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Some books on orthogonal polynomials

• G. Szegő, Orthogonal polynomials, Amer. Math.
Soc., Fourth ed., 1975.

• T. S. Chihara, An introduction to orthogo-
nal polynomials, Gordon and Breach, 1978;
reprinted, Dover, 2011.

• G. E. Andrews, R. Askey and R. Roy, Special Functions,
Cambridge University Press, 1999.
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• R. Koekoek, P. A. Lesky and R. F. Swarttouw, Hypergeometric
orthogonal polynomials and their q-analogues, Springer-Verlag,
2010; in particular Chapters 9, 14, based on the
Koekoek-Swarttouw report
http://aw.twi.tudelft.nl/~koekoek/askey/

• NIST Handbook of Mathematical
Functions,
Cambridge University Press, 2010;
http://dlmf.nist.gov ;
in particular Ch. 18 on Orthogonal
polynomials.
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Definition of orthogonal polynomials

P is the space of all polynomials in one variable with real
coefficients. This is a real vector space.
Assume a (positive definite) inner product 〈f ,g〉 (f ,g ∈ P) on P.
Orthogonalize the sequence 1, x , x2, . . . with respect to the
inner product (Gram-Schmidt), resulting into p0,p1,p2, . . . .
So p0(x) = 1 and, if p0(x),p1(x), . . . ,pn−1(x) are already
produced and mutually orthogonal, then

pn(x) := xn −
n−1∑
k=0

〈xn,pk 〉
〈pk ,pk 〉

pk (x).

Indeed, pn(x) is a linear combination of 1, x , x2, . . . , xn, and

〈pn,pj〉 = 〈xn,pj〉 −
n−1∑
k=0

〈xn,pk 〉
〈pk ,pk 〉

〈pk ,pj〉

= 〈xn,pj〉 −
〈xn,pj〉
〈pj ,pj〉

〈pj ,pj〉 = 0 (j = 0,1, . . . ,n − 1).
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Definition of orthogonal polynomials (cntd.)

Constants hn and kn:

〈pn,pn〉 = hn, pn(x) = knxn + polynomial of lower degree .

The pn are unique up to a nonzero constant real factor. We may
take them, for instance, orthonormal (hn = 1, if also kn > 0 then
unique) or monic (kn = 1).
In general we want

〈x f ,g〉 = 〈f , x g〉.

This is true, for instance, if for a weight function w(x) ≥ 0:

〈f ,g〉 :=

∫ b

a
f (x) g(x) w(x) dx ,

or if for weights wj > 0:

〈f ,g〉 :=
∞∑

j=0

f (xj) g(xj) wj .
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Intermezzo about measures

The cases with the weight function and with the weights are
special cases of a (positive) measure µ on R:
dµ(x) = w(x) dx on (a,b) and = 0 outside (a,b);
resp. µ =

∑∞
j=1 wj δxj , where δxj is a unit mass at xj .

A measure µ on R can also be thought as a non-decreasing

function µ on R. Then
∫
R

f (x) dµ(x) = lim
M→∞

∫ M

−M
f (x) dµ(x)

can be considered as a Riemann-Stieltjes integral.
µ has in x a mass point of mass c > 0 if µ has a jump c at x ,
i.e., if lim

δ↓0

(
µ(x + δ)− µ(x − δ)

)
= c > 0.

The number of mass points is countable.
More generally, the support of µ consists of all x ∈ R such that
µ(x + δ)− µ(x − δ) > 0 for all δ > 0.
This set supp(µ) is always closed.
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Definition of orthogonal polynomials (cntd.)

In the most general case let µ be a (positive) measure on R
(of infinite support, i.e., not µ =

∑N
j=1 wj δxj )

such that for all n = 0,1,2, . . .∫
R
|xn|dµ(x) <∞,

and take
〈f ,g〉 :=

∫
R

f (x) g(x) dµ(x).

A system {p0,p1,p2, . . .} obtained by orthogonalization of
{1, x , x2, . . .} with respect to such an inner product is called a
system of orthogonal polynomials (OP’s) with respect to the
orthogonality measure µ. Typical cases are:

(weight function) dµ(x) = w(x) dx on an interval I.
(weights) µ =

∑∞
j=1 wj δxj .
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First examples of orthogonal polynomials

1 Legendre polynomials Pn(x), orthogonal on [−1,1] with
respect to the weight function 1. Normalized by Pn(1) = 1.

2 Hermite polynomials Hn(x), orthogonal on (−∞,∞) with
respect to the weight function e−x2

. Normalized by kn = 2n.
3 Charlier polynomials cn(x ,a), orthogonal on the points

x = 0,1,2, . . . with respect to the weights ax/x! (a > 0).
Normalized by cn(0; a) = 1.

The hn can be computed:

1
2

∫ 1

−1
Pm(x) Pn(x) dx =

1
2n + 1

δm,n ,

π−
1
2

∫ ∞
−∞

Hm(x) Hn(x) e−x2
dx = 2nn! δm,n ,

e−a
∞∑

x=0

cm(x ,a) cn(x ,a)
ax

x!
= a−nn! δm,n .
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Three-term recurrence relation

Theorem
Orthogonal polynomials pn(x) satisfy

xpn(x) = anpn+1(x) + bnpn(x) + cnpn−1(x) (n > 0),

xp0(x) = a0p1(x) + b0p0(x)

with an,bn, cn real constants and ancn+1 > 0. Also

an =
kn

kn+1
,

cn+1

hn+1
=

an

hn
.

Indeed, xpn(x) =
∑n+1

k=0 αk pk (x), and if k ≤ n − 2 then

〈xpn,pk 〉 = 〈pn, xpk 〉 = 0, hence αk = 0.

Furthermore,

cn+1 =
〈xpn+1,pn〉
〈pn,pn〉

=
〈xpn,pn+1〉

hn
=
〈xpn,pn+1〉
〈pn+1,pn+1〉

hn+1

hn
= an

hn+1

hn
.

Hence ancn+1 = a2
n hn+1/hn > 0. Hence cn+1/hn+1 = an/hn.
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Three-term recurrence relation (cntd.)

Theorem (Favard)

If polynomials pn(x) of degree n (n = 0,1,2, . . .) satisfy

xpn(x) = anpn+1(x) + bnpn(x) + cnpn−1(x) (n > 0),

xp0(x) = a0p1(x) + b0p0(x)

with an,bn, cn real constants and ancn+1 > 0 then
there exists a (positive) measure µ on R such that
the polynomials pn(x) are orthogonal with respect
to µ.

Remarks
1 The measure µ may not be unique (up to constant factor).
2 If µ unique then the polynomials are dense in L2(µ).
3 If there is a µ with bounded support then µ is unique.
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Favard

http://fr.wikipedia.org/wiki/Jean_Favard

Il a depuis longtemps une belle notoriété dans le monde
mathématique lorsqu’il est mobilisé en septembre 1939 comme
officier d’artillerie. Fait prisonnier en juin 1940, il est envoyé à
l’oflag XVIII, à Lienz (Autriche), où il crée une Faculté des
Sciences dont il est le doyen. Des mathématiciens autrichiens
veulent le faire libérer s’il consent à enseigner à Vienne; il
refuse. Dès 1941, il a été nommé professeur à la faculté des
Sciences de Paris, mais il ne prend ses fonctions à la Sorbonne
qu’à sa libération en 1945.
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Three-term recurrence relation (cntd.)

For orthonormal polynomials:

xpn(x) = anpn+1(x) + bnpn(x) + an−1pn−1(x) (n > 0),

xp0(x) = a0p1(x) + b0p0(x).

For monic orthogonal polynomials:

xpn(x) = pn+1(x) + bnpn(x) + cnpn−1(x) (n > 0),

xp0(x) = p1(x) + b0p0(x)

with cn = hn/hn−1 > 0.
If the orthogonality measure is even (µ(E) = µ(−E)) then

pn(−x) = (−1)npn(x),

hence bn = 0, so xpn(x) = anpn+1(x) + cnpn−1(x).
Examples: Legendre and Hermite polynomials.
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Moment functional

The recurrence relation (with ancn+1 > 0) determines the
orthogonal polynomials pn(x) (up to constant factor because of
the choice of the constant p0).
The pn determine (up to constant factor) the moment functional
π 7→ 〈π,1〉 on P by the rule 〈pn,1〉 = 0 for n > 0. Thus the inner
product 〈f ,g〉 = 〈fg,1〉 on P is determined by the recurrence
relation, independent of the choice of the orthogonality
measure µ.
The moment functional π 7→ 〈π,1〉 on P is determined by the
moments µn := 〈xn,1〉. The condition ancn+1 > 0 is equivalent
to positive definiteness of the moments, stated as

∆n := det(µi+j)
n
i,j=0 > 0 (n = 0,1,2, . . .).
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Christoffel-Darboux kernel

P: space of all polynomials;
Pn: space of polynomials of degree ≤ n ;
pn(x): orthogonal polynomials with respect to measure µ .
Christoffel-Darboux kernel:

Kn(x , y) :=
n∑

j=0

pj(x)pj(y)

hj

Then (Πnf )(x) :=

∫
R

Kn(x , y) f (y) dµ(y)

defines an orthogonal projection Πn : P → Pn .

Indeed, if f (y) =
∑∞

k=0 αk pk (y) (finite sum) then

(Πnf )(x) =
n∑

j=0

pj (x)
∞∑

k=0

αk

hj

∫
R

pj (y) pk (y) dµ(y) =
n∑

j=0

αjpj (x).
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Christoffel-Darboux formula

n∑
j=0

pj(x)pj(y)

hj
=

kn

hnkn+1

pn+1(x)pn(y)− pn(x)pn+1(y)

x − y
(x 6= y),

=
kn

hnkn+1
(p′n+1(x)pn(x)− p′n(x)pn+1(x)) (x = y).

Indeed, xpj (x) = ajpj+1(x) + bjpj (x) + cjpj−1(x),

ypj (y) = ajpj+1(y) + bjpj (y) + cjpj−1(y).

Hence
(x − y)pj (x)pj (y)

hj
=

aj

hj
(pj+1(x)pj (y)−pj (x)pj+1(y))

−
cj

hj
(pj (x)pj−1(y)− pj−1(x)pj (y)).

Use cj/hj = aj−1/hj−1. Sum from j = 0 to n.

Use that an = kn/kn+1. We have the C-D formula for x 6= y .
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Zeros of orthogonal polynomials

Theorem
Let pn(x) be an orthogonal polynomial of degree n.
Let µ have support within the closure of the interval (a,b).
Then pn has n distinct zeros on (a,b).

Proof (for (a,b) = (−∞,∞))
Assume kn > 0 (no loss of generality).
Suppose pn has k < n sign changes on R at x1, x2, . . . , xk .
Hence pn(x)(x − x1) . . . (x − xk ) ≥ 0 on R.
Hence

∫
R pn(x)(x − x1) . . . (x − xk ) dµ(x) > 0.

But by orthogonality
∫
R pn(x)(x − x1) . . . (x − xk ) dµ(x) = 0.

Contradiction.
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Zeros of orthogonal polynomials (cntd.)

By the Christoffel-Darboux formula: If kn, kn+1 > 0 then

p′n+1(x)pn(x)− p′n(x)pn+1(x) =
hnkn+1

kn

n∑
j=0

pj(x)2

hj
> 0.

Hence, if y , z are two successive zeros of pn+1 then

p′n+1(y)pn(y) > 0, p′n+1(z)pn(z) > 0.

Since p′n+1(y) and p′n+1(z) will have opposite signs,
pn(y) and pn(z) will have opposite signs.
Hence pn must have a zero in (y , z).

Theorem
The zeros of pn and pn+1 alternate.
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Graphs of Legendre polynomials

Alternating zeros of Legendre polynomials P8(x) (blue graph)
and P9(x) (red graph):
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Graphs of Legendre polynomials (cntd.)
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Jacobi polynomials

Definition of Jacobi polynomials

pn(x) = P(α,β)
n (x),

dµ(x) = w(x) dx on [−1,1],

w(x) = (1− x)α(1 + x)β (α, β > −1),

P(α,β)
n (1) =

(α + 1)n

n!
.

Explicit expression (see Paule for hypergeometric functions)

P(α,β)
n (x) =

(α + 1)n

n!
2F1

(
−n,n + α + β + 1

α + 1
; 1

2(1− x)

)
.

Symmetry P(α,β)
n (−x) = (−1)n P(β,α)

n (x). Hence

2F1

(
−n,n+α+β+1

α+1 ; z
)

= (−1)n(β+1)n
(α+1)n 2F1

(
−n,n+α+β+1

β+1 ; 1− z
)

.
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Jacobi polynomials (cntd.)

Second order differential equation for pn(x) = P(α,β)
n (x)

(1− x2)p′′n(x) +
(
β − α− (α + β + 2)x

)
p′n(x)

= −n(n + α + β + 1) pn(x).
Shift operator relations
d
dx

P(α,β)
n (x) = 1

2(n + α + β + 1)P(α+1,β+1)
n−1 (x),

(1− x2)
d
dx

P(α+1,β+1)
n−1 (x) +

(
β−α− (α+β+ 2)x

)
P(α+1,β+1)

n−1 (x)

= (1− x)−α(1 + x)−β
d
dx

(
(1− x)α+1(1 + x)β+1P(α+1,β+1)

n−1 (x)
)

= −2n P(α,β)
n (x).

Rodrigues formula

P(α,β)
n (x) =

(−1)n

2nn!
(1− x)−α(1 + x)−β

×
(

d
dx

)n (
(1− x)α+n(1 + x)β+n

)
.
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Jacobi polynomials (special cases)

Gegenbauer or ultraspherical polynomials (α = β = λ− 1
2)

Cλ
n (x) :=

(2λ)n

(λ+ 1
2)n

P
(λ− 1

2 ,λ−
1
2 )

n (x).

Legendre polynomials (α = β = 0)

Pn(x) := P(0,0)
n (x).

Chebyshev polynomials (α = β = ±1
2)

Tn(cos θ) := cos(n θ) =
n!

(1
2)n

P
(− 1

2 ,−
1
2 )

n (cos θ),

Un(cos θ) :=
sin(n + 1)θ

sin θ
=

(2)n

(3
2)n

P
( 1

2 ,
1
2 )

n (cos θ).
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Laguerre polynomials

Definition of Laguerre polynomials

pn(x) = Lαn (x),

dµ(x) = w(x) dx on [0,∞),

w(x) = xαe−x (α > −1),

Lαn (0) =
(α + 1)n

n!
.

Explicit expression

Lαn (x) =
(α + 1)n

n!
1F1

(
−n
α + 1

; x
)

.
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Laguerre polynomials (cntd.)

Second order differential equation for pn(x) = Lαn (x)

x p′′n(x) + (α + 1− x) p′n(x) = −n pn(x).

Shift operator relations
d
dx

Lαn (x) = −Lα+1
n−1 (x),

x
d
dx

Lα+1
n−1 (x) + (α + 1− x)Lα+1

n−1 (x)

= x−αex d
dx

(
xα+1e−xLα+1

n−1 (x)
)

= n Lαn (x).

Rodrigues formula

Lαn (x) =
x−αex

n!

(
d
dx

)n (
xn+αe−x).
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Hermite polynomials

Definition of Hermite polynomials

pn(x) = Hn(x), dµ(x) = e−x2
dx , kn = 2n.

Explicit expression

Hn(x) = n!

[n/2]∑
j=0

(−1)j(2x)n−2j

j! (n − 2j)!
.

Second order differential equation

H ′′n (x)− 2xH ′n(x) = −2nHn(x).

Shift operator relations

H ′n(x) = 2n Hn−1(x), H ′n−1(x)− 2xHn−1(x) = −Hn(x)

Rodrigues formula

Hn(x) = (−1)n ex2
(

d
dx

)n (
e−x2

)
.
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Derivation of previous formulas

(a,b) open interval; w ,w1 > 0 on (a,b) and C1.
On (a,b) monic OP’s pn(x),qm(x) with respect to w resp. w1.
Then under suitable boundary assumptions for w and w1 :∫ b

a
p′n(x) qm−1(x) w1(x) dx

= −
∫ b

a
pn(x) w(x)−1 d

dx
(
w1(x) qm−1(x)

)
w(x) dx .

Suppose that for certain an 6= 0 :

w(x)−1 d
dx

(
w1(x) xn−1

)
= −an xn + polynomial of degree < n.

Then p′n(x) = n qn−1(x), w(x)−1 d
dx

(w1(x) qn−1(x)) = −an pn(x),

w(x)−1 d
dx
(
w1(x) p′n(x)

)
= −nan pn(x),

n
∫ b

a
qn−1(x)2 w1(x) dx = an

∫ b

a
pn(x)2 w(x) dx .
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Derivation of previous formulas (cntd.)

Work with monic Jacobi polynomials p(α,β)
n (x). Then

(a,b) = (−1,1), w(x) = (1− x)α(1 + x)β, pn(x) = p(α,β)
n (x),

w1(x) = (1− x)α+1(1 + x)β+1, qm(x) = p(α+1,β+1)
m (x).

Then an = (n + α + β + 1),(
(1− x2)

d
dx

+
(
β − α− (α + β + 2)x

))
p(α+1,β+1)

n−1 (x)

= −(n + α + β + 1) p(α,β)
n (x).

For x = 1: p(α,β)
n (1) =

2(α + 1)

n + α + β + 1
p(α+1,β+1)

n−1 (1).

Then iterate: p(α,β)
n (1) =

2n(α + 1)n

(n + α + β + 1)n
.

So we know pn(1)/kn, which is independent of the
normalization.
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Derivation of previous formulas (cntd.)

Hypergeometric series representation of Jacobi polynomials
obtained by Taylor expansion:

p(α,β)
n (x) =

n∑
k=0

(x − 1)k

k !

(
d
dx

)k

p(α,β)
n (x)

∣∣∣
x=1

=
n∑

k=0

(x − 1)k

k !

n!

(n − k)!
p(α+k ,β+k)

n−k (1).

Quadratic norm hn obtained by iteration:∫ 1

−1
p(α,β)

n (x)2 (1− x)α(1 + x)β dx

=
n

n + α + β + 1

∫ 1

−1
p(α+1,β+1)

n−1 (x)2 (1− x)α+1(1 + x)β+1 dx .

So we know hn/k2
n , which is independent of the normalization.
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Very classical orthogonal polynomials

Jacobi, Laguerre and Hermite polynomials together, for the
given parameter ranges, are called very classical orthogonal
polynomials. Up to constant factors and up to transformations
x → ax + b of the argument they are uniquely determined as
OP’s pn(x) satisfying any of the following three criteria:

• (Bochner’s theorem) The pn are eigenfunc-
tions of a second order differential operator.

• The polynomlals p′n+1(x) are again orthogonal polynomials.

• The polynomials are orthogonal with respect to a positive C∞

weight function w(x) on an open interval I and there is a
polynomial X (x) such that the Rodrigues formula holds on I:

pn(x) = const.w(x)−1
(

d
dx

)n (
X (x)nw(x)

)
.
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Rodrigues
Benjamin Olinde Rodrigues (1795–1851)
lived in Paris. He had in his thesis the
Rodrigues formula for the Legendre poly-
nomials. Afterwards he became a banker
and became a relatively wealthy man
as he supported the development of the
French railway system.

Rodrigues was an early socialist. He argued that working men
were kept poor by lending at interest and by inheritance. He
also argued in favour of mutual aid societies and profit-sharing
for workers.
Rodrigues joined the Paris Ethnological Society. He argued
strongly that all races had equal aptitude for civilization in
suitable circumstances and that women will one day conquer
equality without any restriction. These views were much
criticised by other members: “Rodrigues was sentimental and
science proved that he was wrong”.
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Limits for very classical OP’s

Monic versions:
Jacobi: p(α,β)

n (x), w(x) = (1− x)α (1 + x)β on (−1,1)

Laguerre: `αn (x), w(x) = e−x xα on (0,∞)

Hermite: hn(x), w(x) = e−x2
on (−∞,∞)

αn/2p(α,α)
n (x/α1/2)→ hn(x), (1− x2/α)α → e−x2

, α→∞

(−β/2)n p(α,β)
n (1− 2x/β)→ `αn (x), xα(1− x/β)β → xαe−x , β →∞

(2α)−n/2 `αn ((2α)1/2x + α)→ hn(x), (1 + (2/α)1/2x)αe−(2α)
1/2x → e−x2

,

α→∞
Jacobi

��	

?

Laguerre

@@R

Hermite
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Electrostatic interpretation of zeros

Let pn(x) = P(2p−1,2q−1)
n (x)/kn = (x − x1)(x − x2) . . . (x − xn)

be monic Jacobi polynomials (p,q > 0). We know that

(1− x2)p′′n(x) + 2(q − p − (p + q)x)p′n(x)

= −n(n + 2p + 2q − 1)pn(x).

Hence (1− x2
k )p′′n(xk ) + 2(q − p − (p + q)xk )p′n(xk ) = 0,

i.e., 1
2

p′′n(xk )

p′n(xk )
+

p
xk − 1

+
q

xk + 1
= 0,

i.e.,
∑

j, j 6=k

1
xk − xj

+
p

xk − 1
+

q
xk + 1

= 0,

i.e., (∇V )(x1, . . . , xn) = 0, where V (y1, . . . , yn)

= −
∑
i<j

log(yj − yi)− p
∑

j

log(1− yj)− q
∑

j

log(1 + yj).

Logarithmic potential from charges q,1, . . . ,1,p at −1 < y1 <

. . . < yn < 1 achieves minimum at the zeros of P(2p−1,2q−1)
n (x).
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Stieltjes

Thomas Stieltjes, 1856–1894.
1877 assistant at Leiden astronomical
observatory.
Was corresponding with Hermite.
1884 honorary doctorate of Leiden
University.
1885 professor in Toulouse.
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Quadratic transformations

P(α,α)
2n (x) is polynomial pn(2x2−1) of degree n in x2. For m 6= n

0 =

∫ 1

0
pm(2y2 − 1)pn(2y2 − 1) (1− y2)α dy

= const.
∫ 1

−1
pm(x)pn(x) (1− x)α(1 + x)−

1
2 dx .

Hence
P(α,α)

2n (x)

P(α,α)
2n (1)

=
P

(α,− 1
2 )

n (2x2 − 1)

P
(α,− 1

2 )
n (1)

.

Similarly
P(α,α)

2n+1(x)

P(α,α)
2n+1(1)

=
xP

(α, 1
2 )

n (2x2 − 1)

P
(α, 1

2 )
n (1)

.

Theorem
Let pn(x) be monic orthogonal polynomial with respect to even
weight function w(x) on R. Then p2n(x) = qn(x2) and
p2n+1(x) = x rn(x2) with qn(x) and rn(x) OP’s on [0,∞) with
respect to weight functions x−

1
2 w(x

1
2 ) resp. x

1
2 w(x

1
2 ).
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Kernel polynomials

Christoffel-Darboux formula:
n∑

j=0

pj(x)pj(y)

hj
=

kn

hnkn+1

pn+1(x)pn(y)− pn(x)pn+1(y)

x − y
(x 6= y).

Suppose the orthogonality measure µ has support within
(−∞,b] and fix y ≥ b. Then for k ≤ n − 1:∫ b

−∞
Kn(x , y) xk (y − x) dµ(x) = yk (y − y) = 0.

Hence x 7→ qn(x) = Kn(x , y) is an OP of degree n on (−∞,b]
with respect to the measure (y − x) dµ(x). Hence

qn(x)− qn−1(x) =
pn(y)

hn
pn(x),

pn(y)pn+1(x)− pn+1(y)pn(x) =
hnkn+1

kn
(x − y)qn(x).
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True interval of orthogonality

Orthogonal polynomials pn(x).
Let pn(x) have zeros xn,1 < xn,2 < . . . < xn,n .

Then xi,i > xi+1,i > . . . > xn,i ↓ ξi ≥ −∞,

and xj,1 < xj+1,2 < . . . < xn,n−j+1 ↑ ηj ≤ ∞.

Definition
The closure of the interval (ξ1, η1) is called the true interval of
orthogonality of the OP’s pn(x).

Remarks
The true interval of orthogonality I has the following properties.

1 I is the smallest closed interval containing all zeros xn,i .
2 There is an orthogonality measure µ for the pn(x) such that

I is the smallest closed interval containing the support of µ.
3 If µ is any orthogonality measure for the pn(x) and J is a

closed interval containing the support of µ then I ⊂ J.
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Criteria for bounded support of orthogonality measure

xpn(x) = pn+1(x) + bnpn(x) + cnpn−1(x) (cn > 0).

Theorem
1 {bn} bounded, {cn} unbounded =⇒ (ξ1, η1) = (−∞,∞).
2 {bn}, {cn} bounded ⇐⇒ [ξ1, η1] bounded.
3 bn → b, cn → c (b, c finite) =⇒ supp(µ) bounded with at

most countably many points outside [b − 2
√

c,b + 2
√

c ]
and b ± 2

√
c limit points of supp(µ).

Example

Monic Jacobi polynomials k−1
n P(α,β)

n (x) :

bn =
β2 − α2

(2n + α + β)(2n + α + β + 2)
→ 0.

cn =
4n(n + α)(n + β)(n + α + β)

(2n + α + β − 1)(2n + α + β)2(2n + α + β + 1)
→ 1

4
.

Hence [b − 2
√

c,b + 2
√

c ] = [−1,1].
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Criteria for uniqueness of orthogonality measure

(See Shohat & Tamarkin, The problem of moments, AMS, 1943.)
Let pn(x) be orthonormal polynomials, i.e., solutions of

xpn(x) = anpn+1(x)+bnpn(x)+an−1pn−1(x) (an > 0, bn ∈ R).

Put ρ(z) :=
( ∞∑

n=0

|pn(z)|2
)−1

(z ∈ C).

Theorem
The orthogonality measure is not unique iff ρ(z) > 0 for all
z ∈ C. Hence it is unique iff ρ(z) = 0 for some z ∈ C.
In fact, if there is a unique orthogonality measure µ then
ρ(x) = µ({x}) if µ has a mass point at x, and ρ(z) = 0 for z ∈ C
outside the mass points of µ.
In case of non-uniqueness, for each x ∈ R the largest possible
jump of a measure µ at x is ρ(x) and there is a measure
realizing this jump.
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Criteria for uniqueness of orthog. measure (cntd.)

Orthonormal polynomials pn(x).

xpn(x) = anpn+1(x) + bnpn(x) + an−1pn−1(x) (an > 0, bn ∈ R),

x
pn(x)

kn
=

pn+1(x)

kn+1
+ bn

pn(x)

kn
+ a2

n−1
pn−1(x)

kn−1
(monic version),

µn := 〈xn,1〉 (moments).

Theorem (Carleman)
There is a unique orthogonality measure for
the pn if one of the following two conditions
is satisfied.

1

∞∑
n=1

µ
−1/(2n)
2n =∞.

2

∞∑
n=1

a−1
n =∞.
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Criteria for uniqueness of orthog. measure: Examples

Hermite: µ2n =

∫ ∞
−∞

x2ne−x2
dx = Γ(n + 1

2).

log Γ(n + 1
2) = n log(n + 1

2) + O(n) as n→∞,

so µ
−1/(2n)
2n ∼ (n + 1

2)−
1
2 . Hence

∞∑
n=1

µ
−1/(2n)
2n =∞ :

unique orthogonality measure.

Monic Laguerre pn(x) = k−1
n Lαn (x) :

xpn(x) = pn+1(x) + (2n + α + 1)pn(x) + n(n + α)pn−1(x).
∞∑

n=0

1
(n(n + α))1/2 =∞ : unique orthogonality measure.

Also
Lαn (0)2

hn
=

Γ(n + α + 1)

Γ(n + 1)Γ(α + 1)
∼ nα.∑∞

n=1 nα =∞ (α > −1): unique orthogonality measure.
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Example of non-unique orthogonality measure

∫ ∞
−∞

e−u2
(1 + C sin(2πu)) du = π1/2.

Substitute u = log x − 1
2(n + 1) and take −1 < C < 1.

π−
1
2

∫ ∞
0

xn(1 + C sin(2π log x)) e− log2 x dx = e(n+1)2/4.

The moments are independent of C. The corresponding
orthogonal polynomials are the Stieltjes-Wigert polynomials.
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Orthogonal polynomials and continued fractions

Let pn(x) be monic OP’s given by p0(x) = 1, p1(x) = x − b0,
xpn(x) = pn+1(x) + bnpn(x) + cnpn−1(x) (n ≥ 1, cn > 0).

The monic first associated OP’s or numerator polynomials
p(1)

n (x) are defined by p(1)
0 (x) = 1,p(1)

1 (x) = x − b1,

xp(1)
n (x) = p(1)

n+1(x) + bn+1p(1)
n (x) + cn+1p(1)

n−1(x) (n ≥ 1).

Recursively define F1(x) :=
1

x − b0
, F2(x) :=

1
x − b0 − c1

x−b1

,

F3(x) :=
1

x − b0 − c1
x−b1−

c2
x−b2

, and Fn+1(x) obtained from Fn(x)

by replacing bn−1 by bn−1 +
cn

x − bn
(continued fraction).

Theorem (essentially Stieltjes)

Fn(x) =
p(1)

n−1(x)

pn(x)
, p(1)

n−1(y) =
1
µ0

∫
R

pn(y)− pn(x)

y − x
dµ(x).
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OP’s and continued fractions (cntd.)

Fn(z) :=
1

z − b0 − |
|c1

z − b1 − |
· · · |cn−2

z − bn−2 − |
|cn−1

z − bn−1
=

p(1)
n−1(z)

pn(z)
.

Suppose that there is a (unique) orthogonality measure µ of
bounded support for the pn. Let [ξ1, η1] be the true interval of
orthogonality.

Theorem (Markov)

lim
n→∞

Fn(z) =
1
µ0

∫ η1

ξ1

dµ(x)

z − x
uniformly

on compact subsets of C\[ξ1, η1].
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Measures in case of non-uniqueness

Take pn and p(1)
n orthonormal: p0(x) = 1, p1(x) = (x − b0)/a0,

xpn(x) = anpn+1(x) + bnpn(x) + an−1pn−1(x) (n ≥ 1, an > 0),

p(1)
0 (x) = 1,p(1)

1 (x) = (x − b1)/a1,
xp(1)

n (x) = an+1p(1)
n+1(x) + bn+1p(1)

n (x) + anp(1)
n−1(x). (n ≥ 1).

Let µ0 = 1, µ1, µ2, . . . be the moments for the pn. Assume
non-uniquness of µ satisfying

∫
R xn dµ(x) = µn. The set of

these µ is convex and weakly compact. Then the following
functions are entire.

A(z) := z
∞∑

n=0

p(1)
n (0) p(1)

n (z), B(z) := −1 + z
∞∑

n=1

p(1)
n−1(0) pn(z),

C(z) := 1 + z
∞∑

n=1

pn(0) p(1)
n−1(z), D(z) = z

∞∑
n=0

pn(0) pn(z).
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Measures in case of non-uniqueness (cntd.)

Theorem (Nevanlinna, M. Riesz)

The identity∫
R

dµφ(t)
t − z

= − A(z)φ(z)− C(z)

B(z)φ(z)− D(z)
(Im z > 0)

gives a one-to-one correspondence φ→ µφ between the set of
functions φ being either identically∞ or a holomorphic function
mapping the open upper half plane into the closed upper half
plane (Pick function) and the set of measures solving the
moment problem.
Furthermore the measures µt (t ∈ R ∪ {∞}) are
precisely the extremal elements of the convex set,
and also precisely the measures µ solving the mo-
ment problem for which the the polynomials are
dense in L2(µ). All measures µt are discrete.
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Gauss quadrature

Let be given n real points x1 < x2 < . . . < xn.
Put pn(x) := (x − x1) . . . (x − xn).
Let lk (x) be the unique polynomial of degree < n such that
lk (xj) = δk ,j (j = 1, . . . ,n). Then (Lagrange interpolation
polynomial)

lk (x) =

∏
j; j 6=k (x − xj)∏
j; j 6=k (xk − xj)

=
pn(x)

(x − xk ) p′n(xk )
and

for all polynomials r of degree < n: r(x) =
∑n

k=1 r(xk ) lk (x).

Theorem (Gauss quadrature)
Let pn be an OP with respect to µ. Put
λk :=

∫
R lk (x) dµ(x).

Then λk =
∫
R lk (x)2 dµ(x) > 0 and for all

polynomials of degree ≤ 2n − 1:∫
R f (x) dµ(x) =

∑n
k=1 λk f (xk ).
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Gauss quadrature: Proof

Let f (x) be polynomial of degree ≤ 2n − 1. Then for certain
polynomials q(x) and r(x) of degree ≤ n − 1:
f (x) = q(x)pn(x) + r(x). Hence f (xk ) = r(xk ) and∫
R

f (x) dµ(z) =

∫
R

r(x) dµ(x) =
n∑

k=1

r(xk )

∫
R

lk (x) dµ(x)

=
n∑

k=1

λk r(xk ) =
n∑

k=1

λk f (xk ).

Also λk =
n∑

j=1

λj lk (xj)
2 =

∫
R

lk (x)2 dµ(x) > 0.
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Finite systems of orthogonal polynomials

We saw:
∫
R

f (x) dµ(x) =
n∑

k=1

λk f (xk ) (f ∈ P2n−1).

In particular, for i , j ≤ n − 1,

hjδi,j =

∫
R

pi(x)pj(x) dµ(x) =
n∑

k=1

λk pi(xk ) pj(xk ).

Thus the finite system p0,p1, . . . ,pn−1 forms a set of orthogonal
polynomials on the finite set {x1, . . . , xn} of the n zeros of pn
with respect to the weights λk and with quadaratic norms hj .
All information about this system is already contained in the
finite system of recurrence relations
xpj(x) = ajpj+1(x) + bjpj(x) + cjpj−1(x) (j = 0,1, . . . ,n − 1)
with ajcj+1 > 0 (j = 0,1, . . . ,n − 2). In particular, the λk are
obtained up to constant factor by solving the system

n∑
k=1

λkpj(xk ) = 0 (j = 1, . . . ,n − 1).
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Finite systems of orthogonal polynomials (cntd.)

For exampe, consider orthogonal polynomials p0,p1, . . . ,pN on
the zeros 0,1, . . . ,N of the polynomial
pN+1(x) := x(x − 1) . . . (x − N) with respect to nice explicit
weights wx (x = 0,1, . . . ,N) like:

1 wx :=

(
n
x

)
px (1− p)N−x (0 < p < 1).

Then the pn(x) are the Krawtchouk polynomials

Kn(x ; p,N) := 2F1

(
−n,−x
−N

;
1
p

)
=

n∑
k=0

(−n)k (−x)k

(−N)k k !

1
pk .

2 wx :=
(α + 1)x

x!

(β + 1)N−x

(N − x)!
(α, β > −1).

Then the pn(x) are the Hahn polynomials

Qn(x ;α, β,N) := 3F2

(
−n,n + α + β + 1,−x

α + 1,−N
; 1
)

.
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Hahn and Krawtchouk polynomials (cntd.)

Hahn polynomials are discrete versions of Jacobi polynomials:

Qn(Nx ;α, β,N) = 3F2

(
−n,n + α + β + 1,−Nx

α + 1,−N
; 1
)
→

2F1

(
−n,n + α + β + 1

α + 1
; x
)

= const.P(α,β)
n (1− 2x)

and
N−1

∑
x∈{0, 1

N ,
2
N ,...,1}

Qm(Nx ;α, β,N)Qn(Nx ;α, β,N) wNx →

const.
∫ 1

0
P(α,β)

m (1− 2x)P(α,β)
n (1− 2x) xα(1− x)β dx .

Jacobi and Krawtchouk polynomials are different ways of
looking at the matrix elements of the irreps of SU(2).
The 3j coefficients or Clebsch-Gordan coefficients for SU(2)
can be expressed as Hahn polynomials.
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Classical orthogonal polynomials of Hahn class

Hahn and Krawtchouk polynomials are orthogonal polynomials
pn(x) on 0,1, . . . ,N which are eigenfunctions of a second order
difference operator:

A(x)pn(x − 1) + B(x)pn(x) + C(x)pn(x + 1) = λn pn(x).

Moreover, the polynomials qn(x) := pn+1(x + 1)− pn+1(x) are
orthogonal polynomials on 0,1, . . . ,N − 1.

If we also allow orthogonal polynomials on 0,1,2, . . . then
Meixner polynomials Mn(x ;β, c) and Charlier polynomials
Cn(x ; a) also have these properties. Here

Mn(x ;β, c) := 2F1

(
−n,−x
β

; 1− 1
c

)
, wx :=

(βx )

x!
cx ,

Cn(x ; a) := 2F0(−n,−x ; ;−a−1), wx := ax/x!.
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Classical orthogonal polynomials

More generally we can ask for orthogonal polynomials which
are eigenfunctions of a second order operator L of the form

(Lf )(x) := A(x)f (x + i) + B(x)f (x) + C(x)f (x − i)

or (the so-called quadratic lattice)

(Lf )(q(x)) := A(x)f (q(x + 1)) + B(x)f (q(x)) + C(x)f (q(x − 1)),

where q(x) is a fixed polynomial of second degree.

All such orthogonal polynomials have been classified. There
are only 13 families, all but the Hermite depending on
parameters, at most four, and all expressible as hypergeometric
functions, the most complicated as 4F3. They can be arranged
hierarchically according to limit transitions denoted by arrows.
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Askey scheme

Wilson
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Dick Askey
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The q-case

On top of the Askey-scheme is lying the q-Askey scheme, from
which there are also arrows to the Askey scheme as q → 1.
We take always 0 < q < 1 and let q ↑ 1 to the classical case.
Some typical examples of q-analogues of classical concepts
are (see Gasper & Rahman, Basic hypergeometric series):

q-number: [a]q :=
1− qa

1− q
→ a

q-shifted factorial: (a; q)n :=
n−1∏
k=0

(1− aqk ) (also for n =∞).

(qa; q)k

(1− q)a → (a)k .

q-hypergeometric series:

s+1φs

(
a1, . . . ,as+1

b1, . . . ,bs
; q, z

)
:=

∞∑
k=0

(a1; q)k . . . (as+1; q)k

(b1; q)k . . . (bs; q)k

zk

(q; q)k
.

s+1φs

(
qa1 , . . . ,qas+1

qb1 , . . . ,qbs
; q, z

)
→ s+1Fs

(
a1, . . . ,as+1

b1, . . . ,bs
; z
)

.
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The q-case (cntd.)

q-derivative: (Dqf )(x) :=
f (x)− f (qx)

(1− q)x
→ f ′(x).

q-integral:∫ 1

0
f (x) dqx := (1− q)

∞∑
k=0

f (qk ) qk →
∫ 1

0
f (x) dx .

The q-case allows more symmetry which may be broken when
taking limits for q to 1. In the elliptic case lying above the
q-case there is even more symmetry.
Askey-Wilson polynomials (up to constant factor):

pn(cos θ; a,b, c,d | q) := 4φ3

(
q−n,qn−1abcd ,aeiθ,ae−iθ

ab,ac,ad
; q,q

)
.

Orthogonal with respect to a weight function on (−1,1).
A special case are the continuous q-ultraspherical polynomials
(a = −c = β

1
2 , b = −d = (qβ)

1
2 ).

Tom Koornwinder Orthogonal polynomials



Continuous q-ultraspherical polynomials

For m 6= n:∫ π

0
Cm(cos θ;β | q) Cn(cos θ;β | q)

∣∣∣∣ (e2iθ; q)∞
(βe2iθ; q)∞

∣∣∣∣2 dθ = 0.

Generating function:∣∣∣∣(βeiθt ; q)∞
(eiθt ; q)∞

∣∣∣∣2 =
∞∑

n=0

Cn(x ;β | q)tn.

Limit formula to ultraspherical polynomials:
Cn(x ; qλ | q)→ Cλ

n (x). These have generating function

(1− 2xt + t2)−λ =
∞∑

n=0

Cλ
n (x)tn.
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SIAM Activity Group OPSF

The SIAM Activity Group on Orthogonal Polynomials and
Special Functions

Sends out a free bimonthly electronic newsletter;
Organizes minisymposia on SIAM conferences;
Awards the biennial Gábor Szegö Prize to an early-career
researcher (at most 10 years after PhD) for outstanding
research contributions in the area of orthogonal
polynomials and special functions.
Nominations before September 15, 2012.

See http://www.siam.org/activity/opsf/
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