\mathcal{S} /\left\langle S_{0}-1\right\rangle \simeq \mathcal{U}(\operatorname{sl}(2, \mathbb{C}))$.

Structure constants

Let $J_{\alpha \beta}$ be complex constants. Finding J_{1}, J_{2}, J_{3} such that

$$
\begin{equation*}
J_{\alpha \beta}=\left(J_{\beta}-J_{\alpha}\right) / J_{\gamma} \tag{3}
\end{equation*}
$$

means solving the linear system

$$
\left(\begin{array}{ccc}
1 & -1 & J_{12} \\
J_{23} & 1 & -1 \\
1 & -J_{31} & -1
\end{array}\right)\left(\begin{array}{l}
J_{1} \\
J_{2} \\
J_{3}
\end{array}\right)=0
$$

The matrix has determinant $-\left(J_{12}+J_{23}+J_{31}+J_{12} J_{23} J_{31}\right)$. So (3) has nonzero solutions iff (1) holds.
If (1) holds then the matrix has rank 2 , so the solutions of (3) are unique up to a constant factor.
There are degeneracies if $J_{\gamma}=0$ for some γ or, equivalently, if $J_{\beta \gamma}=-1, J_{\gamma \alpha}=1$ for some γ.
$J_{12}=J_{23}=J_{31}=0$ iff $J_{1}=J_{2}=J_{3}$ (the sl(2) limit case).

Casimir operators

Theorem

The elements

$$
K_{0}:=S_{0}^{2}+S_{1}^{2}+S_{2}^{2}+S_{3}^{2}, \quad K_{2}:=J_{1} S_{1}^{2}+J_{2} S_{2}^{2}+J_{3} S_{3}^{2}
$$

are in the center of \mathcal{S}.
It is sufficient to prove that K_{0} and K_{2} commute wirh S_{0} and S_{1}. Only the proof that $\left[K_{0}, S_{1}\right]=0$ is straightforward.
For proving the other parts rewrite relations (2) such that an algorithmic proof may be possible:

$$
\begin{aligned}
& S_{\alpha} S_{0}=\frac{1-J_{\beta \gamma}}{1+J_{\beta \gamma}} S_{0} S_{\alpha}-\frac{2 i J_{\beta \gamma}}{1+J_{\beta \gamma}} S_{\beta} S_{\gamma} \\
& S_{\gamma} S_{\beta}=\frac{1-J_{\beta \gamma}}{1+J_{\beta \gamma}} S_{\beta} S_{\gamma}-\frac{2 i}{1+J_{\beta \gamma}} S_{0} S_{\alpha}
\end{aligned}
$$

Then use the Mathematica package NCAlgebra 4.0.4, see http://www.math.ucsd.edu/~ncalg/.

Casimir operators (cntd.)

Then one can show by symbolic computation that K_{0} and K_{2} commute with the S_{α}. However, $\left[K_{0}, S_{0}\right]$ and $\left[K_{2}, S_{0}\right]$ reduce to cubic expressions which are not yet zero.
Alternatively, use reductions of $S_{\alpha} S_{0}, S_{2} S_{1}, S_{3} S_{1}, S_{3} S_{2}$ to $S_{0} S_{\alpha}, S_{1} S_{2}, S_{1} S_{3}, S_{2} S_{3}$. (Note that this breaks the symmetry.) Then reduction of $\left[K_{0}, S_{3}\right],\left[K_{2}, S_{3}\right],\left[K_{0}, S_{0}\right],\left[K_{2}, S_{0}\right]$ runs forever. It turns out that this is already the case for reduction of $S_{1} S_{0} S_{1}$ and $S_{1} S_{0} S_{2}$ because, after a few reduction steps, one of the terms is a constant multiple of the starting expression. Since the other terms are of the form $S_{i} S_{j} S_{k}(i \leq j \leq k)$, we can express $S_{1} S_{0} S_{1}$ and $S_{1} S_{0} S_{2}$ in terms of them and add these to the relations. Then, with the aid of these two added relations, every cubic expression can be reduced to a linear combination of $S_{i} S_{j} S_{k}(i \leq j \leq k)$. Now indeed all commuting properties of K_{0} and K_{2} can be proved symbolically.

Casimir operators (cntd.)

In the sl(2) limit case $J_{1}=J_{2}=J_{3}=1$ we have $K_{0}=S_{0}^{2}+S_{1}^{2}+S_{2}^{2}+S_{3}^{2}, K_{2}=S_{1}^{2}+S_{2}^{2}+S_{3}^{2}$ while S_{0} is in the center, so K_{0} and K_{2} are then essentially the same.

Sklyanin (1982) asks whether the space of homogeneous polynomials of degree p in the generators has the same dimension as the homogeneous polynomials of degree p in four commuting variables (clear already for $p=2$ and $p=3$). For $J_{1}, J_{2}, J_{3} \neq 0$ this was answered positively by S. P. Smith \& J. T. Stafford (Compositio Math. 83 (1992), 259-289).
Sklyanin (1982) also asks whether the center of \mathcal{S} is generated by K_{0}, K_{2}. This turns out to be true in the generic case, see Levasseur \& Smith (Bull. Soc. Math. France 121 (1993), 35-90, Proposition 6.12).

Jacobi theta functions

C. G. J. Jacobi (1829),

Fundamenta Nova Theoriae Functionum Ellipticarum

Jacobi

E. T. Whittaker G. N. Watson

[WW]

Jacobi theta functions (cntd.)

Let $q=e^{i \pi \tau} \quad(0<|q|<1, \operatorname{Im} \tau>0)$.
Modified theta function (as in Gasper \& Rahman):

$$
\theta(w ; q):=(w, q / w ; q)_{\infty}=\frac{1}{(q ; q)_{\infty}} \sum_{k=-\infty}^{\infty}(-1)^{k} q^{\frac{1}{2} k(k-1)} w^{k}
$$

Jacobi theta functions (θ_{a} as in Tannery \& Molk, HTF and Sklyanin; ϑ_{a} as in Jacobi and in Whittaker \& Watson):

$$
\begin{aligned}
& \theta_{a}(z)=\theta_{a}(z, q)=\theta_{a}(z \mid \tau)=\vartheta_{a}(\pi z, q) \quad(a=1,2,3,4): \\
& \theta_{1}(z):=i q^{1 / 4}\left(q^{2} ; q^{2}\right)_{\infty} e^{-\pi i z} \theta\left(e^{2 \pi i z} ; q^{2}\right) \\
& \theta_{2}(z):=q^{1 / 4}\left(q^{2} ; q^{2}\right)_{\infty} e^{-\pi i z} \theta\left(-e^{2 \pi i z} ; q^{2}\right)=\theta_{1}\left(z+\frac{1}{2}\right), \\
& \theta_{3}(z):=\left(q^{2} ; q^{2}\right)_{\infty} \theta\left(-q e^{2 \pi i z} ; q^{2}\right)=\sum_{k=-\infty}^{\infty} q^{k^{2}} e^{2 \pi i k z} \\
& \theta_{4}(z):=\left(q^{2} ; q^{2}\right)_{\infty} \theta\left(q e^{2 \pi i z} ; q^{2}\right)=\theta_{3}\left(z+\frac{1}{2}\right)
\end{aligned}
$$

$\theta_{1}(z)$ is odd; $\theta_{2}(z), \theta_{3}(z), \theta_{4}(z)$ are even. $\quad \theta_{a}:=\theta_{a}(0)$.

Structure constants reparametrized

Fix η and τ. Put $J_{\alpha}=\frac{\theta_{\alpha+1}(2 \eta) \theta_{\alpha+1}}{\theta_{\alpha+1}^{2}(\eta)}(\alpha=1,2,3)$. Then

$$
J_{12}=\frac{\theta_{4}^{2}(\eta) \theta_{1}^{2}(\eta)}{\theta_{2}^{2}(\eta) \theta_{3}^{2}(\eta)}, \quad J_{23}=\frac{\theta_{2}^{2}(\eta) \theta_{1}^{2}(\eta)}{\theta_{3}^{2}(\eta) \theta_{4}^{2}(\eta)}, \quad J_{31}=-\frac{\theta_{3}^{2}(\eta) \theta_{1}^{2}(\eta)}{\theta_{4}^{2}(\eta) \theta_{2}^{2}(\eta)} .
$$

For the proof compute $J_{\alpha \beta}=\left(J_{\beta}-J_{\alpha}\right) / J_{\gamma}$ by expressing $\theta_{2}(2 \eta), \theta_{3}(2 \eta), \theta_{4}(2 \eta)$ in terms of the $\theta_{a}^{2}(\eta)$ [WW, p.488, Ex. 4]. Note that

$$
\begin{aligned}
& J_{12}+J_{23}+J_{31}+J_{12} J_{23} J_{31} \\
= & \frac{\theta_{1}^{2}(\eta)}{\theta_{2}^{2}(\eta) \theta_{3}^{2}(\eta) \theta_{4}^{2}(\eta)}\left(\theta_{4}^{4}(\eta)+\theta_{2}^{4}(\eta)-\theta_{3}^{4}(\eta)-\theta_{1}^{4}(\eta)\right)=0 \text { (necessarily) }
\end{aligned}
$$

This last identity is also in [WW, p.488, Ex. 4].

Representation on meromorphic functions

Fix ℓ. For $a=1,2,3,4$ put $i_{a}=i$ if $a=3$ and $i_{a}=1$ otherwise. For $f(z)$ meromorphic put

$$
\begin{align*}
\left(S_{a-1} f\right)(z):= & \frac{i_{a} \theta_{a}(\eta)}{\theta_{1}(2 z)}\left(\theta_{a}(2 z-2 \ell \eta) f(z+\eta)\right. \\
& \left.-\theta_{a}(-2 z-2 \ell \eta) f(z-\eta)\right) \quad(a=1,2,3,4) \tag{4}
\end{align*}
$$

Theorem

Formula (4) defines a representation of the Sklyanin algebra \mathcal{S} on the space of meromorphic functions.

For the proof compute the terms of $f(z+2 \eta), f(z), f(z-2 \eta)$ in $\left(i_{a} i_{b}\right)^{-1}\left(S_{a-1} S_{b-1} f\right)(z)$.

Representation on meromorphic functions (Proof)

$$
\begin{aligned}
& \left(i_{a} i_{b}\right)^{-1}\left(S_{a-1} S_{b-1} f\right)(z)=\frac{\theta_{a}(\eta) \theta_{b}(\eta)}{\theta_{1}(2 z)} \\
& \quad \times\left(\frac{\theta_{a}(2 z-2 \ell \eta)}{\theta_{1}(2 z+2 \eta)} \theta_{b}(2 z-2(\ell-1) \eta) f(z+2 \eta)\right. \\
& \quad-\frac{\theta_{a}(2 z-2 \ell \eta)}{\theta_{1}(2 z+2 \eta)} \theta_{b}(-2 z-2(\ell+1) \eta) f(z) \\
& \quad-\frac{\theta_{a}(-2 z-2 \ell \eta)}{\theta_{1}(2 z-2 \eta)} \theta_{b}(2 z-2(\ell+1) \eta) f(z) \\
& \left.\quad+\frac{\theta_{a}(-2 z-2 \ell \eta)}{\theta_{1}(2 z-2 \eta)} \theta_{b}(-2 z-2(\ell-1) \eta) f(z-2 \eta)\right)
\end{aligned}
$$

Now compute the coefficients of $f(z+2 \eta), f(z), f(z-2 \eta)$ in, for instance, $\left(\left(S_{0} S_{3}+S_{3} S_{0}+i^{-1} S_{2} S_{1}-i^{-1} S_{1} S_{2}\right) f\right)(z)$. They turn out to vanish by combining formulas [WW, p.488, Ex.3].

Reps on meromorphic functions (Proof, cntd.)

For instance, derive from

$$
\begin{align*}
& \theta_{1}(y+z) \theta_{4}(y-z) \theta_{2} \theta_{3} \\
& \quad=\theta_{1}(y) \theta_{4}(y) \theta_{2}(z) \theta_{3}(z)+\theta_{2}(y) \theta_{3}(y) \theta_{1}(z) \theta_{4}(z) \tag{5}\\
& \theta_{2}(y+z)
\end{aligned} \begin{aligned}
3 & (y-z) \theta_{2} \theta_{3} \\
& =\theta_{2}(y) \theta_{3}(y) \theta_{2}(z) \theta_{3}(z)-\theta_{1}(y) \theta_{4}(y) \theta_{1}(z) \theta_{4}(z) \tag{6}
\end{align*}
$$

that

$$
\begin{aligned}
& \theta_{1}(z) \theta_{4}(z)\left(\theta_{1}(y+z) \theta_{4}(y-z)+\theta_{1}(y-z) \theta_{4}(y+z)\right) \\
& \quad+\theta_{2}(z) \theta_{3}(z)\left(\theta_{2}(y+z) \theta_{3}(y-z)-\theta_{2}(y-z) \theta_{3}(y+z)\right)=0, \\
& \theta_{2}(z) \theta_{3}(z)\left(\theta_{1}(y+z) \theta_{4}(y-z)-\theta_{1}(y-z) \theta_{4}(y+z)\right) \\
& \quad-\theta_{1}(z) \theta_{4}(z)\left(\theta_{2}(y+z) \theta_{3}(y-z)+\theta_{2}(y-z) \theta_{3}(y+z)\right)=0 .
\end{aligned}
$$

Theta addition formulas

The master addition formula is the three-term identity

$$
\begin{align*}
\theta\left(x y, x / y, u v, u / v ; q^{2}\right)- & \left(x v, x / v, u y, u / y ; q^{2}\right) \\
& =u y^{-1} \theta\left(y v, y / v, x u, x / u ; q^{2}\right) \tag{7}
\end{align*}
$$

see Gasper \& Rahman, (11.4.3). Curiously enough, [WW] only gives (7) in disguised form for the function $\sigma(z)$, see [WW, p.451, Ex.5; p.473, §21.43]. It is usually ascribed to Riemann, but [WW] ascribes it to Weierstrass.
Many addition formulas in [WW] are special cases of (7). For instance, (5) (on the previous page) can be rewritten as
$\theta\left(y z, q y / z,-1,-q ; q^{2}\right)=\theta\left(y, q y,-z,-q z ; q^{2}\right)+\theta\left(-y,-q y, z, q z ; q^{2}\right)$
and then follows from (7) by the substitution $(x, u, v, y) \rightarrow$ $\left(q^{\frac{1}{2}} y, q^{-\frac{1}{2}} z, q^{\frac{1}{2}},-q^{\frac{1}{2}}\right)$. Also use that $\theta(w ; q)=-w \theta(q w ; q)$.

Reps on meromorphic functions (Casimir operators)

Theorem

In the representation of \mathcal{S} on the space of meromorphic functions the Casimir operators act as

$$
K_{0}=4 \theta_{1}^{2}((2 \ell+1) \eta), \quad K_{2}=4 \theta_{1}((2 \ell+2) \eta) \theta_{1}(2 \ell \eta)
$$

For the proof use [WW, p.468, (iv)]:

$$
\sum_{a=1}^{4} i_{a}^{2} \theta_{a}\left(z_{1}\right) \theta_{a}\left(z_{2}\right) \theta_{a}\left(z_{3}\right) \theta_{a}\left(z_{4}\right)=2 \theta_{1}\left(z_{1}^{\prime}\right) \theta_{1}\left(z_{2}^{\prime}\right) \theta_{1}\left(z_{3}^{\prime}\right) \theta_{1}\left(z_{4}^{\prime}\right)
$$

where $z_{a}^{\prime}:=\frac{1}{2}\left(z_{1}+z_{2}+z_{3}+z_{4}\right)-z_{a}$.

Finite dimensional subrepresentation

From $\theta(q w ; q)=-w^{-1} \theta(w ; q)$ we see

$$
\begin{aligned}
& \theta_{a}(z+2 \tau)=e^{-4 \pi i(z+\tau)} \theta_{a}(z), \\
& \theta_{a}(z+k \tau)=e^{-4 \pi i k z} \theta_{a}(z-k \tau) \quad(k \in \mathbb{Z}) .
\end{aligned}
$$

Fix $\ell \in \frac{1}{2} \mathbb{Z}_{\geq 0}$. Let V_{ℓ} be the space of holomorphic functions f such that $\bar{f}(z+1)=f(z)=f(-z)$ and
$f(z+\tau)=e^{-4 \pi i \ell(2 z+\tau)} f(z)$, hence $f\left(z+\frac{1}{2} k \tau\right)=e^{-8 \pi i \ell k z} f\left(z-\frac{1}{2} k \tau\right)$
for $k \in \mathbb{Z}$. If $f \in V_{\ell}$ then $S_{a-1} f \in V_{\ell}$. Indeed, from

$$
\left(S_{a-1} f\right)(z)=\frac{i_{a} \theta_{a}(\eta)}{\theta_{1}(2 z)}\left(\theta_{a}(2 z-2 \ell \eta) f(z+\eta)-\theta_{a}(-2 z-2 \ell \eta) f(z-\eta)\right)
$$

verify the three symmetries and check that the expression in brackets vanishes at the zeros $\frac{1}{2} k \tau(k \in \mathbb{Z})$ of $\theta_{1}(2 z)$.

Finite dimensional subrepresentation (cntd.)

Theorem

The space V_{ℓ} has dimension $2 \ell+1$.
For the proof note that a holomorphic function f is in V_{ℓ} iff $f(z)=\sum_{j=-\infty}^{\infty} c_{j} e^{2 \pi i j z}$ with $c_{j}=c_{-j}$ and $c_{j+4 \ell}=e^{2 \pi i(j+2 \ell) \tau} c_{j}$. Hence V_{ℓ} has the $2 \ell+1$ functions $f_{j}=g_{j}+g_{-j}(j=0, \ldots, 2 \ell)$ as a basis, where

$$
g_{j}(z):=\sum_{k=0}^{\infty} c_{j+4 k \ell} e^{(2 \pi i(j+4 k \ell) z}
$$

Since $c_{j+4 k \ell}=c_{j} e^{2 \pi i\left(k j+2 k^{2} \ell \tau\right)}$, we can take

$$
\begin{aligned}
g_{j}(z)= & e^{2 \pi i j z} \sum_{k=-\infty}^{\infty} e^{4 \pi i k^{2} \ell \tau} e^{2 \pi i k(4 \ell z+j \tau)}=e^{2 \pi i j z} \theta_{3}(4 \ell z+j \tau \mid 4 \ell \tau) \\
& =\left(q^{2} ; q^{2}\right)_{\infty} e^{2 \pi i j z} \theta\left(-q^{4(\ell+j)} e^{8 \pi i \ell z} ; q^{8 \ell}\right)
\end{aligned}
$$

Finite dimensional subrepresentation (cntd.)

As observed in Rosengren, Ramanujan J. 13 (2007), 131-166, Remark 5.2, any function of the form

$$
f(z)=\prod_{j=1}^{2 \ell} \theta\left(a_{j} e^{2 \pi i z}, a_{j} e^{-2 \pi i z} ; q^{2}\right)
$$

belongs to V_{ℓ}. Moreover, for generic a, b, p the functions
$F_{k}(z):=\prod_{j=0}^{k-1} \theta\left(a p^{j} e^{2 \pi i z}, a p^{j} e^{-2 \pi i z} ; q^{2}\right) \prod_{j=0}^{2 \ell-k-1} \theta\left(b p^{j} e^{2 \pi i z}, b p^{j} e^{-2 \pi i z} ; q^{2}\right)$
$(k=0,1, \ldots, 2 \ell)$ form a basis of V_{ℓ}.

