The relationship between Zhedanov's algebra AW (3) and DAHA

Tom H. Koornwinder

University of Amsterdam, thk@science.uva.nl
lecture, September 13, 2007
Applications of Macdonald polynomials, BIRS, Banff, Alberta, Canada Last modified: November 16, 2007

Picture of Macdonald in action

Picture of Macdonald relaxing

Table of contents

1 Zhedanov's algebra AW(3)
2 Double affine Hecke algebra of type $\left(C_{1}^{\vee}, C_{1}\right)$
3 Central extension of $A W(3)$
4 The spherical subalgebra

5 The subalgebra related to the -1 eigenspace of T_{1}
6 Further problems

Zhedanov's algebra AW(3)

Let $\quad q \in \mathbb{C}, \quad q \neq 0, \quad q^{m} \neq 1(m=1,2, \ldots)$.
q-commutator: $\quad[X, Y]_{q}:=q^{\frac{1}{2}} X Y-q^{-\frac{1}{2}} Y X$.
The algebra $A W(3)$ has:
■ generators K_{0}, K_{1}, K_{2},
\square structure constants $B, C_{0}, C_{1}, D_{0}, D_{1}$,

- relations

$$
\begin{aligned}
& {\left[K_{0}, K_{1}\right]_{q}=K_{2}} \\
& {\left[K_{1}, K_{2}\right]_{q}=B K_{1}+C_{0} K_{0}+D_{0}} \\
& {\left[K_{2}, K_{0}\right]_{q}=B K_{0}+C_{1} K_{1}+D_{1}}
\end{aligned}
$$

(Zhedanov, 1991)

Picture of Zhedanov

Choice of structure constants

Let a, b, c, d be complex parameters. Assume $a, b, c, d \neq 0$, $a b c d \neq q^{-m}(m=0,1,2, \ldots)$.
Let $e_{1}, e_{2}, e_{3}, e_{4}$ be the elementary symmetric polynomials in a, b, c, d.
Put for the structure constants:

$$
\begin{aligned}
& B:=\left(1-q^{-1}\right)^{2}\left(e_{3}+q e_{1}\right) \\
& C_{0}:=\left(q-q^{-1}\right)^{2} \\
& C_{1}:=q^{-1}\left(q-q^{-1}\right)^{2} e_{4} \\
& D_{0}:=-q^{-3}(1-q)^{2}(1+q)\left(e_{4}+q e_{2}+q^{2}\right) \\
& D_{1}:=-q^{-3}(1-q)^{2}(1+q)\left(e_{1} e_{4}+q e_{3}\right)
\end{aligned}
$$

Polynomial representation of AW(3)

Let $\mathcal{A}_{\text {sym }}$ be the space of symmetric Laurent polynomials $f[z]=f\left[z^{-1}\right]$.
Let the operator $D_{\text {sym }}$ act on $\mathcal{A}_{\text {sym }}$ by

$$
\begin{aligned}
\left(D_{\mathrm{sym}} f\right)[z]:= & A[z](f[q z]-f[z]) \\
& +A\left[z^{-1}\right]\left(f\left[q^{-1} z\right]-f[z]\right)+\left(1+q^{-1} a b c d\right) f[z]
\end{aligned}
$$

where

$$
A[z]:=\frac{(1-a z)(1-b z)(1-c z)(1-d z)}{\left(1-z^{2}\right)\left(1-q z^{2}\right)}
$$

Polynomial representation of AW(3)

Let $\mathcal{A}_{\text {sym }}$ be the space of symmetric Laurent polynomials $f[z]=f\left[z^{-1}\right]$.
Let the operator $D_{\text {sym }}$ act on $\mathcal{A}_{\text {sym }}$ by

$$
\begin{aligned}
\left(D_{\mathrm{sym}} f\right)[z]:= & A[z](f[q z]-f[z]) \\
& +A\left[z^{-1}\right]\left(f\left[q^{-1} z\right]-f[z]\right)+\left(1+q^{-1} a b c d\right) f[z]
\end{aligned}
$$

where

$$
A[z]:=\frac{(1-a z)(1-b z)(1-c z)(1-d z)}{\left(1-z^{2}\right)\left(1-q z^{2}\right)}
$$

The polynomial representation of $A W(3)$ on $\mathcal{A}_{\text {sym }}$ is given by

$$
\begin{aligned}
& \left(K_{0} f\right)[z]:=\left(D_{\text {sym }} f\right)[z] \\
& \left(K_{1} f\right)[z]:=\left(z+z^{-1}\right) f[z] .
\end{aligned}
$$

Askey-Wilson polynomials

Define and notate Askey-Wilson polynomials by

$$
P_{n}[z]:=\text { const. }{ }_{4} \phi_{3}\left(\begin{array}{c}
q^{-n}, q^{n-1} a b c d, a z, a z^{-1} \\
a b, a c, a d
\end{array} ; q, q\right)
$$

monic symmetric Laurent polynomial of degree n :

$$
P_{n}[z]=P_{n}\left[z^{-1}\right]=z^{n}+\cdots+z^{-n} .
$$

These are orthogonal polynomials (in variable $x:=\frac{1}{2}\left(z+z^{-1}\right)$) under certain conditions for q, a, b, c, d.

Askey-Wilson polynomials

Define and notate Askey-Wilson polynomials by

$$
P_{n}[z]:=\text { const. } 4_{4} \phi_{3}\left(\begin{array}{c}
q^{-n}, q^{n-1} a b c d, a z, a z^{-1} \\
a b, a c, a d
\end{array} ; q, q\right)
$$

monic symmetric Laurent polynomial of degree n :

$$
P_{n}[z]=P_{n}\left[z^{-1}\right]=z^{n}+\cdots+z^{-n} .
$$

These are orthogonal polynomials (in variable $x:=\frac{1}{2}\left(z+z^{-1}\right)$) under certain conditions for q, a, b, c, d.
Askey-Wilson polynomials satisfy

$$
D_{\text {sym }} P_{n}=\lambda_{n} P_{n}, \quad \text { where } \quad \lambda_{n}:=q^{-n}+q^{n-1} a b c d
$$

Askey-Wilson polynomials as intertwining kernels

Askey-Wilson polynomials $P_{n}[z]$ are the kernel of an intertwining operator between the polynomial representation of $A W(3)$ on $\mathcal{A}_{\text {sym }}$ (z-dependence) and a representation on Fun($\{0,1,2, \ldots\}$) (n-dependence):

$$
\left(K_{i}\right)_{z} P_{n}[z]=\left(K_{i}\right)_{n} P_{n}[z] .
$$

Askey-Wilson polynomials as intertwining kernels

Askey-Wilson polynomials $P_{n}[z]$ are the kernel of an intertwining operator between the polynomial representation of $A W(3)$ on $\mathcal{A}_{\text {sym }}$ (z-dependence) and a representation on Fun($\{0,1,2, \ldots\}$) (n-dependence):

$$
\left(K_{i}\right)_{z} P_{n}[z]=\left(K_{i}\right)_{n} P_{n}[z] .
$$

For $K_{0} \quad$ 2nd order q-difference equation:

$$
A[z] P_{n}[q z]+B[z] P_{n}[z]+C[z] P_{n}\left[q^{-1} z\right]=\lambda_{n} P_{n}[z]
$$

Askey-Wilson polynomials as intertwining kernels

Askey-Wilson polynomials $P_{n}[z]$ are the kernel of an intertwining operator between the polynomial representation of $A W(3)$ on $\mathcal{A}_{\text {sym }}$ (z-dependence) and a representation on Fun($\{0,1,2, \ldots\}$) (n-dependence):

$$
\left(K_{i}\right)_{z} P_{n}[z]=\left(K_{i}\right)_{n} P_{n}[z] .
$$

For $K_{0} \quad$ 2nd order q-difference equation:

$$
A[z] P_{n}[q z]+B[z] P_{n}[z]+C[z] P_{n}\left[q^{-1} z\right]=\lambda_{n} P_{n}[z]
$$

For $K_{1} \quad$ 3-term recurrence relation:

$$
\left(z+z^{-1}\right) P_{n}[z]=a_{n} P_{n+1}[z]+b_{n} P_{n}[z]+c_{n} P_{n-1}[z] .
$$

Askey-Wilson polynomials as intertwining kernels

Askey-Wilson polynomials $P_{n}[z]$ are the kernel of an intertwining operator between the polynomial representation of $A W(3)$ on $\mathcal{A}_{\text {sym }}$ (z-dependence) and a representation on Fun($\{0,1,2, \ldots\}$) (n-dependence):

$$
\left(K_{i}\right)_{z} P_{n}[z]=\left(K_{i}\right)_{n} P_{n}[z] .
$$

For $K_{0} \quad$ 2nd order q-difference equation:

$$
A[z] P_{n}[q z]+B[z] P_{n}[z]+C[z] P_{n}\left[q^{-1} z\right]=\lambda_{n} P_{n}[z]
$$

For K_{1} 3-term recurrence relation:

$$
\left(z+z^{-1}\right) P_{n}[z]=a_{n} P_{n+1}[z]+b_{n} P_{n}[z]+c_{n} P_{n-1}[z] .
$$

For $K_{2} \quad q$-structure relation:

$$
\begin{aligned}
\widetilde{A}[z] P_{n}[q z]+\widetilde{B}[z] P_{n}[z] & +\widetilde{C}[z] P_{n}\left[q^{-1} z\right] \\
& =\widetilde{a}_{n} P_{n+1}[z]+\widetilde{b}_{n} P_{n}[z]+\widetilde{c}_{n} P_{n-1}[z]
\end{aligned}
$$

Relations for AW(3) in terms of K_{0}, K_{1} only, and the Casimir operator

$A W(3)$ can also be considered as generated by K_{0}, K_{1} with relations

$$
\begin{aligned}
& \left(q+q^{-1}\right) K_{1} K_{0} K_{1}-K_{1}^{2} K_{0}-K_{0} K_{1}^{2}=B K_{1}+C_{0} K_{0}+D_{0} \\
& \left(q+q^{-1}\right) K_{0} K_{1} K_{0}-K_{0}^{2} K_{1}-K_{1} K_{0}^{2}=B K_{0}+C_{1} K_{1}+D_{1}
\end{aligned}
$$

Relations for AW(3) in terms of K_{0}, K_{1} only, and the Casimir operator

$A W(3)$ can also be considered as generated by K_{0}, K_{1} with relations

$$
\begin{aligned}
& \left(q+q^{-1}\right) K_{1} K_{0} K_{1}-K_{1}^{2} K_{0}-K_{0} K_{1}^{2}=B K_{1}+C_{0} K_{0}+D_{0} \\
& \left(q+q^{-1}\right) K_{0} K_{1} K_{0}-K_{0}^{2} K_{1}-K_{1} K_{0}^{2}=B K_{0}+C_{1} K_{1}+D_{1}
\end{aligned}
$$

The Casimir operator

$$
\begin{aligned}
Q & :=K_{1} K_{0} K_{1} K_{0}-\left(q^{2}+1+q^{-2}\right) K_{0} K_{1} K_{0} K_{1} \\
& +\left(q+q^{-1}\right) K_{0}^{2} K_{1}^{2}+\left(q+q^{-1}\right)\left(C_{0} K_{0}^{2}+C_{1} K_{1}^{2}\right) \\
& +B\left(\left(q+1+q^{-1}\right) K_{0} K_{1}+K_{1} K_{0}\right) \\
& +\left(q+1+q^{-1}\right)\left(D_{0} K_{0}+D_{1} K_{1}\right)
\end{aligned}
$$

commutes in $A W(3)$ with the generators K_{0}, K_{1}.

Value of the Casimir operator in the polynomial representation

In the polynomial representation (which is irreducible for generic values of $a, b, c, d), Q$ becomes a constant scalar:

$$
(Q f)[z]=Q_{0} f[z],
$$

where

$$
\begin{gathered}
Q_{0}:=q^{-4}(1-q)^{2}\left(q^{4}\left(e_{4}-e_{2}\right)+q^{3}\left(e_{1}^{2}-e_{1} e_{3}-2 e_{2}\right)\right. \\
\left.-q^{2}\left(e_{2} e_{4}+2 e_{4}+e_{2}\right)+q\left(e_{3}^{2}-2 e_{2} e_{4}-e_{1} e_{3}\right)+e_{4}\left(1-e_{2}\right)\right)
\end{gathered}
$$

A faithful representation on $\mathcal{A}_{\text {sym }}$

Definition

$A W\left(3, Q_{0}\right)$ is the algebra $A W(3)$ with additional relation $Q=Q_{0}$.

A faithful representation on $\mathcal{A}_{\text {sym }}$

Definition

$A W\left(3, Q_{0}\right)$ is the algebra $A W(3)$ with additional relation $Q=Q_{0}$.

Theorem (THK, 2007)
AW $\left(3, Q_{0}\right)$ has the elements

$$
K_{0}^{n}\left(K_{1} K_{0}\right)^{\prime} K_{1}^{m} \quad(m, n=0,1,2, \ldots, \quad I=0,1)
$$

as a linear basis.
The polynomial representation of $A W\left(3, Q_{0}\right)$ on $\mathcal{A}_{\text {sym }}$ is faithful.

Proof of first part of theorem

$\operatorname{AW}\left(3, Q_{0}\right)$ is spanned by elements $K_{\alpha}=K_{\alpha_{1}} \cdots K_{\alpha_{k}}$, where $\alpha=\left(\alpha_{1}, \ldots, \alpha_{k}\right), \alpha_{i}=0$ or 1 . Let $\rho(\alpha)$ the number of pairs (i, j) such that $i<j, \alpha_{i}=1, \alpha_{j}=0$. K_{α} has the form

$$
K_{0}^{n}\left(K_{1} K_{0}\right)^{l} K_{1}^{m} \quad(m, n=0,1,2, \ldots, \quad I=0,1)
$$

iff $\rho(\alpha)=0$ or 1 .
If $\rho(\alpha)>1$ then K_{α} must have a substring

$$
K_{1} K_{1} K_{0} \text { or } K_{1} K_{0} K_{0} \text { or } K_{1} K_{0} K_{1} K_{0}
$$

By substitution of one of the three relations we see that each such string is a linear combination of elements K_{β} with $\rho(\beta)<\rho(\alpha)$.

Sketch of proof of second part of theorem

Note that

$$
\begin{gathered}
\left(D_{\mathrm{sym}}\right)^{n}\left(Z+Z^{-1}\right)^{m} P_{j}[z]=\lambda_{j+m}^{n} P_{j+m}[z]+\cdots \\
\left(D_{\mathrm{sym}}\right)^{n-1}\left(Z+Z^{-1}\right) D_{\mathrm{sym}}\left(Z+Z^{-1}\right)^{m-1} P_{j}[z] \\
=\lambda_{j+m}^{n-1} \lambda_{j+m-1} P_{j+m}[z]+\cdots
\end{gathered}
$$

Sketch of proof of second part of theorem

Note that

$$
\begin{gathered}
\left(D_{\mathrm{sym}}\right)^{n}\left(Z+Z^{-1}\right)^{m} P_{j}[z]=\lambda_{j+m}^{n} P_{j+m}[z]+\cdots \\
\left(D_{\mathrm{sym}}\right)^{n-1}\left(Z+Z^{-1}\right) D_{\mathrm{sym}}\left(Z+Z^{-1}\right)^{m-1} P_{j}[z] \\
=\lambda_{j+m}^{n-1} \lambda_{j+m-1} P_{j+m}[z]+\cdots
\end{gathered}
$$

If (with some $a_{m, l}$ or $b_{m, l} \neq 0$) we have:

$$
\begin{aligned}
& \sum_{k=0}^{m} \sum_{l} a_{k, l}\left(D_{\text {sym }}\right)^{\prime}\left(Z+Z^{-1}\right)^{k} \\
& \quad+\sum_{k=1}^{m} \sum_{l} b_{k, l}\left(D_{\text {sym }}\right)^{I-1}\left(Z+Z^{-1}\right) D_{\text {sym }}\left(Z+Z^{-1}\right)^{k-1}=0
\end{aligned}
$$

then we have for all j :

$$
\sum_{l}\left(a_{m, l} \lambda_{j+m}^{l}+b_{m, l} \lambda_{j+m}^{I-1} \lambda_{j+m-1}\right)=0 .
$$

Then consider maximal / for which $a_{m, l}$ or $b_{m, l} \neq 0$, and get a contradiction.

The center of $A W\left(3, Q_{0}\right)$

By a similar technique we can prove:

Theorem

The center of $A W\left(3, Q_{0}\right)$ consists of the scalars.

Double affine Hecke algebra of type $\left(C_{1}^{\vee}, C_{1}\right)$

The algebra $\tilde{\mathfrak{H}}$ has:
■ q, a, b, c, d as before,
$■$ generators Z, Z^{-1}, T_{1}, T_{0},

- relations

$$
\begin{aligned}
\left(T_{1}+a b\right)\left(T_{1}+1\right) & =0, \\
\left(T_{0}+q^{-1} c d\right)\left(T_{0}+1\right) & =0 \\
\left(T_{1} Z+a\right)\left(T_{1} Z+b\right) & =0, \\
\left(q T_{0} Z^{-1}+c\right)\left(q T_{0} Z^{-1}+d\right) & =0
\end{aligned}
$$

Double affine Hecke algebra of type $\left(C_{1}^{\vee}, C_{1}\right)$

The algebra $\tilde{\mathfrak{H}}$ has:
■ q, a, b, c, d as before,
$■$ generators Z, Z^{-1}, T_{1}, T_{0},

- relations

$$
\begin{aligned}
\left(T_{1}+a b\right)\left(T_{1}+1\right) & =0 \\
\left(T_{0}+q^{-1} c d\right)\left(T_{0}+1\right) & =0 \\
\left(T_{1} Z+a\right)\left(T_{1} Z+b\right) & =0 \\
\left(q T_{0} Z^{-1}+c\right)\left(q T_{0} Z^{-1}+d\right) & =0
\end{aligned}
$$

(Sahi, Noumi \& Stokman, Macdonald's 2003 book; preceding work by Dunkl, Heckman, Cherednik.)

Double affine Hecke algebra of type $\left(C_{1}^{\vee}, C_{1}\right)$

The algebra $\tilde{\mathfrak{H}}$ has:
■ q, a, b, c, d as before,
■ generators Z, Z^{-1}, T_{1}, T_{0},

- relations

$$
\begin{aligned}
\left(T_{1}+a b\right)\left(T_{1}+1\right) & =0 \\
\left(T_{0}+q^{-1} c d\right)\left(T_{0}+1\right) & =0 \\
\left(T_{1} Z+a\right)\left(T_{1} Z+b\right) & =0 \\
\left(q T_{0} Z^{-1}+c\right)\left(q T_{0} Z^{-1}+d\right) & =0
\end{aligned}
$$

(Sahi, Noumi \& Stokman, Macdonald's 2003 book; preceding work by Dunkl, Heckman, Cherednik.)
T_{1} and T_{0} are invertible.

$$
Y:=T_{1} T_{0}, \quad D:=Y+q^{-1} a b c d Y^{-1}
$$

Polynomial representation of $\tilde{\mathfrak{H}}$

Let \mathcal{A} be the space of Laurent polynomials $f[z]$.
The polynomial representation of $\tilde{\mathfrak{H}}$ on \mathcal{A} is given by

$$
\begin{aligned}
(Z f)[z] & :=z f[z] \\
\left(T_{1} f\right)[z] & :=-a b f[z]+\frac{(1-a z)(1-b z)}{1-z^{2}}\left(f\left[z^{-1}\right]-f[z]\right), \\
\left(T_{0} f\right)[z] & :=-q^{-1} c d f[z]+\frac{(c-z)(d-z)}{q-z^{2}}\left(f[z]-f\left[q z^{-1}\right]\right) .
\end{aligned}
$$

Polynomial representation of $\tilde{\mathfrak{H}}$

Let \mathcal{A} be the space of Laurent polynomials $f[z]$.
The polynomial representation of $\tilde{\mathfrak{H}}$ on \mathcal{A} is given by

$$
\begin{aligned}
(Z f)[z] & :=z f[z], \\
\left(T_{1} f\right)[z] & :=-a b f[z]+\frac{(1-a z)(1-b z)}{1-z^{2}}\left(f\left[z^{-1}\right]-f[z]\right), \\
\left(T_{0} f\right)[z] & :=-q^{-1} c d f[z]+\frac{(c-z)(d-z)}{q-z^{2}}\left(f[z]-f\left[q z^{-1}\right]\right) .
\end{aligned}
$$

Then

$$
\left(T_{1} f\right)[z]=-a b f[z] \quad \text { iff } \quad f[z]=f\left[z^{-1}\right]
$$

and

$$
(D f)[z]=\left(D_{\text {sym }} f\right)[z] \quad \text { if } \quad f[z]=f\left[z^{-1}\right] .
$$

Eigenspaces of D

Let

$$
\begin{aligned}
Q_{n}[z] & :=a^{-1} b^{-1} z^{-1}(1-a z)(1-b z) P_{n-1}[z ; q a, q b, c, d \mid q] \\
& =z^{n}+\cdots+a^{-1} b^{-1} z^{-n}
\end{aligned}
$$

Then

$$
D Q_{n}=\lambda_{n} Q_{n}, \quad T_{1} Q_{n}=-Q_{n}
$$

Eigenspaces of D

Let

$$
\begin{aligned}
Q_{n}[z] & :=a^{-1} b^{-1} z^{-1}(1-a z)(1-b z) P_{n-1}[z ; q a, q b, c, d \mid q] \\
& =z^{n}+\cdots+a^{-1} b^{-1} z^{-n} .
\end{aligned}
$$

Then

$$
D Q_{n}=\lambda_{n} Q_{n}, \quad T_{1} Q_{n}=-Q_{n}
$$

D has eigenvalues $\lambda_{n}(n=0,1,2, \ldots)$.
T_{1} has eigenvalues $-1,-a b$.
D and T_{1} commute.
The eigenspace of D for λ_{n} has basis $P_{n}, Q_{n}(n=1,2, \ldots)$ or $P_{0}(n=0)$.

Non-symmetric Askey-Wilson polynomials

Let

$$
\begin{aligned}
E_{-n} & =\frac{a b}{a b-1}\left(P_{n}-Q_{n}\right) \quad(n=1,2, \ldots) \\
E_{n} & =\frac{\left(1-q^{n} a b\right)\left(1-q^{n-1} a b c d\right)}{(1-a b)\left(1-q^{2 n-1} a b c d\right)} P_{n}-\frac{a b\left(1-q^{n}\right)\left(1-q^{n-1} c d\right)}{(1-a b)\left(1-q^{2 n-1} a b c d\right)} Q_{n}
\end{aligned}
$$

$$
(n=1,2, \ldots)
$$

Non-symmetric Askey-Wilson polynomials

Let

$$
\begin{aligned}
& E_{-n}=\frac{a b}{a b-1}\left(P_{n}-Q_{n}\right) \quad(n=1,2, \ldots) \\
& E_{n}=\frac{\left(1-q^{n} a b\right)\left(1-q^{n-1} a b c d\right)}{(1-a b)\left(1-q^{2 n-1} a b c d\right)} P_{n}-\frac{a b\left(1-q^{n}\right)\left(1-q^{n-1} c d\right)}{(1-a b)\left(1-q^{2 n-1} a b c d\right)} Q_{n} \\
& \quad(n=1,2, \ldots)
\end{aligned}
$$

Then

$$
\begin{aligned}
Y E_{-n} & =q^{-n} E_{-n} & & (n=1,2, \ldots) \\
Y E_{n} & =q^{n-1} a b c d E_{n} & & (n=0,1,2, \ldots)
\end{aligned}
$$

The $E_{n}[z](n \in \mathbb{Z})$ are the nonsymmetric Askey-Wilson polynomials. They form a biorthogonal system with respect to a suitable inner product given by a contour integral.

Relations for $\tilde{\mathfrak{H}}$ in terms of generators $Z^{ \pm}, Y^{ \pm}, T_{1}$

$$
\begin{aligned}
& T_{1}^{2}=-(a b+1) T_{1}-a b, \\
& T_{1} Z=Z^{-1} T_{1}+(a b+1) Z^{-1}-(a+b), \\
& T_{1} Z^{-1}=Z T_{1}-(a b+1) Z^{-1}+(a+b), \\
& T_{1} Y=q^{-1} a b c d Y^{-1} T_{1}-(a b+1) Y+a b\left(1+q^{-1} c d\right), \\
& T_{1} Y^{-1}=q(a b c d)^{-1} Y T_{1}+q(a b c d)^{-1}(1+a b) Y-q(c d)^{-1}\left(1+q^{-1} c d\right), \\
& Y Z=q Z Y+(1+a b) c d Z^{-1} Y^{-1} T_{1}-(a+b) c d Y^{-1} T_{1}-\left(1+q^{-1} c d\right) Z^{-1} T_{1} \\
& \quad-(1-q)(1+a b)\left(1+q^{-1} c d\right) Z^{-1}+(c+d) T_{1}+(1-q)(a+b)\left(1+q^{-1} c d\right), \\
& Y Z^{-1} \\
& \quad=q^{-1} Z^{-1} Y-q^{-2}(1+a b) c d Z^{-1} Y^{-1} T_{1}+q^{-2}(a+b) c d Y^{-1} T_{1} \\
& \quad+q^{-1}\left(1+q^{-1} c d\right) Z^{-1} T_{1}-q^{-1}(c+d) T_{1}, \\
& Y^{-1} Z=q^{-1} Z Y^{-1}-q(a b)^{-1}(1+a b) Z^{-1} Y^{-1} T_{1}+(a b)^{-1}(a+b) Y^{-1} T_{1} \\
& \quad+q(a b c d)^{-1}\left(1+q^{-1} c d\right) Z^{-1} T_{1}+q(a b c d)^{-1}(1-q)(1+a b)\left(1+q^{-1} c d\right) Z^{-1} \\
& \quad-(a b c d)^{-1}(c+d) T_{1}-(a b c d)^{-1}(1-q)(1+a b)(c+d), \\
& Y^{-1} Z^{-1}=q Z^{-1} Y^{-1}+q(a b)^{-1}(1+a b) Z^{-1} Y^{-1} T_{1}-(a b)^{-1}(a+b) Y^{-1} T_{1} \\
& \quad-q^{2}(a b c d)^{-1}\left(1+q^{-1} c d\right) Z^{-1} T_{1}+q(a b c d)^{-1}(c+d) T_{1} .
\end{aligned}
$$

Faithfulness of the polynomial representation of $\tilde{\mathfrak{H}}$

Theorem (Sahi)

The polynomial representation of $\tilde{\mathfrak{H}}$ is faithful.
The elements

$$
Z^{m} Y^{n} T_{1}^{i} \quad(m, n \in \mathbb{Z}, i=0,1)
$$

form a linear basis of $\tilde{\mathfrak{H}}$.

Central extension of AW(3)

Let the algebra $\widetilde{A W}(3)$ be generated by K_{0}, K_{1}, T_{1} such that T_{1} commutes with K_{0}, K_{1} and with further relations

$$
\begin{aligned}
\left(T_{1}+a b\right)\left(T_{1}+1\right)= & 0 \\
\left(q+q^{-1}\right) K_{1} K_{0} K_{1}-K_{1}^{2} K_{0}-K_{0} K_{1}^{2}= & B K_{1}+C_{0} K_{0}+D_{0} \\
& +E K_{1}\left(T_{1}+a b\right)+F_{0}\left(T_{1}+a b\right) \\
\left(q+q^{-1}\right) K_{0} K_{1} K_{0}-K_{0}^{2} K_{1}-K_{1} K_{0}^{2}= & B K_{0}+C_{1} K_{1}+D_{1} \\
& +E K_{0}\left(T_{1}+a b\right)+F_{1}\left(T_{1}+a b\right)
\end{aligned}
$$

where

$$
\begin{aligned}
& E:=-q^{-2}(1-q)^{3}(c+d) \\
& F_{0}:=q^{-3}(1-q)^{3}(1+q)(c d+q) \\
& F_{1}:=q^{-3}(1-q)^{3}(1+q)(a+b) c d
\end{aligned}
$$

Polynomial representation of $\overline{A W}(3)$

The following element \widetilde{Q} commutes with all elements of $\widetilde{A W}(3)$:

$$
\begin{aligned}
\widetilde{Q}:= & \left(K_{1} K_{0}\right)^{2}-\left(q^{2}+1+q^{-2}\right) K_{0}\left(K_{1} K_{0}\right) K_{1} \\
& +\left(q+q^{-1}\right) K_{0}^{2} K_{1}^{2}+\left(q+q^{-1}\right)\left(C_{0} K_{0}^{2}+C_{1} K_{1}^{2}\right) \\
& +\left(B+E\left(T_{1}+a b\right)\right)\left(\left(q+1+q^{-1}\right) K_{0} K_{1}+K_{1} K_{0}\right) \\
& +\left(q+1+q^{-1}\right)\left(D_{0}+F_{0}\left(T_{1}+a b\right)\right) K_{0} \\
& +\left(q+1+q^{-1}\right)\left(D_{1}+F_{1}\left(T_{1}+a b\right)\right) K_{1}+G\left(T_{1}+a b\right),
\end{aligned}
$$

where G can be explicitly specified.

Polynomial representation of $\widetilde{A W(3)}$

The following element \widetilde{Q} commutes with all elements of $\widetilde{A W}(3)$:

$$
\begin{aligned}
\widetilde{Q}:= & \left(K_{1} K_{0}\right)^{2}-\left(q^{2}+1+q^{-2}\right) K_{0}\left(K_{1} K_{0}\right) K_{1} \\
& +\left(q+q^{-1}\right) K_{0}^{2} K_{1}^{2}+\left(q+q^{-1}\right)\left(C_{0} K_{0}^{2}+C_{1} K_{1}^{2}\right) \\
& +\left(B+E\left(T_{1}+a b\right)\right)\left(\left(q+1+q^{-1}\right) K_{0} K_{1}+K_{1} K_{0}\right) \\
& +\left(q+1+q^{-1}\right)\left(D_{0}+F_{0}\left(T_{1}+a b\right)\right) K_{0} \\
& +\left(q+1+q^{-1}\right)\left(D_{1}+F_{1}\left(T_{1}+a b\right)\right) K_{1}+G\left(T_{1}+a b\right),
\end{aligned}
$$

where G can be explicitly specified.
$\widetilde{A W}(3)$ acts on \mathcal{A} such that K_{0}, K_{1}, T_{1} act as $D, Z+Z^{-1}, T_{1}$, respectively, in the polynomial representation of $\tilde{\mathfrak{H}}$ on \mathcal{A}.
This action is called the polynomial representation of $\widetilde{A W}(3)$ on \mathcal{A}.

Polynomial representation of $\widetilde{A W(3)}$

The following element \widetilde{Q} commutes with all elements of $\widetilde{A W}(3)$:

$$
\begin{aligned}
\widetilde{Q}:= & \left(K_{1} K_{0}\right)^{2}-\left(q^{2}+1+q^{-2}\right) K_{0}\left(K_{1} K_{0}\right) K_{1} \\
& +\left(q+q^{-1}\right) K_{0}^{2} K_{1}^{2}+\left(q+q^{-1}\right)\left(C_{0} K_{0}^{2}+C_{1} K_{1}^{2}\right) \\
& +\left(B+E\left(T_{1}+a b\right)\right)\left(\left(q+1+q^{-1}\right) K_{0} K_{1}+K_{1} K_{0}\right) \\
& +\left(q+1+q^{-1}\right)\left(D_{0}+F_{0}\left(T_{1}+a b\right)\right) K_{0} \\
& +\left(q+1+q^{-1}\right)\left(D_{1}+F_{1}\left(T_{1}+a b\right)\right) K_{1}+G\left(T_{1}+a b\right),
\end{aligned}
$$

where G can be explicitly specified.
$\widetilde{A W}(3)$ acts on \mathcal{A} such that K_{0}, K_{1}, T_{1} act as $D, Z+Z^{-1}, T_{1}$, respectively, in the polynomial representation of $\tilde{\mathfrak{H}}$ on \mathcal{A}.
This action is called the polynomial representation of $\overline{A W}(3)$ on \mathcal{A}.
Then \widetilde{Q} acts as the constant Q_{0}.

A faithful representation on \mathcal{A}

Definition

$A W\left(3, Q_{0}\right)$ is the algebra $A W(3)$ with additional relation
$\widetilde{Q}=Q_{0}$.

A faithful representation on \mathcal{A}

Definition

$A W\left(3, Q_{0}\right)$ is the algebra $A W(3)$ with additional relation $\widetilde{Q}=Q_{0}$.

Theorem (THK, 2007)

$\widetilde{A W}\left(3, Q_{0}\right)$ has the elements

$$
K_{0}^{n}\left(K_{1} K_{0}\right)^{i} K_{1}^{m} T_{1}^{j} \quad(m, n=0,1,2, \ldots, \quad i, j=0,1)
$$

as a linear basis.
The polynomial representation of $\widetilde{A W}\left(3, Q_{0}\right)$ on \mathcal{A} is faithful.
$\widetilde{A W}\left(3, Q_{0}\right)$ has an injective embedding in $\tilde{\mathfrak{H}}$.

Definition of spherical subalgebra

From now on assume $a b \neq 1$. In $\tilde{\mathfrak{H}}$ we have:

$$
\frac{T_{1}+1}{1-a b} \frac{T_{1}+1}{1-a b}=\frac{T_{1}+1}{1-a b}
$$

In the polynomial representation of $\tilde{\mathfrak{H}}$ we have:

$$
(1-a b)^{-1}\left(T_{1}+1\right) f= \begin{cases}0 & \text { if } T_{1} f=-f, \\ f & \text { if } T_{1} f=-a b f .\end{cases}
$$

$P_{\text {sym }}:=(1-a b)^{-1}\left(T_{1}+1\right)$ projects \mathcal{A} onto $\mathcal{A}_{\text {sym }}$.

Definition of spherical subalgebra

From now on assume $a b \neq 1$. In $\tilde{\mathfrak{H}}$ we have:

$$
\frac{T_{1}+1}{1-a b} \frac{T_{1}+1}{1-a b}=\frac{T_{1}+1}{1-a b} .
$$

In the polynomial representation of $\tilde{\mathfrak{H}}$ we have:

$$
(1-a b)^{-1}\left(T_{1}+1\right) f= \begin{cases}0 & \text { if } T_{1} f=-f \\ f & \text { if } T_{1} f=-a b f\end{cases}
$$

$P_{\text {sym }}:=(1-a b)^{-1}\left(T_{1}+1\right)$ projects \mathcal{A} onto $\mathcal{A}_{\text {sym }}$.
Write

$$
S(U):=P_{\text {sym }} U P_{\text {sym }} \quad(U \in \tilde{\mathfrak{H}})
$$

Then

$$
S(U) S(V)=S\left(U P_{\text {sym }} V\right)
$$

The image $S(\tilde{\mathfrak{H}})$ is a subalgebra of $\tilde{\mathfrak{H}}$, the spherical subalgebra.

Polynomial representation of spherical subalgebra

In the (faithful) polynomial representation of $\tilde{\mathfrak{H}}$ on \mathcal{A}, the spherical subalgebra restricted to $\mathcal{A}_{\text {sym }}$ yields a representation of $S(\tilde{\mathfrak{H}})$ on $\mathcal{A}_{\text {sym }}$, which is also faithful. The following diagram is commutative.

$z_{\tilde{\mathfrak{H}}}\left(T_{1}\right)$, the centralizer of T_{1} in $\tilde{\mathfrak{H}}$, is a subalgebra on which S is an algebra homomorphism:

$$
S(U V)=S\left(U P_{\text {sym }} V\right)=S(U) S(V) \quad\left(U, V \in Z_{\tilde{\mathfrak{H}}}\left(T_{1}\right)\right) .
$$

Note the embedding $\widetilde{A W}\left(3, Q_{0}\right) \hookrightarrow Z_{\tilde{\tilde{S}}}\left(T_{1}\right)$ with $K_{0} \mapsto Y+q^{-1} a b c d Y^{-1}, \quad K_{1} \mapsto Z+Z^{-1}, \quad T_{1} \mapsto T_{1}$.

$\widetilde{A W}\left(3, Q_{0}\right)$ and $A W\left(3, Q_{0}\right)$

$\widetilde{A W}\left(3, Q_{0}\right)$ generated by K_{0}, K_{1}, T_{1} such that T_{1} commutes with K_{0}, K_{1} and $\left(T_{1}+a b\right)\left(T_{1}+1\right)=0$, and further relations

$$
\begin{aligned}
(q & \left.+q^{-1}\right) K_{1} K_{0} K_{1}-K_{1}^{2} K_{0}-K_{0} K_{1}^{2} \\
\quad & =B K_{1}+C_{0} K_{0}+D_{0}+E K_{1}\left(T_{1}+a b\right)+F_{0}\left(T_{1}+a b\right) \\
(q & \left.+q^{-1}\right) K_{0} K_{1} K_{0}-K_{0}^{2} K_{1}-K_{1} K_{0}^{2} \\
\quad & =B K_{0}+C_{1} K_{1}+D_{1}+E K_{0}\left(T_{1}+a b\right)+F_{1}\left(T_{1}+a b\right) \\
Q_{0} & =\left(K_{1} K_{0}\right)^{2}-\left(q^{2}+1+q^{-2}\right) K_{0}\left(K_{1} K_{0}\right) K_{1} \\
\quad & +\left(q+q^{-1}\right) K_{0}^{2} K_{1}^{2}+\left(q+q^{-1}\right)\left(C_{0} K_{0}^{2}+C_{1} K_{1}^{2}\right) \\
& +\left(B+E\left(T_{1}+a b\right)\right)\left(\left(q+1+q^{-1}\right) K_{0} K_{1}+K_{1} K_{0}\right) \\
\quad & +\left(q+1+q^{-1}\right)\left(D_{0}+F_{0}\left(T_{1}+a b\right)\right) K_{0} \\
& +\left(q+1+q^{-1}\right)\left(D_{1}+F_{1}\left(T_{1}+a b\right)\right) K_{1}+G\left(T_{1}+a b\right)
\end{aligned}
$$

$A W\left(3, Q_{0}\right)$ is $\widetilde{A W}\left(3, Q_{0}\right)$ with additional relation $T_{1}=-a b$.

$A W\left(3, Q_{0}\right)$ mapped onto $S\left(\overline{A W}\left(3, Q_{0}\right)\right)$

$\widetilde{A W}\left(3, Q_{0}\right)$ has basis $K_{0}^{n}\left(K_{1} K_{0}\right)^{i} K_{1}^{m} T_{1}^{j}$

$$
(m, n=0,1,2, \ldots, \quad i, j=0,1) .
$$

$S\left(\widetilde{A W}\left(3, Q_{0}\right)\right)$ has basis $(1-a b)^{-1} K_{0}^{n}\left(K_{1} K_{0}\right)^{i} K_{1}^{m}\left(T_{1}+1\right)$

$$
(m, n=0,1,2, \ldots \quad i=0,1) .
$$

AW $\left(3, Q_{0}\right)$ has basis $K_{0}^{n}\left(K_{1} K_{0}\right)^{i} K_{1}^{m}$

$$
(m, n=0,1,2, \ldots \quad i=0,1) .
$$

$A W\left(3, Q_{0}\right)$ mapped onto $S\left(\overline{A W}\left(3, Q_{0}\right)\right)$

$\widetilde{A W}\left(3, Q_{0}\right)$ has basis $K_{0}^{n}\left(K_{1} K_{0}\right)^{i} K_{1}^{m} T_{1}^{j}$

$$
(m, n=0,1,2, \ldots, \quad i, j=0,1) .
$$

$S\left(\widetilde{A W}\left(3, Q_{0}\right)\right)$ has basis $(1-a b)^{-1} K_{0}^{n}\left(K_{1} K_{0}\right)^{i} K_{1}^{m}\left(T_{1}+1\right)$

$$
(m, n=0,1,2, \ldots \quad i=0,1) .
$$

$A W\left(3, Q_{0}\right)$ has basis $K_{0}^{n}\left(K_{1} K_{0}\right)^{i} K_{1}^{m}$

$$
(m, n=0,1,2, \ldots \quad i=0,1) .
$$

$$
U \mapsto(1-a b)^{-1} U\left(T_{1}+1\right): A W\left(3, Q_{0}\right) \rightarrow S\left(\widetilde{A W}\left(3, Q_{0}\right)\right)
$$

is algebra isomorphism
because terms with factor $T_{1}+a b$ in relations for $\widetilde{A W}\left(3, Q_{0}\right)$ are killed by factor $T_{1}+1$ in $S\left(\widetilde{A W}\left(3, Q_{0}\right)\right)$.

Spherical subalgebra is isomorphic to $A W\left(3, Q_{0}\right)$

Theorem

$S(\tilde{\mathfrak{H}})=S\left(\widetilde{A W}\left(3, Q_{0}\right)\right)$, so the spherical subalgebra $S(\tilde{\mathfrak{H}})$ is isomorphic to the algebra $\operatorname{AW}\left(3, Q_{0}\right)$.

Spherical subalgebra is isomorphic to $\operatorname{AW}\left(3, Q_{0}\right)$

Theorem

$S(\tilde{\mathfrak{H}})=S\left(\widetilde{A W}\left(3, Q_{0}\right)\right)$, so the spherical subalgebra $S(\tilde{\mathfrak{H}})$ is isomorphic to the algebra $\operatorname{AW}\left(3, Q_{0}\right)$.

Sketch of Proof

$\tilde{\mathfrak{H}}$ has basis $Z^{m} Y^{n} T_{1}^{i} \quad(m, n \in \mathbb{Z}, i=0,1)$.
$S(\tilde{\mathfrak{H}})$ is spanned by $\left(T_{1}+1\right) Z^{m} Y^{n}\left(T_{1}+1\right) \quad(m, n \in \mathbb{Z})$.
We say that

$$
\sum_{k, l \in \mathbb{Z}} c_{k, l} Z^{k} Y^{\prime}=o\left(Z^{m} Y^{n}\right)
$$

if $c_{k, l} \neq 0$ implies $|k| \leq|m|,|l| \leq|n|,(|k|,|l|) \neq(|m|,|n|)$.

Spherical subalgebra is isomorphic to $\operatorname{AW}\left(3, Q_{0}\right)$

Theorem

$S(\tilde{\mathfrak{H}})=S\left(\widetilde{A W}\left(3, Q_{0}\right)\right)$, so the spherical subalgebra $S(\tilde{\mathfrak{H}})$ is isomorphic to the algebra $\operatorname{AW}\left(3, Q_{0}\right)$.

Sketch of Proof

$\tilde{\mathfrak{H}}$ has basis $Z^{m} Y^{n} T_{1}^{i} \quad(m, n \in \mathbb{Z}, i=0,1)$.
$S(\tilde{\mathfrak{H}})$ is spanned by $\left(T_{1}+1\right) Z^{m} Y^{n}\left(T_{1}+1\right) \quad(m, n \in \mathbb{Z})$.
We say that

$$
\sum_{k, l \in \mathbb{Z}} c_{k, l} Z^{k} Y^{\prime}=o\left(Z^{m} Y^{n}\right)
$$

$$
\text { if } c_{k, l} \neq 0 \text { implies }|k| \leq|m|,|l| \leq|n|,(|k|,|l|) \neq(|m|,|n|) .
$$

The result will follow from
$\left(T_{1}+1\right) Z^{m} Y^{n}\left(T_{1}+1\right) \in\left(T_{1}+1\right)\left(\widetilde{A W}\left(3, Q_{0}\right)+o\left(Z^{m} Y^{n}\right)\right)\left(T_{1}+1\right)$.

Proof of theorem, continued

Write $\left(T_{1}+1\right) Z^{m} Y^{n}\left(T_{1}+1\right)$ as linear combination of

$$
\begin{align*}
& Z^{|m|} Y^{|n|}\left(T_{1}+1\right), Z^{-|m|} Y^{|n|}\left(T_{1}+1\right), Z^{-|m|} Y^{-|n|}\left(T_{1}+1\right), \\
& Z^{-|m|} Y^{-|n|}\left(T_{1}+1\right) \quad \text { modulo } o\left(Z^{|m|} Y^{|n|}\right)\left(T_{1}+1\right) \tag{1}
\end{align*}
$$

This is done by induction, starting with the $\tilde{\mathfrak{H}}$ relations for $T_{1} Z$, $T_{1} Z^{-1}, T_{1} Y, T_{1} Y^{-1}$.

Proof of theorem, continued

Write $\left(T_{1}+1\right) Z^{m} Y^{n}\left(T_{1}+1\right)$ as linear combination of

$$
\begin{align*}
& Z^{|m|} Y^{|n|}\left(T_{1}+1\right), Z^{-|m|} Y^{|n|}\left(T_{1}+1\right), Z^{-|m|} Y^{-|n|}\left(T_{1}+1\right), \\
& Z^{-|m|} Y^{-|n|}\left(T_{1}+1\right) \quad \text { modulo } o\left(Z^{|m|} Y^{|n|}\right)\left(T_{1}+1\right) \tag{1}
\end{align*}
$$

This is done by induction, starting with the $\tilde{\mathfrak{H}}$ relations for $T_{1} Z$, $T_{1} Z^{-1}, T_{1} Y, T_{1} Y^{-1}$.

Also write $\left(T_{1}+1\right) K_{1}^{m} K_{0}^{n}\left(T_{1}+1\right)$ and
$\left(T_{1}+1\right) K_{1}^{m-1} K_{0} K_{1} K_{0}^{n-1}\left(T_{1}+1\right)(m, n=0,1, \ldots)$ as a linear combination of (1).
These latter linear combinations turn out to span the linear combinations obtained for $\left(T_{1}+1\right) Z^{m} Y^{n}\left(T_{1}+1\right)$.

Proof of theorem, example

As an example see for $m, n>0$:

$$
\begin{aligned}
& \left(T_{1}+1\right) Z^{m} Y^{n}\left(T_{1}+1\right) \\
& \quad=\left(Z^{m} Y^{n}-a b\left(q^{-1} a b c d\right)^{n} Z^{-m} Y^{-n}+o\left(Z^{m} Y^{n}\right)\right)\left(T_{1}+1\right)
\end{aligned}
$$

and

$$
\begin{aligned}
& \left(T_{1}+1\right)\left(K_{1}^{m-1}\left(K_{1} K_{0}-q K_{0} K_{1}\right) K_{0}^{n-1}\right)\left(T_{1}+1\right)=(1-a b)\left(1-q^{2}\right) \\
& \quad \times\left(Z^{m} Y^{n}-a b\left(q^{-1} a b c d\right)^{n} Z^{-m} Y^{-n}+o\left(Z^{m} Y^{n}\right)\right)\left(T_{1}+1\right)
\end{aligned}
$$

Hence

$$
\begin{aligned}
& \left(T_{1}+1\right) Z^{m} Y^{n}\left(T_{1}+1\right)=(1-a b)^{-1}\left(1-q^{2}\right)^{-1} \\
\times & \left(T_{1}+1\right)\left(K_{1}^{m-1}\left(K_{1} K_{0}-q K_{0} K_{1}\right) K_{0}^{n-1}+o\left(Z^{m} Y^{n}\right)\right)\left(T_{1}+1\right)
\end{aligned}
$$

The subalgebra related to the -1 eigenspace of T_{1}

$P_{\text {sym }}^{-}:=(a b-1)^{-1}\left(T_{1}+a b\right)$ projects \mathcal{A} onto the -1 eigenspace $\mathcal{A}_{\text {sym }}^{-}$of T_{1}. Write

$$
S^{-}(U):=P_{\text {sym }}^{-} U P_{\text {sym }}^{-} \quad(U \in \tilde{\mathfrak{H}})
$$

The image $S^{-}(\tilde{\mathfrak{H}})$ is a subalgebra of $\tilde{\mathfrak{H}}$, and $S^{-}\left(\widetilde{\operatorname{AW}}\left(3, Q_{0}\right)\right)$ is a subalgebra of $S^{-}(\tilde{\mathfrak{H}})$.

Two isomorphic algebras

Theorem
Let $A W\left(3, Q_{0} ; q a, q b, c, d\right)$ be $A W\left(3, Q_{0}\right)$ with a, b replaced by $q a, q b$, respectively. Then $K_{0} \mapsto q(a b-1)^{-1} K_{0}\left(T_{1}+a b\right)$ and $K_{1} \mapsto(a b-1)^{-1} K_{1}\left(T_{1}+a b\right)$ extend to an algebra isomorphism $A W\left(3, Q_{0} ; q a, q b, c, d\right) \rightarrow S^{-}\left(\widetilde{A W}\left(3, Q_{0}\right)\right)$.

Two isomorphic algebras

Theorem

Let $A W\left(3, Q_{0} ; q a, q b, c, d\right)$ be $A W\left(3, Q_{0}\right)$ with a, b replaced by $q a, q b$, respectively. Then $K_{0} \mapsto q(a b-1)^{-1} K_{0}\left(T_{1}+a b\right)$ and $K_{1} \mapsto(a b-1)^{-1} K_{1}\left(T_{1}+a b\right)$ extend to an algebra isomorphism $A W\left(3, Q_{0} ; q a, q b, c, d\right) \rightarrow S^{-}\left(\widetilde{A W}\left(3, Q_{0}\right)\right)$.

This is related to a result in Berest-Etingof-Ginzburg, Duke Math. J. (2003), Proposition 4.11 (see also lain Gordon's lecture at this conference).

Two isomorphic algebras

Theorem

Let $A W\left(3, Q_{0} ; q a, q b, c, d\right)$ be $A W\left(3, Q_{0}\right)$ with a, b replaced by $q a, q b$, respectively. Then $K_{0} \mapsto q(a b-1)^{-1} K_{0}\left(T_{1}+a b\right)$ and $K_{1} \mapsto(a b-1)^{-1} K_{1}\left(T_{1}+a b\right)$ extend to an algebra isomorphism $A W\left(3, Q_{0} ; q a, q b, c, d\right) \rightarrow S^{-}\left(\widetilde{A W}\left(3, Q_{0}\right)\right)$.

This is related to a result in Berest-Etingof-Ginzburg, Duke Math. J. (2003), Proposition 4.11 (see also lain Gordon's lecture at this conference).

Sketch of proof

Rewrite relations for $\widetilde{A W}\left(3, Q_{0}\right)$ while considering $T_{1}+1$ as a generator. Terms with factor $T_{1}+1$ in the relations for $\widetilde{A W}\left(3, Q_{0}\right)$ are killed by factor $T_{1}+a b$ in $S^{-}\left(\widetilde{A W}\left(3, Q_{0}\right)\right)$. In what remains, replace K_{0} by $q^{-1} K_{0}$ and recognize the relations for $A W\left(3, Q_{0} ; q a, q b, c, d\right)$.

The subalgebra $S^{-}(\tilde{\mathfrak{H}})$ is isomorphic to $A W\left(3, Q_{0} ; q a, q b, c, d\right)$

Theorem
$S^{-}(\tilde{\mathfrak{H}})=S^{-}\left(\widetilde{A W}\left(3, Q_{0}\right)\right)$, so the subalgebra $S^{-}(\tilde{\mathfrak{H}})$ is isomorphic to the algebra $\operatorname{AW}\left(3, Q_{0} ; q a, q b, c, d\right)$.

The subalgebra $S^{-}(\tilde{\mathfrak{H}})$ is isomorphic to $A W\left(3, Q_{0} ; q a, q b, c, d\right)$

Theorem

$S^{-}(\tilde{\mathfrak{H}})=S^{-}\left(\widetilde{A W}\left(3, Q_{0}\right)\right)$, so the subalgebra $S^{-}(\tilde{\mathfrak{H}})$ is isomorphic to the algebra $\operatorname{AW}\left(3, Q_{0} ; q a, q b, c, d\right)$.

The proof is analogous to the proof that $S(\tilde{\mathfrak{H}})=S\left(\widetilde{A W}\left(3, Q_{0}\right)\right)$. One has to show that

$$
\left(T_{1}+a b\right) Z^{m} Y^{n}\left(T_{1}+a b\right) \in\left(T_{1}+a b\right)\left(\widetilde{A W}\left(3, Q_{0}\right)+o\left(Z^{m} Y^{n}\right)\right)\left(T_{1}+a b\right)
$$

The centralizer of T_{1} in $\tilde{\mathfrak{H}}$

Corollary
The centralizer $Z_{\tilde{\tilde{5}}}\left(T_{1}\right)$ is equal to $\operatorname{AW}\left(3, Q_{0}\right)$.

The centralizer of T_{1} in $\tilde{\mathfrak{H}}$

Corollary

The centralizer $Z_{\tilde{\mathfrak{H}}}\left(T_{1}\right)$ is equal to $\operatorname{AW}\left(3, Q_{0}\right)$.
For the proof write $U \in \tilde{\mathfrak{H}}$ as

$$
U=(1-a b)^{-1} U\left(T_{1}+1\right)+(a b-1)^{-1} U\left(T_{1}+a b\right)
$$

If $U \in Z_{\tilde{\mathfrak{H}}}\left(T_{1}\right)$ then so are $U\left(T_{1}+1\right)$ and $U\left(T_{1}+a b\right)$. Hence

$$
\begin{aligned}
U\left(T_{1}+1\right) & =(1-a b)^{-1}\left(T_{1}+1\right) U\left(T_{1}+1\right) \\
U\left(T_{1}+a b\right) & =(a b-1)^{-1}\left(T_{1}+a b\right) U\left(T_{1}+a b\right)
\end{aligned}
$$

So $U\left(T_{1}+1\right) \in S(\tilde{\mathfrak{H}})=S\left(\widetilde{A W}\left(3, Q_{0}\right)\right) \subset \widetilde{A W}\left(3, Q_{0}\right)$ and $U\left(T_{1}+a b\right) \in S^{-}(\tilde{\mathfrak{H}})=S^{-}\left(\widetilde{A W}\left(3, Q_{0}\right)\right) \subset \widetilde{A W}\left(3, Q_{0}\right)$.

The center of $\tilde{\mathfrak{H}}$

Corollary

The center of $\tilde{\mathfrak{H}}$ consists of the scalars.
Proof Let $U \in Z(\tilde{\mathfrak{H}})$. Then $U \in Z_{\tilde{\mathfrak{H}}}\left(T_{1}\right)=\widetilde{A W}\left(3, Q_{0}\right)$.
So $U \in Z\left(\widetilde{A W}\left(3, Q_{0}\right)\right)$.
Then $U\left(T_{1}+1\right) \in Z(S(\tilde{\mathfrak{H}})) \sim Z\left(A W\left(3, Q_{0}\right)\right) \sim \mathbb{C}$ and $U\left(T_{1}+a b\right) \in Z\left(S^{-}(\tilde{\mathfrak{H}})\right) \sim Z\left(A W\left(3, Q_{0} ; q a, q b, c, d\right)\right) \sim \mathbb{C}$.
So U is scalar.

Further problems

1 In higher rank, any root system, describe in terms of generators and relations the algebra generated by polynomial multiplication and by the q-difference operators for which the Macdonald polynomials are eigenfunctions.
2 If thus the higher rank analogue of $\operatorname{AW}\left(3, Q_{0}\right)$ is found, what is the analogue of $A W(3)$?
3 What about representations of $A W(3)$ for values of Q different from Q_{0} ? Are there related special functions?
4 Higher rank analogues of my results in the nonsymmetric case.

Usage of Mathematica

I did computations in algebras defined by generators and relations in Mathematica with the aid of the package NCAlgebra, see http://www.math.ucsd.edu/~ncalg/
This was developed by J. W. Helton, R. L. Miller and M. Stankus, in particular for applications in systems engineering and control theory.

See my Mathematica notebooks on http://www.science.uva.nl/~thk/art/

References

Details of the first part of this lecture are in my paper
The relationship between Zhedanov's alsgebra AW(3) and the double affine Hecke algebra in the rank one case, SIGMA 3 (2007), 063;
arXiv:math/0612730v4 [math.QA].

References

Details of the first part of this lecture are in my paper
The relationship between Zhedanov's alsgebra AW(3) and the double affine Hecke algebra in the rank one case, SIGMA 3 (2007), 063;
arXiv:math/0612730v4 [math.QA].
This is in the Vadim Kuznetsov memorial volume of SIGMA.

References

Details of the first part of this lecture are in my paper
The relationship between Zhedanov's alsgebra AW(3) and the double affine Hecke algebra in the rank one case, SIGMA 3 (2007), 063;
arXiv:math/0612730v4 [math. QA].
This is in the Vadim Kuznetsov memorial volume of SIGMA.
Details of the second part of this lecture are in my paper
Zhedanov's algebra AW(3) and the double affine Hecke algebra in the rank one case. II. The spherical subalgebra, arXiv:0711.2320v1 [math.QA].

Picture of Vadim Kuznetsov

