The hierarchy of hypergeometric functions and related algebras

Tom H. Koornwinder

University of Amsterdam, thk@science.uva.nl

lecture, December 20, 2007

International Conference on Number Theory, Theoretical Physics and Special Functions, Kumbakonam, India

last modified: March 14, 2008

Hypergeometric series

Pochhammer symbol: $(a)_k := a(a+1)...(a+k-1).$

Hypergeometric series: ${}_rF_s(a_1,\ldots,a_r;b_1,\ldots,b_s;z)$

$$= {}_rF_s \left(\begin{matrix} a_1, \dots, a_r \\ b_1, \dots, b_s \end{matrix} ; z \right) := \sum_{k=0}^{\infty} \frac{(a_1)_k \dots (a_r)_k}{(b_1)_k \dots (b_s)_k \, k!} \, z^k.$$

Terminating if $a_1 = -n$ (n nonnegative integer). If nonterminating and s = r - 1 then converges for |z| < 1.

Gauss hypergeometric series: ${}_{2}F_{1}(a, b; c; z)$.

Jacobi polynomials:

$$P_n^{(\alpha,\beta)}(x) := \text{const. } {}_2F_1\left(-n,n+\alpha+\beta+1;\alpha+1;\frac{1}{2}(1-x)\right).$$
 Orthogonality $(\alpha,\beta>-1)$:

$$\int_{-1}^{1} P_{n}^{(\alpha,\beta)}(x) P_{m}^{(\alpha,\beta)}(x) (1-x)^{\alpha} (1+x)^{\beta} dx = 0 \qquad (n \neq m).$$

Five different types of generalizations

The Gauss hypergeometric function / Jacobi polynomial case can be generalized in five different directions, which often can be combined, and ideally should always be combined.

- Higher hypergeometric series; Askey scheme of hypergeometric orthogonal polynomials
- q-hypergeometric series, elliptic and hyperbolic hypergeometric function
- Non-symmetric functions (double affine Hecke algebras)
- Four regular singularities (Heun equation)
- Multivariable special functions associated with root systems (Heckman-Opdam, Macdonald, Macdonald-K, Cherednik, . . .)

I will not discuss items 4 and 5 here. However, item 3 was inspired by the multi-variable case.

Plan of the lecture

First part

Higher hypergeometric series and q- and elliptic analogues

Second part

Double affine Hecke algebra in the Askey-Wilson case and relationship with Zhedanov algebra

Criteria for the (q-) hypergeometric hierarchy

For hypergeometric and *q*-hypergeometric functions we will restrict to some cases which:

- have a rich set of transformations, which form a nice symmetry group;
- allow harmonic analysis: orthogonal polynomials or biorthogonal rational functions, or continuous analogues of these as kernels of integral transforms.

Then we mainly have:

- 4F₃(1), ₇F₆(1), ₉F₈(1) hypergeometric functions, and qand hyperbolic analogues, and only one elliptic analogue
- Moreover in these cases restrictions on parameters (balanced, very-well poised)
- Always distinction between terminating and non-terminating series
- In non-terminating cases alternative representations as hypergeometric (Mellin-Barnes type) integral; crucial role of gamma function (ordinary, q-, hyperbolic, elliptic)

Symmetries of ${}_3F_2(1)$

Thomae's transformation formula rediscovered by Ramanujan:

$${}_{3}F_{2}\begin{pmatrix}a,b,c\\d,e\end{pmatrix} : 1 = \frac{\Gamma(d)\Gamma(e)\Gamma(d+e-a-b-c)}{\Gamma(a)\Gamma(d+e-a-c)\Gamma(d+e-a-b)} \times {}_{3}F_{2}\begin{pmatrix}d-a,e-a,d+e-a-b-c\\d+e-a-c,d+e-a-b\end{pmatrix} : 1.$$

Hardy (Ramanujan, Twelve lectures on subject suggested by his life and work, 1940):

$$\frac{1}{\Gamma(d)\,\Gamma(e)\,\Gamma(d+e-a-b-c)}\,\,{}_3F_2\bigg({a,b,c\atop d,\,e}\,;1\bigg)$$

is symmetric in d, e, d+e-b-c, d+e-c-a, d+e-a-b. Symmetry group $S_5=W(A_4)$ (Weyl group of root system A_4).

Balanced $_4F3(1)$

$$_{r}F_{r-1}(a_{1},...,a_{r};b_{1},...,b_{r-1};z)$$
 is called *balanced* if $b_{1}+...+b_{r-1}=a_{1}+...+a_{r}+1$.

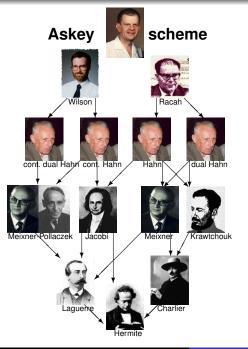
Beyer-Louck-Stein rediscovered Hardy's S_5 -symmetry for ${}_3F_2(1)$, and found symmetry group $S_6 = W(A_5)$ for terminating balanced ${}_4F_3(1)$:

$${}_{4}F_{3}\binom{-n,a,b,c}{d,e,f};1$$
 $(d+e+f=-n+a+b+c+1).$

Related orthogonal polynomials: Wilson polynomials $W_n(x^2) :=$

const.
$${}_{4}F_{3}\left({-n,n+a+b+c+d-1,a+ix,a-ix \atop a+b,a+c,a+d};1\right),$$

and *Racah polynomials*. These form the top level of the Askey scheme of hypergeometric orthogonal polynomials.



Wilson functions

For Wilson functions (non-polynomial analogues of Wilson polynomials) one has to go to the ${}_{7}F_{6}$ level.

Well-poised hypergeometric series:

$$_{r}F_{r-1}\left(\begin{array}{c} a_{1}, a_{2}, \ldots, a_{r} \\ 1 + a_{1} - a_{2}, \ldots, 1 + a_{1} - a_{r} \end{array}; z\right).$$

This is very well-poised (VWP) if $a_2 = 1 + \frac{1}{2}a_1$.

Terminating VWP $_7F_6(1) = \text{const.} \times \text{terminating balanced}$ $_4F_3(1)$.

Non-terminating VWP $_7F_6(1)$ = linear combination of two balanced $_4F_3(1)$'s.

Wilson function transform (Groenevelt).

The ₉F₈ top level

Terminating 2-balanced VWP $_9F_8(1)$: Transformation formula (Bailey, Whipple).

Non-terminating 2-balanced VWP ₉F₈(1):

Biorthogonal rational functions (J. Wilson).

Four-term transformation formula (Bailey).

q-hypergeometric series

Let 0 < q < 1.

q-Pochhammer symbol:

$$(a;q)_k := (1-a)(1-qa)\dots(1-q^{k-1}a),$$

 $(a;q)_{\infty} := (1-a)(1-qa)(1-q^2a)\dots,$
 $(a_1,\dots,a_r;q)_k := (a_1;q)_k\dots(a_r;q)_k.$

q-hypergeometric $_r\phi_{r-1}$ *series*:

$$r\phi_{r-1}\left(\frac{a_1,\ldots,a_r}{b_1,\ldots,b_{r-1}};q,z\right):=\sum_{k=0}^{\infty}\frac{(a_1,\ldots,a_r;q)_k}{(b_1,\ldots,b_{r-1};q)_k(q;q)_k}z^k.$$

Terminating if $a_1 = q^{-n}$ (*n* nonnegative integer). If nonterminating then converges for |z| < 1.

Balanced if
$$b_1 \dots b_{r-1} = qa_1 \dots a_r$$
.

Askey-Wilson polynomials and functions

Terminating balanced $_4\phi_3$ of argument q:

- Symmetry group $S_6 = W(A_5)$ (Van der Jeugt & S. Rao).
- Askey-Wilson polynomials:

$$p_n(\frac{1}{2}(z+z^{-1})) := \text{const. } _4\phi_3\left(\begin{matrix} q^{-n}, q^{n-1} abcd, az, az^{-1} \\ ab, ac, ad \end{matrix}; q, q\right).$$

 Askey-Wilson polynomials together with q-Racah polynomials form the top level of the *q*-Askey scheme.

Very well-poised (VWP) q-hypergeometric series:

$$_{r}V_{r-1}(a_{1}; a_{4},..., a_{r}; q, z) := _{r}\phi_{r-1}\begin{pmatrix} a_{1}, qa_{1}^{\frac{1}{2}}, -qa_{1}^{\frac{1}{2}}, a_{4},..., a_{r} \\ a_{1}^{\frac{1}{2}}, -a_{1}^{\frac{1}{2}}, qa_{1}/a_{4},..., qa_{1}/a_{r} \end{pmatrix}$$

Non-terminating very well-poised $_8\phi_7$ of argument $\frac{q^2\,a_1^2}{a_4\,a_5\,a_6\,a_7\,a_8}$:

• Sum of two non-terminating balanced $_4\phi_3$'s of argument $_q$.

- Symmetry group W(D₅) (Van der Jeugt & S. Rao).
- Askey-Wilson functions (Stokman).

Bailey's two-term $_{10}\phi_{9}$ function

$$\begin{split} \Phi(a;b;c,d,e,f,g,h;q) := \\ & (aq/c,aq/d,aq/e,aq/f,aq/g,aq/h;q)_{\infty} \\ & \times (bc/a,bd/a,be/a,bf/a,bg/a,bh/a;q)_{\infty}/(b/a,aq;q)_{\infty} \\ & \times {}_{10}V_{9}(a;b,c,d,e,f,g,h;q,q) \\ & + \frac{(bq/c,bq/d,bq/e,bq/f,bq/g,bq/h,c,d,e,f,g,h;q)_{\infty}}{(a/b,b^{2}q/a;q)_{\infty}} \\ & \times {}_{10}V_{9}(b^{2}/a;b,bc/a,bd/a,be/a,bf/a,bg/a,bh/a;q,q), \end{split}$$

where $a^3q^2 = bcdefgh$.

Bailey's four-term transformation formula:

$$\Phi(a;b;c,d,e,f,g,h;q) = \Phi\Big(\frac{a^2q}{cde};b;\frac{aq}{de},\frac{aq}{ce},\frac{aq}{cd},f,g,h;q\Big).$$

Symmetry group $W(E_6)$ (Lievens & Van der Jeugt).

$_{10}\phi_{9}$: the terminating case

Terminating balanced very well-poised $_{10}\phi_9$'s of argument q:

- Bailey's two-term transformation formula.
- Same symmetry group $W(E_6)$.
- Biorthogonal rational functions (Rahman, J. Wilson)

Dynkin diagram of E_6 :

The elliptic hypergeometric integral

Let $p, q \in \mathbb{C}$ (|p|, |q| < 1).

Elliptic gamma function (Ruijsenaars):

$$\Gamma_e(z; p, q) := \prod_{j,k=0}^{\infty} \frac{1 - z^{-1} p^{j+1} q^{k+1}}{1 - z p^j q^k}.$$

Elliptic hypergeometric integral (Spiridonov):

$$S_{e}(t; p, q) := \int_{\mathcal{C}} \frac{\prod_{j=1}^{8} \Gamma_{e}(t_{j}z^{\pm 1}; p, q)}{\Gamma_{e}(z^{\pm 2}; p, q)} \frac{dz}{2\pi i z} \quad (\prod_{j=1}^{8} t_{j} = p^{2}q^{2}),$$

where \mathcal{C} is a deformation of the unit circle which separates the poles $t_j p^m q^n$ (m, n = 0, 1, ...) from the poles $t_j^{-1} p^{-m} q^{-n}$ (m, n = 0, 1, ...).

The transformations of $S_e(t; p, q)$ form a symmetry group which is isomorphic to $W(E_7)$ (Rains).

Elliptic hypergeometric differential equation and series

Put $t_6 = az$, $t_7 = a/z$, $f(z) = S_e(t; p, q)$. Then f(z) satisfies the *elliptic hypergeometric differential equation* (Spiridonov):

$$A(z)(f(qz) - f(z)) + A(z^{-1})(f(q^{-1}z) - f(z)) + \nu f(z) = 0,$$

where A(z) and ν are suitable products of theta functions

$$\theta(b;p):=(b,pb^{-1};p)_{\infty}.$$

Elliptic Pochhammer symbol:

$$(a; q, p)_k := \theta(a; p)\theta(qa; p) \dots \theta(q^{k-1}a; p).$$

Elliptic hypergeometric series:

$$_{r}E_{r-1}\left(\frac{a_{1},\ldots,a_{r}}{b_{1},\ldots,b_{r-1}};q,p;z\right):=\sum_{k=0}^{\infty}\frac{(a_{1};q,p)_{k}\ldots(a_{r};q,p)_{k}}{(b_{1};q,p)_{k}\ldots(b_{r-1};q,p)_{k}(q;q,p)_{k}}z^{k},$$

where $a_1 ... a_r = b_1 ... b_{r-1} q$.

This is the *elliptic balancing condition* in order that (k + 1)-th term / k-th term is doubly periodic in k.

Two-index biorthogonal rational elliptic hypergeometric functions

Very well-poised elliptic hypergeometric series:

$${}_{r}V_{r-1}(a_{1}; a_{6}, \ldots, a_{r}; q, p) :=$$

$${}_{r}E_{r-1} \begin{pmatrix} a_{1}, qa_{1}^{\frac{1}{2}}, -qa_{1}^{\frac{1}{2}}, q(a_{1}/p)^{\frac{1}{2}}, -q(a_{1}p)^{\frac{1}{2}}, a_{6}, \ldots, a_{r} \\ a_{1}^{\frac{1}{2}}, -a_{1}^{\frac{1}{2}}, (pa_{1})^{\frac{1}{2}}, -(a_{1}/p)^{\frac{1}{2}}, qa_{1}/a_{6}, \ldots, qa_{1}/a_{r} \end{pmatrix},$$

where
$$a_6 \dots a_r = q^{\frac{1}{2}r-4} a_1^{\frac{1}{2}r-3}$$
.

A certain terminating $_{12}V_{11}$ satisfies the elliptic hypergeometric equation. It was first introduced by Frenkel & Turaev (elliptic 6j-symbol). They gave a transformation formula, and a $_{10}V_9$ summation formula as a degenerate case.

Products $R_n(z; q, p) R_m(z; p, q)$ of such rational functions satisfy a *two-index biorthogonality* (Spiridonov).

Hyperbolic hypergeometric series

In elliptic hypergeometric theory there are no transformation formulas below the $_{12}$ V_{11} level.

However, there is a limit case of the elliptic hypergeometric function, called *hyperbolic hypergeometric function*, started by Ruijsenaars, which is still above the q-case and with the following features:

- On top level again $W(E_7)$ symmetry.
- There is also a hyperbolic Askey-Wilson function.
- Has analytic continuation to q on unit circle.
- Explicit expressions as products of two q-hypergeometric functions or a sum of two such products.

For details see the Thesis by Fokko van de Bult, *Hyperbolic Hypergeometric Functions*, 2007 (partly based on papers jointly with Rains and Stokman).

Second part

Double affine Hecke algebra in the Askey-Wilson case and relationship with Zhedanov algebra

Askey-Wilson polynomials

Askey-Wilson operator acting on symmetric Laurent polynomials $f[z] = f[z^{-1}]$:

$$(D_{\text{sym}}f)[z] := A[z] (f[qz] - f[z]) + A[z^{-1}] (f[q^{-1}z] - f[z]) + (1 + q^{-1}abcd) f[z],$$

where

$$A[z] := \frac{(1-az)(1-bz)(1-cz)(1-dz)}{(1-z^2)(1-qz^2)}.$$

Askey-Wilson polynomials (monic symmetric Laurent polynomials $P_n[z] = P_n[z^{-1}] = z^n + \cdots + z^{-n}$):

$$P_n[z] := \text{const. } _4\phi_3\left(\begin{matrix} q^{-n}, q^{n-1} abcd, az, az^{-1} \\ ab, ac, ad \end{matrix}; q, q\right),$$

Eigenvalue equation:

$$D_{\text{sym}}P_n = \lambda_n P_n$$
, where $\lambda_n := q^{-n} + q^{n-1} abcd$.

Double affine Hecke algebra of type (C_1^{\lor}, C_1)

Let 0 < q < 1, $a, b, c, d \in \mathbb{C} \setminus \{0\}$, $abcd \neq q^{-m} \ (m = 0, 1, 2, ...)$.

Definition

The double affine Hecke algebra $\tilde{\mathfrak{H}}$ of type (C_1^{\vee}, C_1) is the algebra with generators Z, Z^{-1}, T_1, T_0 and with relations

$$(T_1 + ab)(T_1 + 1) = 0,$$

 $(T_0 + q^{-1}cd)(T_0 + 1) = 0,$
 $(T_1Z + a)(T_1Z + b) = 0,$
 $(qT_0Z^{-1} + c)(qT_0Z^{-1} + d) = 0.$

(Sahi; Noumi & Stokman; Macdonald's 2003 book)

 T_1 and T_0 are invertible. Let

$$Y := T_1 T_0, \qquad D := Y + q^{-1} abcd Y^{-1}.$$

Polynomial representation of $\tilde{\mathfrak{H}}$

Let A be the space of Laurent polynomials f[z].

The polynomial representation of $\tilde{\mathfrak{H}}$ on \mathcal{A} is given by

$$(Zf)[z] := z f[z],$$

$$(T_1 f)[z] := -ab f[z] + \frac{(1 - az)(1 - bz)}{1 - z^2} (f[z^{-1}] - f[z]),$$

$$(T_0 f)[z] := -q^{-1} cd f[z] + \frac{(c - z)(d - z)}{q - z^2} (f[z] - f[qz^{-1}])$$

(q-difference-reflection operators; q-analogues of the Dunkl operator). Then

$$(T_1 f)[z] = -ab f[z]$$
 iff $f[z] = f[z^{-1}],$

and

$$(Df)[z] = (D_{\text{sym}}f)[z]$$
 if $f[z] = f[z^{-1}]$.

Eigenspaces of D

Let

$$Q_n[z] := a^{-1}b^{-1}z^{-1}(1-az)(1-bz)P_{n-1}[z; qa, qb, c, d \mid q].$$

Then

$$DQ_n = \lambda_n Q_n,$$
 $T_1 Q_n = -Q_n.$ $DP_n = \lambda_n P_n,$ $T_1 P_n = -abQ_n.$

D has eigenvalues λ_n (n = 0, 1, 2, ...).

 T_1 has eigenvalues -1, -ab.

D and T_1 commute.

The eigenspace of D for λ_n has basis P_n, Q_n (n = 1, 2, ...) or P_0 (n = 0).

Non-symmetric Askey-Wilson polynomials

Let

$$\begin{split} E_{-n} &:= \frac{ab}{ab-1} \left(P_n - Q_n \right) \qquad (n = 1, 2, \ldots), \\ E_n &:= \frac{(1-q^n ab)(1-q^{n-1} abcd)}{(1-ab)(1-q^{2n-1} abcd)} \, P_n - \frac{ab(1-q^n)(1-q^{n-1} cd)}{(1-ab)(1-q^{2n-1} abcd)} \, Q_n \\ &\qquad \qquad (n = 1, 2, \ldots). \end{split}$$

Then

$$YE_{-n} = q^{-n} E_{-n}$$
 $(n = 1, 2, ...),$
 $YE_{n} = q^{n-1} abcd E_{n}$ $(n = 0, 1, 2, ...).$

The $E_n[z]$ ($n \in \mathbb{Z}$) are the nonsymmetric Askey-Wilson polynomials. They form a biorthogonal system with respect to a suitable inner product given by a contour integral.

Zhedanov's algebra AW(3)

Definition

Zhedanov's algebra AW(3) is the algebra generated by K_0 , K_1 with relations

$$(q+q^{-1})K_1K_0K_1 - K_1^2K_0 - K_0K_1^2 = BK_1 + C_0K_0 + D_0,$$

 $(q+q^{-1})K_0K_1K_0 - K_0^2K_1 - K_1K_0^2 = BK_0 + C_1K_1 + D_1.$

The Casimir operator

$$\begin{split} Q &:= K_1 K_0 K_1 K_0 - (q^2 + 1 + q^{-2}) K_0 K_1 K_0 K_1 \\ &+ (q + q^{-1}) K_0^2 K_1^2 + (q + q^{-1}) (C_0 K_0^2 + C_1 K_1^2) \\ &+ B \big((q + 1 + q^{-1}) K_0 K_1 + K_1 K_0 \big) \\ &+ (q + 1 + q^{-1}) \big(D_0 K_0 + D_1 K_1 \big). \end{split}$$

commutes in AW(3) with the generators K_0, K_1 .

The polynomial representation of AW(3)

Let e_1 , e_2 , e_3 , e_4 be the elementary symmetric polynomials in a, b, c, d.

Put for the structure constants:

$$egin{aligned} B &:= (1-q^{-1})^2(e_3+qe_1), \ C_0 &:= (q-q^{-1})^2, \ C_1 &:= q^{-1}(q-q^{-1})^2e_4, \ D_0 &:= -q^{-3}(1-q)^2(1+q)(e_4+qe_2+q^2), \ D_1 &:= -q^{-3}(1-q)^2(1+q)(e_1e_4+qe_3). \end{aligned}$$

Then the polynomial representation of AW(3) on the space A_{sym} of symmetric Laurent polynomials in z is given by

$$(K_0 f)[z] := (D_{\text{sym}} f)[z],$$

 $(K_1 f)[z] := (z + z^{-1})f[z].$

The quotient algebra $AW(3, Q_0)$

In the polynomial representation (which is irreducible for generic values of a, b, c, d), Q becomes a constant scalar:

$$(Qf)[z] = Q_0 f[z],$$
 where
$$Q_0 := q^{-4}(1-q)^2 \Big(q^4(e_4-e_2) + q^3(e_1^2-e_1e_3-2e_2) \\ - q^2(e_2e_4+2e_4+e_2) + q(e_3^2-2e_2e_4-e_1e_3) + e_4(1-e_2) \Big).$$

Definition

 $AW(3, Q_0)$ is the algebra AW(3) with further relation $Q = Q_0$.

Theorem (K, 2007)

A basis of AW(3, Q_0) is given by

$$K_0^n(K_1K_0)^lK_1^m$$
 $(m, n = 0, 1, 2, ..., l = 0, 1).$

The polynomial representation of AW(3, Q_0) on A_{sym} is faithful.

Central extension of AW(3)

Let the algebra $AW(3,Q_0)$ be generated by K_0 , K_1 , T_1 such that T_1 commutes with K_0 , K_1 and with further relations

$$(T_{1}+ab)(T_{1}+1)=0,$$

$$(q+q^{-1})K_{1}K_{0}K_{1}-K_{1}^{2}K_{0}-K_{0}K_{1}^{2}=BK_{1}+C_{0}K_{0}+D_{0}+EK_{1}(T_{1}+ab)+F_{0}(T_{1}+ab),$$

$$(q+q^{-1})K_{0}K_{1}K_{0}-K_{0}^{2}K_{1}-K_{1}K_{0}^{2}=BK_{0}+C_{1}K_{1}+D_{1}+EK_{0}(T_{1}+ab)+F_{1}(T_{1}+ab),$$

$$\widetilde{Q}:=(K_{1}K_{0})^{2}-(q^{2}+1+q^{-2})K_{0}(K_{1}K_{0})K_{1}+(q+q^{-1})K_{0}^{2}K_{1}^{2}+(q+q^{-1})(C_{0}K_{0}^{2}+C_{1}K_{1}^{2})+(B+E(T_{1}+ab))((q+1+q^{-1})K_{0}K_{1}+K_{1}K_{0})+(q+1+q^{-1})(D_{0}+F_{0}(T_{1}+ab))K_{0}+(q+1+q^{-1})(D_{1}+F_{1}(T_{1}+ab))K_{1}+G(T_{1}+ab)=Q_{0},$$

where E, F_0 , F_1 , G can be explicitly specified. Then \widetilde{Q} commutes with all elements of $\widetilde{AW}(3)$.

Connecting $\widehat{AW}(3, Q_0)$ with $\widetilde{\mathfrak{H}}$

Theorem (K, 2007)

 $\widetilde{AW}(3,Q_0)$ acts on \mathcal{A} such that K_0,K_1,T_1 act as $D,Z+Z^{-1},T_1$, respectively, in the polynomial representation of $\tilde{\mathfrak{H}}$ on \mathcal{A} . This representation is faithful.

 $\widetilde{AW}(3, Q_0)$ has an injective embedding in $\tilde{\mathfrak{H}}$.

Theorem (K, 2007)

Let $ab \neq 1$.

 $AW(3, Q_0)$ is naturally isomorphic to the spherical subalgebra $(T_1 + 1)\tilde{\mathfrak{H}}(T_1 + 1)$.

 $\widetilde{AW}(3, Q_0)$ is the centralizer of T_1 in $\tilde{\mathfrak{H}}$.

References

On hypergeometric series:

W. N. Bailey, *Generalized hypergeometric series*, Cambridge University Press, 1935.

On *q*-hypergeometric series:

G. Gasper and M. Rahman, *Basic hypergeometric series*, 2nd edn., Cambridge University Press, 2004.

On the Askey and the q-Askey scheme:

R. Koekoek and R. F. Swarttouw, *The Askey-scheme of hypergeometric orthogonal polynomials and its q-analogue*, http://aw.twi.tudelft.nl/~koekoek/askey/.

References, continued

On elliptic hypergeometric functions:

- V. P. Spiridonov, *Classical elliptic hypergeometric functions and their applications*, arXiv:math/0511579v2.
- V. P. Spiridonov, *Elliptic hypergeometric functions*, arXiv:0704.3099v1.

On groups of transformations of hypergeometric functions:

- J. Van der Jeugt & K. S. Rao, *Invariance groups of transformations of basic hypergeometric series*, J. Math. Phys. 40 (1999), 6692–6700.
- S. Lievens & J. Van der Jeugt, *Symmetry groups of Bailey's transformations for* $_{10}\phi_9$ -*series*, J. Comput. Appl. Math. 206 (2007), 498–519.
- F. J. van de Bult, E. M. Rains & J. V. Stokman, *Properties of generalized univariate hypergeometric functions*, arXiv:math/0607250v1.

References, continued

On Zhedanov's algebra and the double affine Hecke algebra:

See the following two papers and references given there.

- T. H. Koornwinder, *The relationship between Zhedanov's algebra AW(3) and the double affine Hecke algebra in the rank one case*, arXiv:math/0612730v4.
- T. H. Koornwinder, Zhedanov's algebra AW(3) and the double affine Hecke algebra in the rank one case. II. The spherical subalgebra, arXiv/0711.2320v1.