From: Tom Koornwinder T.H.Koornwinder@uva.nl
Subject: Open problem on Jacobi polynomials
Date: 15 March 2010
Fernando Mário de Oliveira Filho formulates in his thesis [2, p.47] the following open problem.
Problem 1. Let $R_{n}^{(\alpha, \beta)}(x):=P_{n}^{(\alpha, \beta)}(x) / P_{n}^{(\alpha, \beta)}(1)$ be a normalized Jacobi polynomial and let $x_{n, 1}^{(\alpha, \beta)}<\ldots<x_{n, n}^{(\alpha, \beta)}$ be its successive zeros. For $\alpha \geq 0$ and $-1<x<1$ let k be such that

$$
\begin{equation*}
\min \left\{R_{j}^{(\alpha, \alpha)}(x) \mid j=0,1, \ldots\right\}=R_{k}^{(\alpha, \alpha)}(x) \tag{1}
\end{equation*}
$$

(such k exists). Is it true that the sequence

$$
\begin{equation*}
R_{0}^{(\alpha, \alpha)}(x), R_{1}^{(\alpha, \alpha)}(x), \ldots, R_{k}^{(\alpha, \alpha)}(x) \tag{2}
\end{equation*}
$$

is decreasing?
Remark 1. Because of the identity

$$
(k+\alpha+1)(1-x) R_{k}^{(\alpha+1, \alpha)}(x)=(\alpha+1)\left(R_{k}^{(\alpha, \alpha)}(x)-R_{k+1}^{(\alpha, \alpha)}(x)\right)
$$

a necessary condition for (1) to hold for given k is that $x_{k-1, k-1}^{(\alpha+1, \alpha)} \leq x \leq x_{k, k}^{(\alpha+1, \alpha)}$. But then the sequence (2) is decreasing. Hence, Problem 1 is equivalent to the question whether (1) is true for $x_{k-1, k-1}^{(\alpha+1, \alpha)} \leq x \leq x_{k, k}^{(\alpha+1, \alpha)}$.

Remark 2. As shown in [1, $\S 7]$, [2, Theorem 3.8], formula (1) is true for $x=x_{k-1, k-1}^{(\alpha+1, \alpha+1)}$.

References

[1] C. Bachoc, G. Nebe, F. M. de Oliveira Filho and F. Vallentin, Lower bounds for measurable chromatic numbers, Geom. Funct. Anal. 19 (2009), 645-661;
arXiv:0801.1059v3 [math.C0]
[2] F. M. de Oliveira Filho, New bounds for geometric packing and coloring via harmonic analysis and optimization, PhD Thesis, University of Amsterdam, 2009;
http://homepages.cwi.nl/~fmario/thesis.pdf

