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Hypergeometric series

Pochhammer symbol: (a)x :=a(a+1)...(a+k—1).

Hypergeometric series: rFs(at,...,ar bq,...,bs; 2)
a,...,a (@1)k---(ar )k _k
= F. z".
' s<b1,--- ) Z(b1)k bs k k!
Terminating if a1 = —n (n nonnegative integer).

If nonterminating and s = r — 1 then converges for |z| < 1.
Gauss hypergeometric series: >Fi(a, b;c; z).
Jacobi polynomials:

P,gaﬂ)(x) := const. o Fq (—n, n+a+pg+1,a+1; %(1 — X))

Orthogonality (a, 8 > —1):
/ PR (x) PED(x) (1 =x)*(1+x)Pdx =0 (n+# m).
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Five different types of generalizations

The Gauss hypergeometric function / Jacobi polynomial case
can be generalized in five different directions, which often can
be combined, and ideally should always be combined.

@ Higher hypergeometric series; Askey scheme of
hypergeometric orthogonal polynomials

© g-hypergeometric series, elliptic and hyperbolic
hypergeometric function

© Non-symmetric functions (double affine Hecke algebras)
© Four regular singularities (Heun equation)

@ Multivariable special functions associated with root
systems (Heckman-Opdam, Macdonald, Macdonald-K,
Cherednik, .. .)

| will not discuss items 4 and 5 here. However, item 3 was
inspired by the multi-variable case.
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Plan of the lecture

First part
Higher hypergeometric series and g- and elliptic analogues

Second part
Double affine Hecke algebra in the Askey-Wilson case and
relationship with Zhedanov algebra
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Criteria for the (g-)hypergeometric hierarchy

For hypergeometric and g-hypergeometric functions we will
restrict to some cases which:

@ have a rich set of transformations, which form a nice
symmetry group;

@ allow harmonic analysis: orthogonal polynomials or
biorthogonal rational functions, or continuous analogues of
these as kernels of integral transforms.

Then we mainly have:

@ 4F3(1), 7Fs(1), 9Fs(1) hypergeometric functions, and g-
and hyperbolic analogues, and only one elliptic analogue

@ Moreover in these cases restrictions on parameters
(balanced, very-well poised)

@ Always distinction between terminating and
non-terminating series

@ In non-terminating cases alternative representations as
hypergeometric (Mellin-Barnes type) integral; crucial role
of gamma function (ordinary, g-, hyperbolic, elliptic)
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Symmetries of 3F2(1)

Thomae’s transformation formula rediscovered by Ramanujan:

£ a,b,c_1 B rd)rie)r(d+e—a—b-c)
’ 2( de’ ) rar(d+e—a—c)f(d+e—a-b)

w oF d—av,e—a,dJre—a—b—c.1
2\ d+e-a-cd+e—a-b' )

Hardy (Ramanujan, Twelve lectures on subject suggested by
his life and work, 1940):

1 F<a,b,c_1>
rd)r(eyrf(d+e—a—b-c) > 2\ de’

is symmetricind,e,d+e—b—-c,d+e—c—a,d+e—a—b.
Symmetry group Ss = W(A4) (Weyl group of root system Ay).
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Balanced 4F3(1)

rFroi(ai,...,ar by,...,b,_1; 2) is called balanced
ifby+...+b_1=a1+...+a +1.

Beyer-Louck-Stein rediscovered Hardy’s Ss-symmetry for
3F2(1), and found symmetry group Sg = W/(As) for terminating
balanced 4F3(1):

4Fs<_2ae’bf’c:1) (d+e+f=-ntatbtcti)

Related orthogonal polynomials: Wilson polynomials Wp(x?) =

—-nn+a+b+c+d-—1,a+ix,a—ix
const. 4F3 1,

a+ba+c,a+d

and Racah polynomials. These form the top level of the Askey
scheme of hypergeometric orthogonal polynomials.
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Askey scheme

Wilson

Hypergeometric hiel



Wilson functions

For Wilson functions (non-polynomial analogues of Wilson
polynomials) one has to go to the 7Fg level.

Well-poised hypergeometric series:

a17a27"'7af -z
rr 1+ay—a,...,1+a —a )
This is very well-poised (VWP) if a = 1 + %31.
Terminating VWP 7Fg(1) = const. x terminating balanced
4F3(1).
Non-terminating VWP 7Fg(1) = linear combination of two
balanced 4F3(1)’s.

Wilson function transform (Groenevelt).
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The gFg top level

Terminating 2-balanced VWP gFg(1):
Transformation formula (Bailey, Whipple).
Biorthogonal rational functions (J. Wilson).

Non-terminating 2-balanced VWP gFg(1):
Four-term transformation formula (Bailey).
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g-hypergeometric series

Let0 < g< 1.
g-Pochhammer symbol-

(2 Q) == ( (1-qa)...(1-q""a),
(@)oo := ( (1 —gqa)(1 —q%a)...,
(31,...,ar;Q)k = (81;(] k...(a,;q)k.

1—a)
1—a)
g-hypergeometric r¢,_1 series:

at,...,ar = (a17"')af;q)k k
_ :q,Z | = z".
ror 1<b1,...,b,1 I ) kz:%(b1,...,b,1;q)k(q;q)k

Terminating if a1 = g~" (n nonnegative integer).
If nonterminating then converges for |z| < 1.

Balancedif by ...b,_1 =qay ...ar.
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Askey-Wilson polynomials and functions

Terminating balanced 4¢3 of argument q:
@ Symmetry group Sg = W(As) (Van der Jeugt & S. Rao).
@ Askey-Wilson polynomials:
q ", q" 'abcd, az,az='
ab, ac, ad a4
@ Askey-Wilson polynomials together with g-Racah
polynomials form the top level of the g-Askey scheme.
Very well-poised (VWP) g-hypergeometric series:

pn(%(z—i—zq) := const. 4<z53<

1 1
a17qa127_qa127a47"'7ar
rVr—1(a1§a4,~~~aar§q,Z) = rOr_1 1 3 1 q,
af,—a;,qai/as,...,qai/ar
P

Non-terminating very well-poised g¢7 of argument Pl
@ Sum of two non-terminating balanced 4¢3’s of argument q.
@ Symmetry group W(Ds) (Van der Jeugt & S. Rao).

@ Askey-Wilson functions (Stokman).
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Bailey’s two-term 19¢g function

®(a; b;c,d, e f,g,h;q):=
(ag/c,aq/d,aq/e,aq/f,aq/g,aq/h; Q)
X (bC/a, bd/av be/a7 bf/av bg/a7 bh/a; q)oo/(b/aa aq, q)oo
x10Ve(aib,c,d, e f,9,h;q,q)

. (ba/c,bg/d, ba/e, bq/t,bg/g.bg/h,c.d. e 1, g, I G)w
(a/b,b2q/a; q)o
x 10 Vo(b?/a; b, bc/a,bd/a, be/a, bf/a, bg/a,bh/a; q, q),

where a®g? = bedefgh.
Bailey’s four-term transformation formula:
o(a b;c,d, e f,g h-q):d)(azq-b-aq aq a9 o h-q)
! ! ) ) ) ) ) 1 Cdel ’de7 Ce’ Cd’ ) ) 1 *

Symmetry group W(Eg) (Lievens & Van der Jeugt).



10¢9: the terminating case

Terminating balanced very well-poised 19¢g’s of argument q:
@ Bailey’s two-term transformation formula.
@ Same symmetry group W(Eg).
@ Biorthogonal rational functions (Rahman, J. Wilson)

Dynkin diagram of Eg:

od oo

Eg
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The elliptic hypergeometric integral

Let p,q € C (|pl,[q] < 1).
Elliptic gamma function (Ruijsenaars):
0§z 1pit ght

re(Z;pa q) = H 1 —zp/qk

J:k=0

Elliptic hypergeometric integral (Spiridonov):

Hj‘s:1 re(szj[1 0, q) dz
Se(t; P, q) = r (72 -
c e(z%%,p,q)  2r7iz

(I 4 = PP6P),

where C is a deformation of the unit circle which separates the
poles tip™q" (m,n=0,1,...) from the poles tj‘1p*mq*”
(mn=20,1,...).

The transformations of Sq(t; p, @) form a symmetry group which
is isomorphic to W(E7) (Rains).
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Elliptic hypergeometric differential equation and series

Putfs = az, t = a/z, f(z) = Se(t; p, q). Then f(z) satisfies the
elliptic hypergeometric differential equation (Spiridonov):

A(z)(f(qz) — f(2)) + A(z ") (f(g"'2) — f(2)) + vf(z) =0,
where A(z) and v are suitable products of theta functions
6(b; p) := (b, pb™"; P)os.
Elliptic Pochhammer symbol-
(@ q,p)k :=0(aip)i(qa;p)...0(q

Elliptic hypergeometric series:

oo

ai,...,ar (a1;9,P)k - --(ar; q, P)k K
E, _ 1q,p,Z ) = z",
- 1(b1,...,br_1 7P ) kz:;(b1:q,p)k.-~(br-1:q,p)k(q;q7p)k

k—1 a p)

where a;...a, = by...b,_1q.
This is the elliptic balancing condition in order that
(k + 1)-th term / k-th term is doubly periodic in k.
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Two-index biorthogonal rational elliptic hypergeometric

functions

Very well-poised elliptic hypergeometric series:

r r—1(a1;367"'7af;q7p) =

1 1
a1,qa?,—qa?,q(ai/p)?, —q(aip)?. a, .., ar
I’Ef71 % % 1 1 1q7p1_1 )
aj,—aj,(pai)z,—(a1/p)z,qai/as....,qa1/ar

1,

where ag...a, = q%’_"’afr 3,

A certain terminating 1» V44 satisfies the elliptic hypergeometric
equation. It was first introduced by Frenkel & Turaev (elliptic
6j-symbol). They gave a transformation formula, and a 1o Vg
summation formula as a degenerate case.

Products R(z; q, p) Rm(z; p, q) of such rational functions
satisfy a two-index biorthogonality (Spiridonov).
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Hyperbolic hypergeometric series

In elliptic hypergeometric theory there are no transformation
formulas below the 12 V1 level.

However, there is a limit case of the elliptic hypergeometric
function, called hyperbolic hypergeometric function, started by
Ruijsenaars, which is still above the g-case and with the
following features:

@ On top level again W(E7) symmetry.
@ There is also a hyperbolic Askey-Wilson function.
@ Has analytic continuation to g on unit circle.

@ Explicit expressions as products of two g-hypergeometric
functions or a sum of two such products.
For details see the Thesis by Fokko van de Bult, Hyperbolic
Hypergeometric Functions, 2007 (partly based on papers jointly
with Rains and Stokman).
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Second part
Double affine Hecke algebra in the Askey-Wilson case and
relationship with Zhedanov algebra
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Askey-Wilson polynomials

Askey-Wilson operator acting on symmetric Laurent
polynomials f[z] = f[z~1]:

(Dymf)[2] := AlZ] (f[qz] - f[2])

+ Az ") (flg7"2] - f[2]) + (1 + g 'abcd) f[2],

where
)(1—bz)(1 —cz)(1 — dz)
(1-2%)(1 - qz?) '
Askey-Wilson polynomials (monic symmetric Laurent
polynomials Pp[z] = Py[z= 1= 2"+ --- 4+ 27"):

Alz] = (1—az

Pn[z] := const. 4q53<

Eigenvalue equation:

q ", q" 'abcd, az,az=!
ab, ac, ad q)

DymPn = MnPn, where )\, :=q "+ q" 'abcd.
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Double affine Hecke algebra of type (Cy, Cy)

Let0<g<1,ab,c,de C\{0},abcd #q " (m=0,1,2,...).

The double affine Hecke algebra $ of type (CY, Cy) is the
algebra with generators Z, Z=1, T, T, and with relations

(Ty +ab)(Ty +1) =0,
(To+q 'cd)(To+1) =0,
(T1yZ+a)(T1Z + b) =0,
(qToZ "+ ¢)(qToZ ' +d)=0.

(Sahi; Noumi & Stokman; Macdonald’s 2003 book)

Ty and Ty are invertible. Let

Y =TTy, D:=Y+q 'abcdY .
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Polynomial representation of

Let A be the space of Laurent polynomials f[z].
The polynomial representation of § on A is given by

(20)2) := 212],

(TiAl2) = —abflz] + 1= ?Zz(lg_ %2) (f121] - ).

(c—2z)(d—-2)
e

(Tof)[2] == —q Tcd f[2] + (fl2] = flaz"])

(g-difference-reflection operators; g-analogues of the Dunkl
operator). Then

(T1f)[z] = —abf[z] iff f[z] = flz71],

and
(DA)[z] = (Dymf)l2] it flz] = fz""].
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Eigenspaces of D

Let
Qulz] :=a b 'z '(1 — az)(1 — bz)P,_1[z;qa, gb,c,d | q].
Then

DQn = /\nQna T1 Qn = —Qn-
DP, = )\nPn, T1Pp = —abQ)y,.

D has eigenvalues A\, (n=0,1,2,...).
T; has eigenvalues —1, —ab.
D and T; commute.

The eigenspace of D for \, has basis P,,Q, (n=1,2,...)
or Py (n=0).
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Non-symmetric Askey-Wilson polynomials

Let
ab
Efn.:abi__I(Pn—Qn) (n:1,2,...),
g .. (1-g"ab)(1 — q"'abcd) p _ a(1-g")(1 - q" 'cd) Q
" (1—ab)(1 —g2—labed) " (1 —ab)(1 —qg®—Tabcd)
(n=1,2,...).
Then

YEfn: q_n Efn (n: 1,27...),
YE,=q" 'abcdE, (n=0,1,2,..).

The Ej[z] (n € Z) are the nonsymmetric Askey-Wilson
polynomials. They form a biorthogonal system with respect to a
suitable inner product given by a contour integral.
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Zhedanov’s algebra AW(3)

Zhedanov's algebra AW(3) is the algebra generated by Kp, Kj
with relations

(g + g K KoKi — K2Ky — KoKZ = BKy + Co Ko + D,
(g + g KoK Ky — K2Ky — K1K2 = BKy + Cy Ky + Dy.

The Casimir operator
Q = KiKogK1 Ko — (67 + 1 + g 2) KoKy Ko K
+(q+q KFK? + (a+q ") (CokS + C1KT)
+B((g+1+q KeKq + KiKp)
+(g+1+q ") (DoKo + D1 K1).
commutes in AW(3) with the generators Ky, Kj.
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The polynomial representation of AW(3)

Let e4, 65, €3, €4 be the elementary symmetric polynomials in
ab,c,d.
Put for the structure constants:

B =(1-qg ")?(es+ qey),

Co:=(q-q),

Ci:=q '(q—q e,

Do := —q~°(1 = q)*(1 + q)(es + gez + %),

Dy :=—q°(1 - q)°(1 + q)(eres + qes).

Then the polynomial representation of AW(3) on the space
Agsym 0of symmetric Laurent polynomials in z is given by

(Kof)[2] := (Dsymf)I2],
(Kif)[2] = (z+ z Hf[z].
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The quotient algebra AW (3, Qp)

In the polynomial representation (which is irreducible for
generic values of a, b, ¢, d), Q becomes a constant scalar:

(Qf)[z] = Qv f[z], where
Qo:=q*(1-q)? (q4(e4 — &)+ q°(6f — ere3 — 26,)

— g%(e264 + 264 + €2) + q(€5 — 2664 — €163) + e4(1 — 62)).

Definition
AW(3, Qy) is the algebra AW(3) with further relation Q = Q.

Theorem (K, 2007)

A basis of AW(3, Q) is given by
KJ(KiKo)'K™ (m,n=0,1,2,..., 1=0,1).
The polynomial representation of AW (3, Qy) on Ay is faithful.
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Central extension of AW(3)

Let the algebra ZVV(S, Qp) be generated by Kpy, Ki, T such that
T; commutes with Ky, K; and with further relations

(Ty +ab)(Ty +1) = 0,
(9 + g K KoKi — K2Ky — KoK? = BK; + Co Ko + Do
+ EKi(Ty + ab) + Fo(T; + ab),
(q+q )KoKi Ko — KEKy — K1KZ = BKy + C1 Ky + Dy
+ E Ko(Tq + ab) + F1(Tq + ab),
Q =(KiKo)? — (¢ + 1+ q2)Ko(Ki Ko)Ki
+(q+q KEKE + (g+q ")(CoKE + C1K?)
+ (B+ E(T1 +ab)) ((g+ 1+ q ")KoKi + KiKo)
+(g+1+9 ") (Do + Fo(T1 + ab)) Ko
+(q+1+g ") (D + Fi(Ty + ab))Ki + G(Ts + ab) = Qu,

where E, Fg, F1, G can be explicitly specified.
Then Q commutes with all elements of AW(3).
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Connecting AW(3, Q) with $

AW(3, Qp) acts on A such that Ko, K;, Ty act as D, Z+ zZ1
Ty, respectively, in the polynomial representation of $ on A.

This representation is faithful.

AW(3, Qu) has an injective embedding in $.

Theorem (K, 2007)

Letab # 1.
AW(3, Qo) is naturally isomorphic to the spherical subalgebra

AW(3, Qo) is the centralizer of Ty in &.
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