The hierarchy of hypergeometric functions and related algebras

Tom H. Koornwinder

University of Amsterdam, thk@science.uva.nl
lecture, December 20, 2007
International Conference on Number Theory, Theoretical Physics and Special Functions, Kumbakonam, India
last modified: March 14, 2008

Hypergeometric series

Pochhammer symbol: $\quad(a)_{k}:=a(a+1) \ldots(a+k-1)$.
Hypergeometric series: $\quad{ }_{r} F_{s}\left(a_{1}, \ldots, a_{r} ; b_{1}, \ldots, b_{s} ; z\right)$

$$
={ }_{r} F_{s}\left(\begin{array}{l}
a_{1}, \ldots, a_{r} \\
b_{1}, \ldots, b_{s}
\end{array} ; z\right):=\sum_{k=0}^{\infty} \frac{\left(a_{1}\right)_{k} \ldots\left(a_{r}\right)_{k}}{\left(b_{1}\right)_{k} \ldots\left(b_{s}\right)_{k} k!} z^{k} .
$$

Terminating if $a_{1}=-n$ (n nonnegative integer).
If nonterminating and $s=r-1$ then converges for $|z|<1$.
Gauss hypergeometric series: ${ }_{2} F_{1}(a, b ; c ; z)$.
Jacobi polynomials:

$$
P_{n}^{(\alpha, \beta)}(x):=\text { const. }{ }_{2} F_{1}\left(-n, n+\alpha+\beta+1 ; \alpha+1 ; \frac{1}{2}(1-x)\right)
$$

Orthogonality $\quad(\alpha, \beta>-1)$:

$$
\int_{-1}^{1} P_{n}^{(\alpha, \beta)}(x) P_{m}^{(\alpha, \beta)}(x)(1-x)^{\alpha}(1+x)^{\beta} d x=0 \quad(n \neq m)
$$

Five different types of generalizations

The Gauss hypergeometric function / Jacobi polynomial case can be generalized in five different directions, which often can be combined, and ideally should always be combined.
(1) Higher hypergeometric series; Askey scheme of hypergeometric orthogonal polynomials
(2) q-hypergeometric series, elliptic and hyperbolic hypergeometric function
(3) Non-symmetric functions (double affine Hecke algebras)
(4) Four regular singularities (Heun equation)
(5) Multivariable special functions associated with root systems (Heckman-Opdam, Macdonald, Macdonald-K, Cherednik, ...)
I will not discuss items 4 and 5 here. However, item 3 was inspired by the multi-variable case.

Plan of the lecture

First part
Higher hypergeometric series and q - and elliptic analogues

Second part

Double affine Hecke algebra in the Askey-Wilson case and relationship with Zhedanov algebra

Criteria for the (q-)hypergeometric hierarchy

For hypergeometric and q-hypergeometric functions we will restrict to some cases which:

- have a rich set of transformations, which form a nice symmetry group;
- allow harmonic analysis: orthogonal polynomials or biorthogonal rational functions, or continuous analogues of these as kernels of integral transforms.
Then we mainly have:
- ${ }_{4} F_{3}(1),{ }_{7} F_{6}(1),{ }_{9} F_{8}(1)$ hypergeometric functions, and q and hyperbolic analogues, and only one elliptic analogue
- Moreover in these cases restrictions on parameters (balanced, very-well poised)
- Always distinction between terminating and non-terminating series
- In non-terminating cases alternative representations as hypergeometric (Mellin-Barnes type) integral; crucial role of gamma function (ordinary, q-, hyperbolic, elliptic)

Symmetries of ${ }_{3} F_{2}(1)$

Thomae's transformation formula rediscovered by Ramanujan:

$$
\begin{aligned}
& { }_{3} F_{2}\binom{a, b, c}{d, e}=\frac{\Gamma(d) \Gamma(e) \Gamma(d+e-a-b-c)}{\Gamma(a) \Gamma(d+e-a-c) \Gamma(d+e-a-b)} \\
& \times{ }_{3} F_{2}\binom{d-a, e-a, d+e-a-b-c}{d+e-a-c, d+e-a-b} .
\end{aligned}
$$

Hardy (Ramanujan, Twelve lectures on subject suggested by his life and work, 1940):

$$
\frac{1}{\Gamma(d) \Gamma(e) \Gamma(d+e-a-b-c)}{ }_{3} F_{2}\left(\begin{array}{c}
a, b, c \\
d, e
\end{array}{ }^{1}\right)
$$

is symmetric in $d, e, d+e-b-c, d+e-c-a, d+e-a-b$. Symmetry group $S_{5}=W\left(A_{4}\right) \quad$ (Weyl group of root system A_{4}).

Balanced ${ }_{4} F 3(1)$

${ }_{r} F_{r-1}\left(a_{1}, \ldots, a_{r} ; b_{1}, \ldots, b_{r-1} ; z\right)$ is called balanced
if $b_{1}+\ldots+b_{r-1}=a_{1}+\ldots+a_{r}+1$.
Beyer-Louck-Stein rediscovered Hardy's S_{5}-symmetry for ${ }_{3} F_{2}(1)$, and found symmetry group $S_{6}=W\left(A_{5}\right)$ for terminating balanced ${ }_{4} F_{3}(1)$:

$$
{ }_{4} F_{3}\left(\begin{array}{c}
-n, a, b, c \\
d, e, f
\end{array} ; 1\right) \quad(d+e+f=-n+a+b+c+1) .
$$

Related orthogonal polynomials: Wilson polynomials $W_{n}\left(x^{2}\right):=$

$$
\text { const. }{ }_{4} F_{3}\binom{-n, n+a+b+c+d-1, a+i x, a-i x}{a+b, a+c, a+d},
$$

and Racah polynomials. These form the top level of the Askey scheme of hypergeometric orthogonal polynomials.

Wilson functions

For Wilson functions (non-polynomial analogues of Wilson polynomials) one has to go to the ${ }_{7} F_{6}$ level.

Well-poised hypergeometric series:

$$
{ }_{r} F_{r-1}\left(\begin{array}{c}
a_{1}, a_{2}, \ldots, a_{r} \\
1+a_{1}-a_{2}, \ldots, 1+a_{1}-a_{r}
\end{array} ; z\right) .
$$

This is very well-poised (VWP) if $a_{2}=1+\frac{1}{2} a_{1}$.
Terminating VWP ${ }_{7} F_{6}(1)=$ const. \times terminating balanced ${ }_{4} F_{3}(1)$.
Non-terminating VWP ${ }_{7} F_{6}(1)=$ linear combination of two balanced ${ }_{4} F_{3}(1)$'s.

Wilson function transform (Groenevelt).

The ${ }_{9} F_{8}$ top level

Terminating 2-balanced VWP ${ }_{9} F_{8}(1)$:
Transformation formula (Bailey, Whipple).
Biorthogonal rational functions (J. Wilson).
Non-terminating 2-balanced VWP ${ }_{9} F_{8}(1)$:
Four-term transformation formula (Bailey).

q-hypergeometric series

Let $0<q<1$.
q-Pochhammer symbol:

$$
\begin{aligned}
(a ; q)_{k} & :=(1-a)(1-q a) \ldots\left(1-q^{k-1} a\right), \\
(a ; q)_{\infty} & :=(1-a)(1-q a)\left(1-q^{2} a\right) \ldots, \\
\left(a_{1}, \ldots, a_{r} ; q\right)_{k} & :=\left(a_{1} ; q\right)_{k} \ldots\left(a_{r} ; q\right)_{k} .
\end{aligned}
$$

q-hypergeometric ${ }_{r} \phi_{r-1}$ series:

$$
{ }_{r} \phi_{r-1}\left(\begin{array}{c}
a_{1}, \ldots, a_{r} \\
b_{1}, \ldots, b_{r-1}
\end{array} ; q, z\right):=\sum_{k=0}^{\infty} \frac{\left(a_{1}, \ldots, a_{r} ; q\right)_{k}}{\left(b_{1}, \ldots, b_{r-1} ; q\right)_{k}(q ; q)_{k}} z^{k}
$$

Terminating if $a_{1}=q^{-n}$ (n nonnegative integer).
If nonterminating then converges for $|z|<1$.
Balanced if $b_{1} \ldots b_{r-1}=q a_{1} \ldots a_{r}$.

Askey-Wilson polynomials and functions

Terminating balanced ${ }_{4} \phi_{3}$ of argument q :

- Symmetry group $S_{6}=W\left(A_{5}\right)$ (Van der Jeugt \& S. Rao).
- Askey-Wilson polynomials:

$$
p_{n}\left(\frac{1}{2}\left(z+z^{-1}\right):=\text { const. } 4_{4} \phi_{3}\left(\begin{array}{c}
q^{-n}, q^{n-1} a b c d, a z, a z^{-1} \\
a b, a c, a d
\end{array} ; q, q\right)\right.
$$

- Askey-Wilson polynomials together with q-Racah polynomials form the top level of the q-Askey scheme.
Very well-poised (VWP) q-hypergeometric series:
${ }_{r} V_{r-1}\left(a_{1} ; a_{4}, \ldots, a_{r} ; q, z\right):={ }_{r} \phi_{r-1}\left(\begin{array}{c}a_{1}, q a_{1}^{\frac{1}{2}},-q a_{1}^{\frac{1}{2}}, a_{4}, \ldots, a_{r} \\ a_{1}^{\frac{1}{2}},-a_{1}^{\frac{1}{2}}, q a_{1} / a_{4}, \ldots, q a_{1} / a_{r}\end{array} ; q, z\right)$
Non-terminating very well-poised ${ }_{8} \phi_{7}$ of argument $\frac{q^{2} a_{1}^{2}}{a_{4} a_{5} a_{6} a_{7} a_{8}}$:
- Sum of two non-terminating balanced $4 \phi_{3}$'s of argument q.
- Symmetry group $W\left(D_{5}\right)$ (Van der Jeugt \& S. Rao).
- Askey-Wilson functions (Stokman).

Bailey's two-term ${ }_{10} \phi_{9}$ function

$$
\begin{aligned}
& \Phi(a ; b ; c, d, e, f, g, h ; q):= \\
& \quad \begin{array}{l}
(a q / c, a q / d, a q / e, a q / f, a q / g, a q / h ; q)_{\infty} \\
\quad \times(b c / a, b d / a, b e / a, b f / a, b g / a, b h / a ; q)_{\infty} /(b / a, a q ; q)_{\infty} \\
\quad \times{ }_{10} V_{9}(a ; b, c, d, e, f, g, h ; q, q) \\
+\frac{(b q / c, b q / d, b q / e, b q / f, b q / g, b q / h, c, d, e, f, g, h ; q)_{\infty}}{\left(a / b, b^{2} q / a ; q\right) \infty}
\end{array}
\end{aligned}
$$

$$
\times{ }_{10} V_{9}\left(b^{2} / a ; b, b c / a, b d / a, b e / a, b f / a, b g / a, b h / a ; q, q\right)
$$

where $a^{3} q^{2}=b c d e f g h$.
Bailey's four-term transformation formula:

$$
\Phi(a ; b ; c, d, e, f, g, h ; q)=\Phi\left(\frac{a^{2} q}{c d e} ; b ; \frac{a q}{d e}, \frac{a q}{c e}, \frac{a q}{c d}, f, g, h ; q\right)
$$

Symmetry group $W\left(E_{6}\right)$ (Lievens \& Van der Jeugt).

$10 \phi_{9}$: the terminating case

Terminating balanced very well-poised ${ }_{10} \phi_{9}$'s of argument q :

- Bailey's two-term transformation formula.
- Same symmetry group $W\left(E_{6}\right)$.
- Biorthogonal rational functions (Rahman, J. Wilson)

Dynkin diagram of E_{6} :

The elliptic hypergeometric integral

Let $p, q \in \mathbb{C}(|p|,|q|<1)$.
Elliptic gamma function (Ruijsenaars):

$$
\Gamma_{e}(z ; p, q):=\prod_{j, k=0}^{\infty} \frac{1-z^{-1} p^{j+1} q^{k+1}}{1-z p^{j} q^{k}}
$$

Elliptic hypergeometric integral (Spiridonov):

$$
S_{e}(t ; p, q):=\int_{\mathcal{C}} \frac{\prod_{j=1}^{8} \Gamma_{e}\left(t_{j} z^{ \pm 1} ; p, q\right)}{\Gamma_{e}\left(z^{ \pm 2} ; p, q\right)} \frac{d z}{2 \pi i z} \quad\left(\prod_{j=1}^{8} t_{j}=p^{2} q^{2}\right),
$$

where \mathcal{C} is a deformation of the unit circle which separates the poles $t_{j} p^{m} q^{n}(m, n=0,1, \ldots)$ from the poles $t_{j}^{-1} p^{-m} q^{-n}$ ($m, n=0,1, \ldots$).
The transformations of $S_{e}(t ; p, q)$ form a symmetry group which is isomorphic to $W\left(E_{7}\right)$ (Rains).

Elliptic hypergeometric differential equation and series

Put $t_{6}=a z, t_{7}=a / z, f(z)=S_{e}(t ; p, q)$. Then $f(z)$ satisfies the elliptic hypergeometric differential equation (Spiridonov):

$$
A(z)(f(q z)-f(z))+A\left(z^{-1}\right)\left(f\left(q^{-1} z\right)-f(z)\right)+\nu f(z)=0
$$

where $A(z)$ and ν are suitable products of theta functions

$$
\theta(b ; p):=\left(b, p b^{-1} ; p\right)_{\infty}
$$

Elliptic Pochhammer symbol:

$$
(a ; q, p)_{k}:=\theta(a ; p) \theta(q a ; p) \ldots \theta\left(q^{k-1} a ; p\right)
$$

Elliptic hypergeometric series:

$$
{ }_{r} E_{r-1}\left(\begin{array}{c}
a_{1}, \ldots, a_{r} \\
b_{1}, \ldots, b_{r-1}
\end{array} q, p ; z\right):=\sum_{k=0}^{\infty} \frac{\left(a_{1} ; q, p\right)_{k} \ldots\left(a_{r} ; q, p\right)_{k}}{\left(b_{1} ; q, p\right)_{k} \ldots\left(b_{r-1} ; q, p\right)_{k}(q ; q, p)_{k}} z^{k}
$$

where $a_{1} \ldots a_{r}=b_{1} \ldots b_{r-1} q$.
This is the elliptic balancing condition in order that $(k+1)$-th term / k-th term is doubly periodic in k.

Two-index biorthogonal rational elliptic hypergeometric functions

Very well-poised elliptic hypergeometric series:

$$
\begin{aligned}
& { }_{r} V_{r-1}\left(a_{1} ; a_{6}, \ldots, a_{r} ; q, p\right):= \\
& { }_{r} E_{r-1}\left(\begin{array}{l}
a_{1}, q a_{1}^{\frac{1}{2}},-q a_{1}^{\frac{1}{2}}, q\left(a_{1} / p\right)^{\frac{1}{2}},-q\left(a_{1} p\right)^{\frac{1}{2}}, a_{6}, \ldots, a_{r} \\
a_{1}^{\frac{1}{2}},-a_{1}^{\frac{1}{2}},\left(p a_{1}\right)^{\frac{1}{2}},-\left(a_{1} / p\right)^{\frac{1}{2}}, q a_{1} / a_{6}, \ldots, q a_{1} / a_{r}
\end{array} ; q, p ;-1\right),
\end{aligned}
$$

where $a_{6} \ldots a_{r}=q^{\frac{1}{2} r-4} a_{1}^{\frac{1}{2} r-3}$.
A certain terminating ${ }_{12} V_{11}$ satisfies the elliptic hypergeometric equation. It was first introduced by Frenkel \& Turaev (elliptic $6 j$-symbol). They gave a transformation formula, and a ${ }_{10} V_{9}$ summation formula as a degenerate case.
Products $R_{n}(z ; q, p) R_{m}(z ; p, q)$ of such rational functions satisfy a two-index biorthogonality (Spiridonov).

Hyperbolic hypergeometric series

In elliptic hypergeometric theory there are no transformation formulas below the ${ }_{12} V_{11}$ level.

However, there is a limit case of the elliptic hypergeometric function, called hyperbolic hypergeometric function, started by
Ruijsenaars, which is still above the q-case and with the following features:

- On top level again $W\left(E_{7}\right)$ symmetry.
- There is also a hyperbolic Askey-Wilson function.
- Has analytic continuation to q on unit circle.
- Explicit expressions as products of two q-hypergeometric functions or a sum of two such products.
For details see the Thesis by Fokko van de Bult, Hyperbolic Hypergeometric Functions, 2007 (partly based on papers jointly with Rains and Stokman).

Second part
 Double affine Hecke algebra in the Askey-Wilson case and relationship with Zhedanov algebra

Askey-Wilson polynomials

Askey-Wilson operator acting on symmetric Laurent polynomials $f[z]=f\left[z^{-1}\right]$:

$$
\begin{aligned}
\left(D_{\text {sym }} f\right)[z]:= & A[z](f[q z]-f[z]) \\
& +A\left[z^{-1}\right]\left(f\left[q^{-1} z\right]-f[z]\right)+\left(1+q^{-1} a b c d\right) f[z]
\end{aligned}
$$

where

$$
A[z]:=\frac{(1-a z)(1-b z)(1-c z)(1-d z)}{\left(1-z^{2}\right)\left(1-q z^{2}\right)}
$$

Askey-Wilson polynomials (monic symmetric Laurent polynomials $\left.P_{n}[z]=P_{n}\left[z^{-1}\right]=z^{n}+\cdots+z^{-n}\right)$:

$$
P_{n}[z]:=\text { const. } 4 \phi_{3}\left(\begin{array}{c}
q^{-n}, q^{n-1} a b c d, a z, a z^{-1} \\
a b, a c, a d
\end{array} ; q, q\right),
$$

Eigenvalue equation:
$D_{\text {sym }} P_{n}=\lambda_{n} P_{n}, \quad$ where $\quad \lambda_{n}:=q^{-n}+q^{n-1} a b c d$.

Double affine Hecke algebra of type $\left(C_{1}^{\vee}, C_{1}\right)$

Let $0<q<1, a, b, c, d \in \mathbb{C} \backslash\{0\}, a b c d \neq q^{-m}(m=0,1,2, \ldots)$.

Definition

The double affine Hecke algebra $\tilde{\mathfrak{H}}$ of type $\left(C_{1}^{\vee}, C_{1}\right)$ is the algebra with generators Z, Z^{-1}, T_{1}, T_{0} and with relations

$$
\begin{aligned}
\left(T_{1}+a b\right)\left(T_{1}+1\right) & =0 \\
\left(T_{0}+q^{-1} c d\right)\left(T_{0}+1\right) & =0 \\
\left(T_{1} Z+a\right)\left(T_{1} Z+b\right) & =0 \\
\left(q T_{0} Z^{-1}+c\right)\left(q T_{0} Z^{-1}+d\right) & =0
\end{aligned}
$$

(Sahi; Noumi \& Stokman; Macdonald's 2003 book)
T_{1} and T_{0} are invertible. Let

$$
Y:=T_{1} T_{0}, \quad D:=Y+q^{-1} a b c d Y^{-1}
$$

Polynomial representation of $\tilde{\mathfrak{H}}$

Let \mathcal{A} be the space of Laurent polynomials $f[z]$.
The polynomial representation of $\tilde{\mathfrak{H}}$ on \mathcal{A} is given by

$$
\begin{aligned}
(Z f)[z] & :=z f[z], \\
\left(T_{1} f\right)[z] & :=-a b f[z]+\frac{(1-a z)(1-b z)}{1-z^{2}}\left(f\left[z^{-1}\right]-f[z]\right), \\
\left(T_{0} f\right)[z] & :=-q^{-1} c d f[z]+\frac{(c-z)(d-z)}{q-z^{2}}\left(f[z]-f\left[q z^{-1}\right]\right)
\end{aligned}
$$

(q-difference-reflection operators; q-analogues of the Dunkl operator). Then

$$
\left(T_{1} f\right)[z]=-a b f[z] \quad \text { iff } \quad f[z]=f\left[z^{-1}\right]
$$

and

$$
(D f)[z]=\left(D_{\text {sym }} f\right)[z] \quad \text { if } \quad f[z]=f\left[z^{-1}\right] .
$$

Eigenspaces of D

Let

$$
Q_{n}[z]:=a^{-1} b^{-1} z^{-1}(1-a z)(1-b z) P_{n-1}[z ; q a, q b, c, d \mid q]
$$

Then

$$
\begin{array}{ll}
D Q_{n}=\lambda_{n} Q_{n}, & T_{1} Q_{n}=-Q_{n} \\
D P_{n}=\lambda_{n} P_{n}, & T_{1} P_{n}=-a b Q_{n}
\end{array}
$$

D has eigenvalues $\lambda_{n}(n=0,1,2, \ldots)$.
T_{1} has eigenvalues $-1,-a b$.
D and T_{1} commute.
The eigenspace of D for λ_{n} has basis $P_{n}, Q_{n}(n=1,2, \ldots)$
or $P_{0}(n=0)$.

Non-symmetric Askey-Wilson polynomials

Let

$$
\begin{aligned}
& E_{-n}:=\frac{a b}{a b-1}\left(P_{n}-Q_{n}\right) \quad(n=1,2, \ldots), \\
& E_{n}:=\frac{\left(1-q^{n} a b\right)\left(1-q^{n-1} a b c d\right)}{(1-a b)\left(1-q^{2 n-1} a b c d\right)} P_{n}-\frac{a b\left(1-q^{n}\right)\left(1-q^{n-1} c d\right)}{(1-a b)\left(1-q^{2 n-1} a b c d\right)} Q_{n} \\
& \quad(n=1,2, \ldots)
\end{aligned}
$$

Then

$$
\begin{aligned}
Y E_{-n} & =q^{-n} E_{-n} & & (n=1,2, \ldots) \\
Y E_{n} & =q^{n-1} a b c d E_{n} & & (n=0,1,2, \ldots)
\end{aligned}
$$

The $E_{n}[z](n \in \mathbb{Z})$ are the nonsymmetric Askey-Wilson polynomials. They form a biorthogonal system with respect to a suitable inner product given by a contour integral.

Zhedanov's algebra AW(3)

Definition

Zhedanov's algebra $A W(3)$ is the algebra generated by K_{0}, K_{1} with relations

$$
\begin{aligned}
& \left(q+q^{-1}\right) K_{1} K_{0} K_{1}-K_{1}^{2} K_{0}-K_{0} K_{1}^{2}=B K_{1}+C_{0} K_{0}+D_{0}, \\
& \left(q+q^{-1}\right) K_{0} K_{1} K_{0}-K_{0}^{2} K_{1}-K_{1} K_{0}^{2}=B K_{0}+C_{1} K_{1}+D_{1} .
\end{aligned}
$$

The Casimir operator

$$
\begin{aligned}
Q & :=K_{1} K_{0} K_{1} K_{0}-\left(q^{2}+1+q^{-2}\right) K_{0} K_{1} K_{0} K_{1} \\
& +\left(q+q^{-1}\right) K_{0}^{2} K_{1}^{2}+\left(q+q^{-1}\right)\left(C_{0} K_{0}^{2}+C_{1} K_{1}^{2}\right) \\
& +B\left(\left(q+1+q^{-1}\right) K_{0} K_{1}+K_{1} K_{0}\right) \\
& +\left(q+1+q^{-1}\right)\left(D_{0} K_{0}+D_{1} K_{1}\right) .
\end{aligned}
$$

commutes in $A W(3)$ with the generators K_{0}, K_{1}.

The polynomial representation of $\operatorname{AW}(3)$

Let $e_{1}, e_{2}, e_{3}, e_{4}$ be the elementary symmetric polynomials in a, b, c, d.
Put for the structure constants:

$$
\begin{aligned}
& B:=\left(1-q^{-1}\right)^{2}\left(e_{3}+q e_{1}\right) \\
& C_{0}:=\left(q-q^{-1}\right)^{2} \\
& C_{1}:=q^{-1}\left(q-q^{-1}\right)^{2} e_{4} \\
& D_{0}:=-q^{-3}(1-q)^{2}(1+q)\left(e_{4}+q e_{2}+q^{2}\right) \\
& D_{1}:=-q^{-3}(1-q)^{2}(1+q)\left(e_{1} e_{4}+q e_{3}\right)
\end{aligned}
$$

Then the polynomial representation of $A W(3)$ on the space $\mathcal{A}_{\text {sym }}$ of symmetric Laurent polynomials in z is given by

$$
\begin{aligned}
& \left(K_{0} f\right)[z]:=\left(D_{\text {sym }} f\right)[z] \\
& \left(K_{1} f\right)[z]:=\left(z+z^{-1}\right) f[z] .
\end{aligned}
$$

The quotient algebra $A W\left(3, Q_{0}\right)$

In the polynomial representation (which is irreducible for generic values of $a, b, c, d), Q$ becomes a constant scalar:
$(Q f)[z]=Q_{0} f[z], \quad$ where
$Q_{0}:=q^{-4}(1-q)^{2}\left(q^{4}\left(e_{4}-e_{2}\right)+q^{3}\left(e_{1}^{2}-e_{1} e_{3}-2 e_{2}\right)\right.$
$\left.-q^{2}\left(e_{2} e_{4}+2 e_{4}+e_{2}\right)+q\left(e_{3}^{2}-2 e_{2} e_{4}-e_{1} e_{3}\right)+e_{4}\left(1-e_{2}\right)\right)$.

Definition

$A W\left(3, Q_{0}\right)$ is the algebra $A W(3)$ with further relation $Q=Q_{0}$.

Theorem (K, 2007)

A basis of $A W\left(3, Q_{0}\right)$ is given by

$$
K_{0}^{n}\left(K_{1} K_{0}\right)^{\prime} K_{1}^{m} \quad(m, n=0,1,2, \ldots, \quad I=0,1)
$$

The polynomial representation of $\operatorname{AW}\left(3, Q_{0}\right)$ on $\mathcal{A}_{\text {sym }}$ is faithful.

Central extension of AW(3)

Let the algebra $\widetilde{A W}\left(3, Q_{0}\right)$ be generated by K_{0}, K_{1}, T_{1} such that T_{1} commutes with K_{0}, K_{1} and with further relations

$$
\begin{aligned}
\left(T_{1}+a b\right)\left(T_{1}+1\right)= & 0 \\
\left(q+q^{-1}\right) K_{1} K_{0} K_{1}-K_{1}^{2} K_{0}-K_{0} K_{1}^{2}= & B K_{1}+C_{0} K_{0}+D_{0} \\
& +E K_{1}\left(T_{1}+a b\right)+F_{0}\left(T_{1}+a b\right), \\
\left(q+q^{-1}\right) K_{0} K_{1} K_{0}-K_{0}^{2} K_{1}-K_{1} K_{0}^{2}= & B K_{0}+C_{1} K_{1}+D_{1} \\
& +E K_{0}\left(T_{1}+a b\right)+F_{1}\left(T_{1}+a b\right), \\
\widetilde{Q}:= & \left(K_{1} K_{0}\right)^{2}-\left(q^{2}+1+q^{-2}\right) K_{0}\left(K_{1} K_{0}\right) K_{1} \\
& +\left(q+q^{-1}\right) K_{0}^{2} K_{1}^{2}+\left(q+q^{-1}\right)\left(C_{0} K_{0}^{2}+C_{1} K_{1}^{2}\right) \\
& +\left(B+E\left(T_{1}+a b\right)\right)\left(\left(q+1+q^{-1}\right) K_{0} K_{1}+K_{1} K_{0}\right) \\
& +\left(q+1+q^{-1}\right)\left(D_{0}+F_{0}\left(T_{1}+a b\right)\right) K_{0} \\
& +\left(q+1+q^{-1}\right)\left(D_{1}+F_{1}\left(T_{1}+a b\right)\right) K_{1}+G\left(T_{1}+a b\right)=Q_{0},
\end{aligned}
$$

where E, F_{0}, F_{1}, G can be explicitly specified.
Then \widetilde{Q} commutes with all elements of $\widetilde{A W}(3)$.

Connecting $\overline{A W}\left(3, Q_{0}\right)$ with $\tilde{\mathfrak{H}}$

Theorem (K, 2007)

$\widetilde{A W}\left(3, Q_{0}\right)$ acts on \mathcal{A} such that K_{0}, K_{1}, T_{1} act as $D, Z+Z^{-1}$, T_{1}, respectively, in the polynomial representation of $\tilde{\mathfrak{H}}$ on \mathcal{A}.
This representation is faithful.
$\widetilde{A W}\left(3, Q_{0}\right)$ has an injective embedding in $\tilde{\mathfrak{H}}$.

Theorem (K, 2007)

Let $a b \neq 1$.
AW $\left(3, Q_{0}\right)$ is naturally isomorphic to the spherical subalgebra
$\left(T_{1}+1\right) \tilde{\mathfrak{H}}\left(T_{1}+1\right)$.
$\widetilde{A W}\left(3, Q_{0}\right)$ is the centralizer of T_{1} in $\tilde{\mathfrak{H}}$.

References

On hypergeometric series:
W. N. Bailey, Generalized hypergeometric series, Cambridge University Press, 1935.

On q-hypergeometric series:
G. Gasper and M. Rahman, Basic hypergeometric series, 2nd edn., Cambridge University Press, 2004.

On the Askey and the q-Askey scheme:
R. Koekoek and R. F. Swarttouw, The Askey-scheme of hypergeometric orthogonal polynomials and its q-analogue, http://aw.twi.tudelft.nl/~koekoek/askey/.

References, continued

On elliptic hypergeometric functions:

V. P. Spiridonov, Classical elliptic hypergeometric functions and their applications, arXiv:math/0511579v2.
V. P. Spiridonov, Elliptic hypergeometric functions, arXiv:0704.3099v1.

On groups of transformations of hypergeometric functions:
J. Van der Jeugt \& K. S. Rao, Invariance groups of transformations of basic hypergeometric series, J. Math. Phys. 40 (1999), 6692-6700.
S. Lievens \& J. Van der Jeugt, Symmetry groups of Bailey's transformations for ${ }_{10} \phi_{9}$-series, J. Comput. Appl. Math. 206 (2007), 498-519.
F. J. van de Bult, E. M. Rains \& J. V. Stokman, Properties of generalized univariate hypergeometric functions, arXiv:math/0607250v1.

On Zhedanov's algebra and the double affine Hecke algebra:
See the following two papers and references given there.
T. H. Koornwinder, The relationship between Zhedanov's algebra $A W(3)$ and the double affine Hecke algebra in the rank one case, arXiv:math/0612730v4.
T. H. Koornwinder, Zhedanov's algebra AW(3) and the double affine Hecke algebra in the rank one case. II. The spherical subalgebra, arXiv/0711.2320v1.

