Askey-Wilson polynomials and an embedding of Zhedanov's algebra AW(3) in a double affine Hecke algebra

Tom H. Koornwinder

University of Amsterdam, thk@science.uva.nl

July 2, 2007
9th OPSFA, Marseille, France

Table of contents

1 Zhedanov's algebra $\operatorname{AW}(3)$

2 Double affine Hecke algebra of type $\left(C_{1}^{\vee}, C_{1}\right)$

3 Central extension of $A W(3)$

Zhedanov's algebra AW(3)

Let $\quad q \in \mathbb{C}, \quad q \neq 0, \quad q^{m} \neq 1(m=1,2, \ldots)$.
q-commutator: $\quad[X, Y]_{q}:=q^{\frac{1}{2}} X Y-q^{-\frac{1}{2}} Y X$.
The algebra $A W(3)$ has:
■ generators K_{0}, K_{1}, K_{2},
\square structure constants $B, C_{0}, C_{1}, D_{0}, D_{1}$,

- relations

$$
\begin{aligned}
& {\left[K_{0}, K_{1}\right]_{q}=K_{2}} \\
& {\left[K_{1}, K_{2}\right]_{q}=B K_{1}+C_{0} K_{0}+D_{0}} \\
& {\left[K_{2}, K_{0}\right]_{q}=B K_{0}+C_{1} K_{1}+D_{1}}
\end{aligned}
$$

(Zhedanov, 1991)

Picture of Zhedanov

Choice of structure constants

Let a, b, c, d be complex parameters.
Let $e_{1}, e_{2}, e_{3}, e_{4}$ be the elementary symmetric polynomials in a, b, c, d.
Put for the structure constants:

$$
\begin{aligned}
& B:=\left(1-q^{-1}\right)^{2}\left(e_{3}+q e_{1}\right) \\
& C_{0}:=\left(q-q^{-1}\right)^{2} \\
& C_{1}:=q^{-1}\left(q-q^{-1}\right)^{2} e_{4} \\
& D_{0}:=-q^{-3}(1-q)^{2}(1+q)\left(e_{4}+q e_{2}+q^{2}\right) \\
& D_{1}:=-q^{-3}(1-q)^{2}(1+q)\left(e_{1} e_{4}+q e_{3}\right) .
\end{aligned}
$$

Basic representation of AW(3)

Let $\mathcal{A}_{\text {sym }}$ be the space of symmetric Laurent polynomials $f[z]=f\left[z^{-1}\right]$.
Let the operator $D_{\text {sym }}$ act on $\mathcal{A}_{\text {sym }}$ by

$$
\begin{aligned}
\left(D_{\mathrm{sym}} f\right)[z]:= & A[z](f[q z]-f[z]) \\
& +A\left[z^{-1}\right]\left(f\left[q^{-1} z\right]-f[z]\right)+\left(1+q^{-1} a b c d\right) f[z]
\end{aligned}
$$

where

$$
A[z]:=\frac{(1-a z)(1-b z)(1-c z)(1-d z)}{\left(1-z^{2}\right)\left(1-q z^{2}\right)}
$$

Basic representation of AW(3)

Let $\mathcal{A}_{\text {sym }}$ be the space of symmetric Laurent polynomials $f[z]=f\left[z^{-1}\right]$.
Let the operator $D_{\text {sym }}$ act on $\mathcal{A}_{\text {sym }}$ by

$$
\begin{aligned}
\left(D_{\mathrm{sym}} f\right)[z]:= & A[z](f[q z]-f[z]) \\
& +A\left[z^{-1}\right]\left(f\left[q^{-1} z\right]-f[z]\right)+\left(1+q^{-1} a b c d\right) f[z]
\end{aligned}
$$

where

$$
A[z]:=\frac{(1-a z)(1-b z)(1-c z)(1-d z)}{\left(1-z^{2}\right)\left(1-q z^{2}\right)} .
$$

The basic representation of $A W(3)$ on $\mathcal{A}_{\text {sym }}$ is given by

$$
\begin{aligned}
& \left(K_{0} f\right)[z]:=\left(D_{\text {sym }} f\right)[z], \\
& \left(K_{1} f\right)[z]:=\left(z+z^{-1}\right) f[z] .
\end{aligned}
$$

Askey-Wilson polynomials

Define and notate Askey-Wilson polynomials by

$$
P_{n}[z]:=\text { const. }{ }_{4} \phi_{3}\left(\begin{array}{c}
q^{-n}, q^{n-1} a b c d, a z, a z^{-1} \\
a b, a c, a d
\end{array} ; q, q\right),
$$

monic symmetric Laurent polynomial of degree n :

$$
P_{n}[z]=P_{n}\left[z^{-1}\right]=z^{n}+\cdots+z^{-n} .
$$

These are OP's (in variable $x:=\frac{1}{2}\left(z+z^{-1}\right)$) under certain conditions for q, a, b, c, d.

Askey-Wilson polynomials

Define and notate Askey-Wilson polynomials by

$$
P_{n}[z]:=\text { const. }{ }_{4} \phi_{3}\left(\begin{array}{c}
q^{-n}, q^{n-1} a b c d, a z, a z^{-1} \\
a b, a c, a d
\end{array} ; q, q\right),
$$

monic symmetric Laurent polynomial of degree n :

$$
P_{n}[z]=P_{n}\left[z^{-1}\right]=z^{n}+\cdots+z^{-n} .
$$

These are OP's (in variable $x:=\frac{1}{2}\left(z+z^{-1}\right)$) under certain conditions for q, a, b, c, d.
Askey-Wilson polynomials satisfy

$$
D_{\text {sym }} P_{n}=\lambda_{n} P_{n}, \quad \text { where } \quad \lambda_{n}:=q^{-n}+q^{n-1} a b c d
$$

Askey-Wilson polynomials as intertwining kernels

Askey-Wilson polynomials $P_{n}[z]$ are the kernel of an intertwining operator between the basic representation on $\mathcal{A}_{\text {sym }}$
(z-dependence) and a representation on $\operatorname{Fun}(\{0,1,2, \ldots\})$
(n-dependence):

$$
\left(K_{i}\right)_{z} P_{n}[z]=\left(K_{i}\right)_{n} P_{n}[z] .
$$

Askey-Wilson polynomials as intertwining kernels

Askey-Wilson polynomials $P_{n}[z]$ are the kernel of an intertwining operator between the basic representation on $\mathcal{A}_{\text {sym }}$
(z-dependence) and a representation on $\operatorname{Fun}(\{0,1,2, \ldots\}$)
(n-dependence):

$$
\left(K_{i}\right)_{z} P_{n}[z]=\left(K_{i}\right)_{n} P_{n}[z] .
$$

For $K_{0} \quad$ 2nd order q-difference equation:

$$
A[z] P_{n}[q z]+B[z] P_{n}[z]+C[z] P_{n}\left[q^{-1} z\right]=\lambda_{n} P_{n}[z] .
$$

Askey-Wilson polynomials as intertwining kernels

Askey-Wilson polynomials $P_{n}[z]$ are the kernel of an intertwining operator between the basic representation on $\mathcal{A}_{\text {sym }}$
(z-dependence) and a representation on $\operatorname{Fun}(\{0,1,2, \ldots\})$
(n-dependence):

$$
\left(K_{i}\right)_{z} P_{n}[z]=\left(K_{i}\right)_{n} P_{n}[z] .
$$

For $K_{0} \quad$ 2nd order q-difference equation:

$$
A[z] P_{n}[q z]+B[z] P_{n}[z]+C[z] P_{n}\left[q^{-1} z\right]=\lambda_{n} P_{n}[z] .
$$

For $K_{1} \quad$ 3-term recurrence relation:

$$
\left(z+z^{-1}\right) P_{n}[z]=a_{n} P_{n+1}[z]+b_{n} P_{n}[z]+c_{n} P_{n-1}[z] .
$$

Askey-Wilson polynomials as intertwining kernels

Askey-Wilson polynomials $P_{n}[z]$ are the kernel of an intertwining operator between the basic representation on $\mathcal{A}_{\text {sym }}$
(z-dependence) and a representation on $\operatorname{Fun}(\{0,1,2, \ldots\})$
(n-dependence):

$$
\left(K_{i}\right)_{z} P_{n}[z]=\left(K_{i}\right)_{n} P_{n}[z] .
$$

For $K_{0} \quad$ 2nd order q-difference equation:

$$
A[z] P_{n}[q z]+B[z] P_{n}[z]+C[z] P_{n}\left[q^{-1} z\right]=\lambda_{n} P_{n}[z]
$$

For $K_{1} \quad$ 3-term recurrence relation:

$$
\left(z+z^{-1}\right) P_{n}[z]=a_{n} P_{n+1}[z]+b_{n} P_{n}[z]+c_{n} P_{n-1}[z] .
$$

For $K_{2} \quad q$-structure relation:

$$
\begin{aligned}
\widetilde{A}[z] P_{n}[q z]+\widetilde{B}[z] P_{n}[z] & +\widetilde{C}[z] P_{n}\left[q^{-1} z\right] \\
& =\widetilde{a}_{n} P_{n+1}[z]+\widetilde{b}_{n} P_{n}[z]+\widetilde{c}_{n} P_{n-1}[z]
\end{aligned}
$$

Casimir operator for AW(3)

The Casimir operator

$$
\begin{array}{r}
Q:=\left(q^{-\frac{1}{2}}-q^{\frac{3}{2}}\right) K_{0} K_{1} K_{2}+q K_{2}^{2}+B\left(K_{0} K_{1}+K_{1} K_{0}\right)+q C_{0} K_{0}^{2} \\
\\
+q^{-1} C_{1} K_{1}^{2}+(1+q) D_{0} K_{0}+\left(1+q^{-1}\right) D_{1} K_{1}
\end{array}
$$

commutes in $A W(3)$ with the generators K_{0}, K_{1}, K_{2}.

Casimir operator for AW(3)

The Casimir operator

$$
\begin{array}{r}
Q:=\left(q^{-\frac{1}{2}}-q^{\frac{3}{2}}\right) K_{0} K_{1} K_{2}+q K_{2}^{2}+B\left(K_{0} K_{1}+K_{1} K_{0}\right)+q C_{0} K_{0}^{2} \\
+q^{-1} C_{1} K_{1}^{2}+(1+q) D_{0} K_{0}+\left(1+q^{-1}\right) D_{1} K_{1}
\end{array}
$$

commutes in $A W(3)$ with the generators K_{0}, K_{1}, K_{2}. In the basic representation (which is irreducible for generic values of $a, b, c, d), Q$ becomes a constant scalar:

$$
(Q f)[z]=Q_{0} f[z]
$$

where

$$
\begin{gathered}
Q_{0}:=q^{-4}(1-q)^{2}\left(q^{4}\left(e_{4}-e_{2}\right)+q^{3}\left(e_{1}^{2}-e_{1} e_{3}-2 e_{2}\right)\right. \\
\left.-q^{2}\left(e_{2} e_{4}+2 e_{4}+e_{2}\right)+q\left(e_{3}^{2}-2 e_{2} e_{4}-e_{1} e_{3}\right)+e_{4}\left(e_{1}-e_{2}\right)\right)
\end{gathered}
$$

Casimir operator for AW(3)

The Casimir operator

$$
\begin{array}{r}
Q:=\left(q^{-\frac{1}{2}}-q^{\frac{3}{2}}\right) K_{0} K_{1} K_{2}+q K_{2}^{2}+B\left(K_{0} K_{1}+K_{1} K_{0}\right)+q C_{0} K_{0}^{2} \\
+q^{-1} C_{1} K_{1}^{2}+(1+q) D_{0} K_{0}+\left(1+q^{-1}\right) D_{1} K_{1}
\end{array}
$$

commutes in $A W(3)$ with the generators K_{0}, K_{1}, K_{2}.
In the basic representation (which is irreducible for generic values of $a, b, c, d), Q$ becomes a constant scalar:

$$
(Q f)[z]=Q_{0} f[z]
$$

where

$$
\begin{gathered}
Q_{0}:=q^{-4}(1-q)^{2}\left(q^{4}\left(e_{4}-e_{2}\right)+q^{3}\left(e_{1}^{2}-e_{1} e_{3}-2 e_{2}\right)\right. \\
\left.-q^{2}\left(e_{2} e_{4}+2 e_{4}+e_{2}\right)+q\left(e_{3}^{2}-2 e_{2} e_{4}-e_{1} e_{3}\right)+e_{4}\left(e_{1}-e_{2}\right)\right)
\end{gathered}
$$

Assumption
$a, b, c, d \neq 0, \quad a b c d \neq q^{-m}(m=0,1,2, \ldots)$.

A faithful representation on $\mathcal{A}_{\text {sym }}$

Definition

$A W\left(3, Q_{0}\right)$ is the algebra $A W(3)$ with additional relation $Q=Q_{0}$.

A faithful representation on $\mathcal{A}_{\text {sym }}$

Definition

$A W\left(3, Q_{0}\right)$ is the algebra $A W(3)$ with additional relation $Q=Q_{0}$.

Theorem (THK, 2007)
AW $\left(3, Q_{0}\right)$ has the elements

$$
K_{0}^{n}\left(K_{1} K_{0}\right)^{\prime} K_{1}^{m} \quad(m, n=0,1,2, \ldots, \quad I=0,1)
$$

as a linear basis.
The basic representation of $\operatorname{AW}\left(3, Q_{0}\right)$ on $\mathcal{A}_{\text {sym }}$ is faithful.

Double affine Hecke algebra of type $\left(C_{1}^{\vee}, C_{1}\right)$

The algebra $\tilde{\mathfrak{H}}$ has:
■ q, a, b, c, d as before,
\square generators Z, Z^{-1}, T_{1}, T_{0},

- relations

$$
\begin{aligned}
\left(T_{1}+a b\right)\left(T_{1}+1\right) & =0 \\
\left(T_{0}+q^{-1} c d\right)\left(T_{0}+1\right) & =0 \\
\left(T_{1} Z+a\right)\left(T_{1} Z+b\right) & =0 \\
\left(q T_{0} Z^{-1}+c\right)\left(q T_{0} Z^{-1}+d\right) & =0
\end{aligned}
$$

Double affine Hecke algebra of type $\left(C_{1}^{\vee}, C_{1}\right)$

The algebra $\tilde{\mathfrak{H}}$ has:
■ q, a, b, c, d as before,
$■$ generators Z, Z^{-1}, T_{1}, T_{0},

- relations

$$
\begin{aligned}
\left(T_{1}+a b\right)\left(T_{1}+1\right) & =0, \\
\left(T_{0}+q^{-1} c d\right)\left(T_{0}+1\right) & =0 \\
\left(T_{1} Z+a\right)\left(T_{1} Z+b\right) & =0, \\
\left(q T_{0} Z^{-1}+c\right)\left(q T_{0} Z^{-1}+d\right) & =0
\end{aligned}
$$

(Sahi, Noumi \& Stokman, Macdonald's 2003 book; preceding work by Dunkl, Heckman, Cherednik.)

Double affine Hecke algebra of type $\left(C_{1}^{\vee}, C_{1}\right)$

The algebra $\tilde{\mathfrak{H}}$ has:
■ q, a, b, c, d as before,
$■$ generators Z, Z^{-1}, T_{1}, T_{0},

- relations

$$
\begin{aligned}
\left(T_{1}+a b\right)\left(T_{1}+1\right) & =0 \\
\left(T_{0}+q^{-1} c d\right)\left(T_{0}+1\right) & =0 \\
\left(T_{1} Z+a\right)\left(T_{1} Z+b\right) & =0 \\
\left(q T_{0} Z^{-1}+c\right)\left(q T_{0} Z^{-1}+d\right) & =0
\end{aligned}
$$

(Sahi, Noumi \& Stokman, Macdonald's 2003 book; preceding work by Dunkl, Heckman, Cherednik.)
T_{1} and T_{0} are invertible.

$$
Y:=T_{1} T_{0}, \quad D:=Y+q^{-1} a b c d Y^{-1}
$$

Basic representation of $\tilde{\mathfrak{H}}$

Let \mathcal{A} be the space of Laurent polynomials $f[z]$.
The basic representation of $\tilde{\mathfrak{H}}$ on \mathcal{A} is given by

$$
\begin{aligned}
(Z f)[z] & :=z f[z], \\
\left(T_{1} f\right)[z] & :=-a b f[z]+\frac{(1-a z)(1-b z)}{1-z^{2}}\left(f\left[z^{-1}\right]-f[z]\right), \\
\left(T_{0} f\right)[z] & :=-q^{-1} c d f[z]+\frac{(c-z)(d-z)}{q-z^{2}}\left(f[z]-f\left[q z^{-1}\right]\right) .
\end{aligned}
$$

Basic representation of $\tilde{\mathfrak{H}}$

Let \mathcal{A} be the space of Laurent polynomials $f[z]$.
The basic representation of $\tilde{\mathfrak{H}}$ on \mathcal{A} is given by

$$
\begin{aligned}
(Z f)[z] & :=z f[z], \\
\left(T_{1} f\right)[z] & :=-a b f[z]+\frac{(1-a z)(1-b z)}{1-z^{2}}\left(f\left[z^{-1}\right]-f[z]\right), \\
\left(T_{0} f\right)[z] & :=-q^{-1} c d f[z]+\frac{(c-z)(d-z)}{q-z^{2}}\left(f[z]-f\left[q z^{-1}\right]\right) .
\end{aligned}
$$

Then

$$
\left(T_{1} f\right)[z]=-a b f[z] \quad \text { iff } \quad f[z]=f\left[z^{-1}\right]
$$

and

$$
(D f)[z]=\left(D_{\text {sym }} f\right)[z] \quad \text { if } \quad f[z]=f\left[z^{-1}\right] .
$$

Eigenspaces of D

Let

$$
\begin{aligned}
Q_{n}[z] & :=a^{-1} b^{-1} z^{-1}(1-a z)(1-b z) P_{n-1}[z ; q a, q b, c, d \mid q] \\
& =z^{n}+\cdots+a^{-1} b^{-1} z^{-n} .
\end{aligned}
$$

Then

$$
D Q_{n}=\lambda_{n} Q_{n}, \quad T_{1} Q_{n}=-Q_{n}
$$

D has eigenvalues $\lambda_{n}(n=0,1,2, \ldots)$.
T_{1} has eigenvalues $-1,-a b$.
D and T_{1} commute.
The eigenspace of D for λ_{n} is spanned by P_{n} and Q_{n} ($n=1,2, \ldots$).

Eigenspaces of Y

Let

$$
\begin{aligned}
E_{-n} & =\frac{a b}{a b-1}\left(P_{n}-Q_{n}\right) \quad(n=1,2, \ldots) \\
E_{n} & =\frac{\left(1-q^{n} a b\right)\left(1-q^{n-1} a b c d\right)}{(1-a b)\left(1-q^{2 n-1} a b c d\right)} P_{n}-\frac{a b\left(1-q^{n}\right)\left(1-q^{n-1} c d\right)}{(1-a b)\left(1-q^{2 n-1} a b c d\right)} Q_{n}
\end{aligned}
$$

$$
(n=1,2, \ldots)
$$

Eigenspaces of Y

Let

$$
\begin{aligned}
& E_{-n}=\frac{a b}{a b-1}\left(P_{n}-Q_{n}\right) \quad(n=1,2, \ldots), \\
& E_{n}=\frac{\left(1-q^{n} a b\right)\left(1-q^{n-1} a b c d\right)}{(1-a b)\left(1-q^{2 n-1} a b c d\right)} P_{n}-\frac{a b\left(1-q^{n}\right)\left(1-q^{n-1} c d\right)}{(1-a b)\left(1-q^{2 n-1} a b c d\right)} Q_{n} \\
& \quad(n=1,2, \ldots) .
\end{aligned}
$$

Then

$$
\begin{aligned}
Y E_{-n} & =q^{-n} E_{-n} & & (n=1,2, \ldots) \\
Y E_{n} & =q^{n-1} a b c d E_{n} & & (n=0,1,2, \ldots) .
\end{aligned}
$$

Faithfulness of the basic representation of $\tilde{\mathfrak{H}}$

Theorem (Sahi)

The basic representation of $\tilde{\mathfrak{H}}$ is faithful.
The elements

$$
Z^{m} Y^{n} T_{1}^{i} \quad(m, n \in \mathbb{Z}, i=0,1)
$$

form a linear basis of $\tilde{\mathfrak{H}}$.

Central extension of AW(3)

Let the algebra $\widetilde{A W}(3)$ be generated by $K_{0}, K_{1}, K_{2}, T_{1}$ such that T_{1} commutes with K_{0}, K_{1}, K_{2} and with further relations

$$
\begin{aligned}
\left(T_{1}+a b\right)\left(T_{1}+1\right)= & 0 \\
\left(q+q^{-1}\right) K_{1} K_{0} K_{1}-K_{1}^{2} K_{0}-K_{0} K_{1}^{2}= & B K_{1}+C_{0} K_{0}+D_{0} \\
& +E K_{1}\left(T_{1}+a b\right)+F_{0}\left(T_{1}+a b\right) \\
\left(q+q^{-1}\right) K_{0} K_{1} K_{0}-K_{0}^{2} K_{1}-K_{1} K_{0}^{2}= & B K_{0}+C_{1} K_{1}+D_{1} \\
& +E K_{0}\left(T_{1}+a b\right)+F_{1}\left(T_{1}+a b\right)
\end{aligned}
$$

where

$$
\begin{aligned}
& E:=-q^{-2}(1-q)^{3}(c+d) \\
& F_{0}:=q^{-3}(1-q)^{3}(1+q)(c d+q) \\
& F_{1}:=q^{-3}(1-q)^{3}(1+q)(a+b) c d
\end{aligned}
$$

Basic representation of AW(3)

The following element \widetilde{Q} commutes with all elements of $\widetilde{A W}(3)$:

$$
\begin{aligned}
\widetilde{Q}:= & \left(K_{1} K_{0}\right)^{2}-\left(q^{2}+1+q^{-2}\right) K_{0}\left(K_{1} K_{0}\right) K_{1} \\
& +\left(q+q^{-1}\right) K_{0}^{2} K_{1}^{2}+\left(q+q^{-1}\right)\left(C_{0} K_{0}^{2}+C_{1} K_{1}^{2}\right) \\
& +\left(B+E\left(T_{1}+a b\right)\right)\left(\left(q+1+q^{-1}\right) K_{0} K_{1}+K_{1} K_{0}\right) \\
& +\left(q+1+q^{-1}\right)\left(D_{0}+F_{0}\left(T_{1}+a b\right)\right) K_{0} \\
& +\left(q+1+q^{-1}\right)\left(D_{1}+F_{1}\left(T_{1}+a b\right)\right) K_{1}+G\left(T_{1}+a b\right),
\end{aligned}
$$

where G can be explicitly specified.

Basic representation of $\widetilde{A W}(3)$

The following element \widetilde{Q} commutes with all elements of $\widetilde{A W}(3)$:

$$
\begin{aligned}
\widetilde{Q}:= & \left(K_{1} K_{0}\right)^{2}-\left(q^{2}+1+q^{-2}\right) K_{0}\left(K_{1} K_{0}\right) K_{1} \\
& +\left(q+q^{-1}\right) K_{0}^{2} K_{1}^{2}+\left(q+q^{-1}\right)\left(C_{0} K_{0}^{2}+C_{1} K_{1}^{2}\right) \\
& +\left(B+E\left(T_{1}+a b\right)\right)\left(\left(q+1+q^{-1}\right) K_{0} K_{1}+K_{1} K_{0}\right) \\
& +\left(q+1+q^{-1}\right)\left(D_{0}+F_{0}\left(T_{1}+a b\right)\right) K_{0} \\
& +\left(q+1+q^{-1}\right)\left(D_{1}+F_{1}\left(T_{1}+a b\right)\right) K_{1}+G\left(T_{1}+a b\right),
\end{aligned}
$$

where G can be explicitly specified.
$\widetilde{A W}(3)$ acts on \mathcal{A} such that K_{0}, K_{1}, T_{1} act as $D_{\text {sym }}, Z+Z^{-1}, T_{1}$, respectively, in the basic representation of $\tilde{\mathfrak{H}}$ on \mathcal{A}.
This action is called the basic representation of $\widetilde{A W}(3)$ on \mathcal{A}.

Basic representation of $\widetilde{A W}(3)$

The following element \widetilde{Q} commutes with all elements of $\widetilde{A W}(3)$:

$$
\begin{aligned}
\widetilde{Q}:= & \left(K_{1} K_{0}\right)^{2}-\left(q^{2}+1+q^{-2}\right) K_{0}\left(K_{1} K_{0}\right) K_{1} \\
& +\left(q+q^{-1}\right) K_{0}^{2} K_{1}^{2}+\left(q+q^{-1}\right)\left(C_{0} K_{0}^{2}+C_{1} K_{1}^{2}\right) \\
& +\left(B+E\left(T_{1}+a b\right)\right)\left(\left(q+1+q^{-1}\right) K_{0} K_{1}+K_{1} K_{0}\right) \\
& +\left(q+1+q^{-1}\right)\left(D_{0}+F_{0}\left(T_{1}+a b\right)\right) K_{0} \\
& +\left(q+1+q^{-1}\right)\left(D_{1}+F_{1}\left(T_{1}+a b\right)\right) K_{1}+G\left(T_{1}+a b\right),
\end{aligned}
$$

where G can be explicitly specified.
$\widetilde{A W}(3)$ acts on \mathcal{A} such that K_{0}, K_{1}, T_{1} act as $D_{\text {sym }}, Z+Z^{-1}, T_{1}$, respectively, in the basic representation of $\tilde{\mathfrak{H}}$ on \mathcal{A}. This action is called the basic representation of $\widetilde{A W}(3)$ on \mathcal{A}.
Then \widetilde{Q} acts as the constant Q_{0}.

A faithful representation on \mathcal{A}

Definition

$A W\left(3, Q_{0}\right)$ is the algebra $A W(3)$ with additional relation
$\widetilde{Q}=Q_{0}$.

A faithful representation on \mathcal{A}

Definition

$A W\left(3, Q_{0}\right)$ is the algebra $A W(3)$ with additional relation $\widetilde{Q}=Q_{0}$.

Theorem (THK, 2007)

$\widehat{A W}\left(3, Q_{0}\right)$ has the elements

$$
K_{0}^{n}\left(K_{1} K_{0}\right)^{i} K_{1}^{m} T_{1}^{j} \quad(m, n=0,1,2, \ldots, \quad i, j=0,1)
$$

as a linear basis.
The basic representation of $\widetilde{A W}\left(3, Q_{0}\right)$ on \mathcal{A} is faithful.
$\widetilde{A W}\left(3, Q_{0}\right)$ has an injective embedding in $\tilde{\mathfrak{H}}$.

References

I did computations in algebras defined by generators and relations in Mathematica with the aid of the package NCAlgebra, see http://www.math.ucsd.edu/~ncalg/
See my Mathematica notebooks on
http://www.science.uva.nl/~thk/art/

References

I did computations in algebras defined by generators and relations in Mathematica with the aid of the package NCAlgebra, see http://www.math.ucsd.edu/~ncalg/
See my Mathematica notebooks on
http://www.science.uva.nl/~thk/art/
Details of this lecture in my paper
The relationship between Zhedanov's alsgebra AW(3) and the double affine Hecke algebra in the rank one case, arXiv:math. QA/0612730v3; SIGMA 3 (2007), 063.

References

I did computations in algebras defined by generators and relations in Mathematica with the aid of the package NCAlgebra, see http://www.math.ucsd.edu/~ncalg/
See my Mathematica notebooks on
http://www.science.uva.nl/~thk/art/
Details of this lecture in my paper
The relationship between Zhedanov's alsgebra AW(3) and the double affine Hecke algebra in the rank one case, arXiv:math. QA/0612730v3; SIGMA 3 (2007), 063.

This is in the Vadim Kuznetsov memorial volume of SIGMA.

Picture of Vadim Kuznetsov

