Some more detailed comments to the book "A guide to quantum groups" by V. Chari and A. Pressley, Cambridge University Press, 1994, ISBN 0521433053
by Tom H. Koornwinder
last modified: October 3, 1995

1. Left A-module algebra and left A-module coalgebra (p .109)

Let A be a bialgebra over over a commutative ring k with identity element. So $\lambda_{V}: A \rightarrow$ $\operatorname{End}_{k}(V)$ is an algebra homomorphism and we write $a . v:=\lambda_{V}(a) v(a \in A, v \in V)$. If W is another left A-module then $V \otimes W$ becomes a left A-module with

$$
\lambda_{V \otimes W}(a):=\left(\lambda_{V} \otimes \lambda_{W}\right)(\Delta(a)), \quad \text { so } \quad a \cdot(v \otimes w)=\sum_{(a)}\left(a_{(1)} \cdot v\right) \otimes\left(a_{(2)} \cdot w\right) .
$$

Also, k becomes a left A-module (the trivial A-module) by

$$
\lambda_{k}(a):=\varepsilon(a), \quad \text { so } \quad a . \alpha:=\varepsilon(a) \alpha .
$$

I will give the definitions of left A-module algebra and left A-module coalgebra.
1.1. Left A-module algebra. V is moreover an algebra such that the following two diagrams commute for each $a \in A$:

Equivalently, $\mu_{V}: V \otimes V \rightarrow V$ and $\iota_{V}: k \rightarrow V$ are are left A-module homomorphisms. Another equivalent way to write this is by:

$$
a \cdot(v w)=\sum_{(a)}\left(a_{(1)} \cdot v\right)\left(a_{(2)} \cdot w\right), \quad a \cdot 1_{V}=\varepsilon_{A}(a) 1_{V} .
$$

1.2. Left A-module coalgebra. V is moreover a coalgebra such that the following two diagrams commute for each $a \in A$:

$$
\begin{array}{cccccc}
V & \xrightarrow{\lambda_{V}(a)} & V & V & \xrightarrow{\lambda_{V}} & V \\
\downarrow \Delta_{V} & & \downarrow \Delta_{V} & \downarrow \varepsilon_{V} & & \downarrow \varepsilon_{V} \\
V \otimes V & \xrightarrow{\lambda_{V \otimes V}(a)} & V \otimes V & k & \xrightarrow{\varepsilon(a)} & k
\end{array}
$$

Equivalently, $\Delta_{V}: V \rightarrow V \otimes V$ and $\varepsilon_{V}: V \rightarrow k$ are left A-module homomorphisms. Another equivalent way to write this is by:

$$
\Delta_{V}(a . v)=a . \Delta_{V}(v), \quad \varepsilon_{V}(a . v)=\varepsilon_{A}(a) \varepsilon_{V}(v)
$$

2. Quantum trace and quantum character (p.126)

Assume now that A is a Hopf algebra over a field k. Let all left A-modules under consideration be finite dimensional. Let V be a left A-module and write $V^{*}:=\operatorname{Hom}_{k}(V, k)$. This gives a pairing between V^{*} and V :

$$
\langle\xi, v\rangle:=\xi(v) \quad\left(v \in V, \xi \in V^{*}\right) .
$$

Then V^{*} becomes a left A-module by

$$
\lambda_{V^{*}}(a):=\left(\lambda_{V}(S(a))^{*}, \quad \text { so } \quad\langle a \cdot \xi, v\rangle=\langle\xi, S(a) \cdot v\rangle .\right.
$$

V and $V^{* *}$ can be naturally identified as k-modules. However, for the left A-module structures we have

$$
\left\langle\xi, \lambda_{V^{* *}}(a) v\right\rangle=\left\langle\lambda_{V^{*}}(S(a)) \xi, v\right\rangle=\left\langle\xi, \lambda_{V}\left(S^{2}(a)\right) v\right\rangle .
$$

So

$$
\lambda_{V^{* *}}(a)=\lambda_{V}\left(S^{2}(a)\right) .
$$

From now on we assume that there is an invertible element $u \in A$ such that $S^{2}(a)=u a u^{-1}$. By Proposition 4.2.3 the element $u:=\mu(S \otimes \mathrm{id})\left(R_{21}\right)$ satisfies this property if A is an almost cocommutative Hopf algebra as in Definition 4.2.1.

Now it follows that the following diagram is commutative for each $a \in A$:

$$
\begin{array}{ll}
V \quad \stackrel{\lambda_{V}(a)}{\longrightarrow} & V \\
\downarrow_{V}(u) & \downarrow \lambda_{V}(u)
\end{array}
$$

Identify $W \otimes V^{*}$ and $\operatorname{Hom}_{k}(V, W)$ as k-modules such that $w \otimes \xi \in W \otimes V^{*}$ corresponds with $\langle\xi,\rangle . w \in \operatorname{Hom}_{k}(V, W)$. The k-module structure of $W \otimes V^{*}$ is carried by this identification to $\operatorname{Hom}_{k}(V, W)$. We obtain

$$
\left(\lambda_{W \otimes V^{*}}(a) f\right)(v)=(a \cdot f)(v)=\sum_{(a)} a_{(1)} . f\left(S\left(a_{(2)}\right) \cdot v\right) \quad\left(f \in \operatorname{Hom}_{k}(V, W), a \in A, v \in V\right)
$$

The adjoint representation of A on A, denoted by ad, is defined by

$$
\operatorname{ad}(a) b:=\sum_{(a)} a_{(1)} b S\left(a_{(2)}\right) \quad(a, b \in A) .
$$

Now the following diagram commutes for each $a \in A$:

$$
\begin{array}{ccc}
A & \xrightarrow{\operatorname{ad}(a)} & A \tag{2.1}\\
\downarrow \lambda_{V} & & \downarrow \lambda_{V} \\
\operatorname{End}_{k}(V) & \xrightarrow{\lambda_{V} \otimes V^{*}(a)} & \begin{array}{c}
\operatorname{End}_{k}(V)
\end{array}
\end{array}
$$

So $\lambda_{V}: A \rightarrow \operatorname{End}_{k}(V)$ is an intertwining operator for the representations ad on A and $\lambda_{V \otimes V^{*}}$ on $\operatorname{End}_{k}(V)$. For the proof note that

$$
\left(a \cdot \lambda_{V}(b)\right)(v)=\sum_{(a)} a_{(1)} \cdot \lambda_{V}(b)\left(S\left(a_{(2)}\right) \cdot v\right)=\sum_{(a)} \lambda_{V}\left(a_{(1)} b S\left(a_{(2)}\right)\right) v=\lambda_{V}(\operatorname{ad}(a) b) v
$$

The mapping $\operatorname{tr}: \xi \otimes v \mapsto\langle\xi, v\rangle: V^{*} \otimes V \rightarrow k$ is a homomorphism of left A-modules:

$$
\operatorname{tr}(a .(\xi \otimes v))=\varepsilon(a)\langle\xi, v\rangle=\varepsilon(a) \operatorname{tr}(\xi \otimes v)
$$

However, the mapping $\operatorname{tr}: v \otimes \xi \mapsto\langle\xi, v\rangle: V \otimes V^{*} \rightarrow k$ is generally not a homomorphism of left A-modules. Under the identification of $V \otimes V^{*}$ and $\operatorname{End}_{k}(V)$ the mapping $\operatorname{tr}: V^{*} \otimes V \rightarrow$ k is carried to the usual trace mapping from $\operatorname{End}_{k}(V)$ to k, but this mapping will neither be a homomorphism of left A-modules in general.

As k-modules we can identify $V \otimes V^{*}$ and $V^{* *} \otimes V^{*}$, but they are generally different as left A-modules. We have

$$
\lambda_{V^{* *} \otimes V^{*}}(a)(v \otimes \xi)=\sum_{(a)}\left(S^{2}\left(a_{(1)}\right) \cdot v\right) \otimes\left(a_{(2)} \cdot \xi\right)
$$

Hence

$$
\begin{aligned}
\operatorname{tr} & \left(\lambda_{V^{* *} \otimes V^{*}}(a)(v \otimes \xi)\right)=\sum_{(a)}\left\langle a_{(2)} \cdot \xi, S^{2}\left(a_{(1)}\right) \cdot v\right\rangle=\sum_{(a)}\left\langle\xi, \lambda_{V}\left(S\left(a_{(2}\right) S^{2}\left(a_{(1)}\right)\right) v\right\rangle \\
& =\sum_{(a)}\left\langle\xi, \lambda_{V}\left(S\left(S\left(a_{(1)}\right) a_{(2)}\right)\right) v\right\rangle=\left\langle\xi, \lambda_{V}(\varepsilon(a) 1) v\right\rangle=\varepsilon(a)\langle\xi, v\rangle=\varepsilon(a) \operatorname{tr}(v \otimes \xi) .
\end{aligned}
$$

We conclude that the mapping $\operatorname{tr}: V^{* *} \otimes V^{*} \rightarrow k$ is a homomorphism of left A-modules.
Now identify $\operatorname{End}_{k}(V)$ and $V^{* *} \otimes V^{*}$ as k-modules. Carrying the left A-module structure of $V^{* *} \otimes V^{*}$ to $\operatorname{End}(V)$ yields

$$
\left(\lambda_{V^{* *} \otimes V^{*}}(a) f\right)(v)=\sum_{(a)} S^{2}\left(a_{(1)}\right) \cdot f\left(S\left(a_{(2)}\right) \cdot v\right) \quad\left(f \in \operatorname{End}_{k}(V), a \in A, v \in V\right)
$$

Then tr: $\operatorname{End}_{k}(V) \rightarrow k$ intertwines the representations $\lambda_{V^{* *} \otimes V^{*}}$ on $\operatorname{End}_{k}(V)$ and ε on k. So the following diagram is commutative for each $a \in A$:

Let $u \in A$ be as before. Then

$$
\begin{aligned}
\lambda_{V}(u)\left(\lambda_{V \otimes V^{*}}(a) f\right)(v)=\sum_{(a)} u \cdot a_{(1)} \cdot f\left(S\left(a_{(2)}\right) \cdot v\right) & =\sum_{(a)} S^{2}\left(a_{(1)}\right) \cdot u \cdot f\left(S\left(a_{(2)}\right), v\right) \\
& =\lambda_{V^{* *} \otimes V^{*}}(a)\left(\lambda_{V}(u) f(v)\right) .
\end{aligned}
$$

Hence the following diagram commutes for each $a \in A$:

$$
\begin{array}{ccc}
\operatorname{End}_{k}(V) & \xrightarrow{\lambda_{V} \otimes V^{*}}(a) & \operatorname{End}_{k}(V) \\
& \downarrow \lambda_{V}(u) . & \tag{2.3}\\
\operatorname{End}_{k}(V) & \lambda_{V^{* *} \otimes V^{*}}(a) & \lambda_{V}(u) . \\
\operatorname{End}_{k}(V)
\end{array}
$$

Here $\lambda_{v}(u)$. means left multiplication by $\lambda_{V}(u)$ in $\operatorname{End}_{k}(V)$.
Combination of the diagrams (2.1), (2.3) and (2.2) yields the commutative diagram

$$
\begin{array}{ccc}
A & \xrightarrow{\operatorname{ad}(a)} & A \\
\downarrow \lambda_{V} & & \downarrow \lambda_{V} \\
\operatorname{End}_{k}(V) & \lambda_{V \otimes V^{*}}(a) & \stackrel{\operatorname{End}_{k}(V)}{ } \\
\downarrow \lambda_{V}(u) . & & \downarrow \lambda_{V}(u) . \\
\operatorname{End}_{k}(V) & \lambda_{V^{* *} \otimes V^{*}}(a) & \operatorname{End}_{k}(V) \\
\downarrow \operatorname{tr} & & \downarrow \operatorname{tr} \\
k & \xrightarrow{\varepsilon(a)} & k
\end{array}
$$

Define the quantum trace, quantum character and quantum dimension by

$$
\begin{aligned}
\operatorname{qtr}_{V}(f) & :=\operatorname{tr}\left(\lambda_{V}(u) f\right) \quad\left(f \in \operatorname{End}_{k}(V)\right), \\
\operatorname{qch}_{V}(b) & :=\operatorname{qtr}_{V}\left(\lambda_{V}(b)\right)=\operatorname{tr}\left(\lambda_{V}(u b)\right) \quad(b \in A), \\
\operatorname{qdim}(V) & :=\operatorname{qch}_{V}(1)=\operatorname{qtr}_{V}\left(I_{V}\right)=\operatorname{tr}\left(\lambda_{V}(u)\right) .
\end{aligned}
$$

Then the following two diagrams commute for each $a \in A$:

In particular, we have

$$
\operatorname{qch}_{V}(\operatorname{ad}(a) b)=\varepsilon(a) \operatorname{qch}_{V}(b) \quad(a, b \in A) .
$$

Now assume that the element u satisfis moreover:

$$
\Delta(u)=u \otimes u
$$

Then:

$$
\begin{aligned}
\lambda_{V \otimes W}(u) & =\lambda_{V}(u) \otimes \lambda_{W}(u) \\
\operatorname{qtr}_{V \otimes W}(f \otimes g) & =\operatorname{qtr}_{V}(f) \operatorname{qtr}_{W}(g), \\
\operatorname{qch}_{V \otimes W}(b) & =\operatorname{qch}_{V}(b) \operatorname{qch}_{W}(b), \\
\operatorname{qdim}(V \otimes W) & =\operatorname{qdim}(V) \operatorname{qdim}(W) .
\end{aligned}
$$

So the quantum trace, quantum character and quantum dimension then have properties quite similar to their classical analogues.

Let A be quasitriangular and take $u:=\mu(S \otimes \mathrm{id})\left(R_{21}\right)$. If A is triangular then $\Delta(u)=u \otimes u$. Otherwise, A can be enlarged with a certain central element v such that $v^{2}=u S(u)$ by which $v^{-1} u$ will have the required properties (cf. $\left.\S 4.2 \mathrm{C}\right)$.

If A is the Hopf $*$-algebra for a Woronowicz compact matrix group (or more generally a Dijkhuizen-Koornwinder CQG-algebra) then there is an invertible element u in the dual A° of A such that, for each irreducible unitary corepresentation λ_{V} of A, the operator $\lambda_{V}(u)$ intertwines λ_{V} and $\lambda_{V^{* *}}$ and satisfies $\operatorname{tr}\left(\lambda_{V}(u)\right)=\operatorname{tr}\left(\lambda_{V}\left(u^{-1}\right)\right)>0$. This element u will have the required properties in A°. See $\S 2.4$ in the following reference:
T. H. Koornwinder, Compact quantum groups and q-special functions, in Representations of Lie groups and quantum groups, V. Baldoni \& M. A. Picardello (eds.), Pitman Research Notes in Mathematics Series 311, Longman Scientific \& Technical, 1994, pp. 46-128.

3. The inversion map on a Poisson-Lie group is an anti-Poisson map (p.21)

(personal communication by A. Pressley to T. H. Koornwinder)
In the Warning on p .21 it is stated that the inversion map ι on a Poisson-Lie group G satisfies

$$
\left\{f_{1} \circ \iota, f_{2} \circ \iota\right\}=-\left\{f_{1}, f_{2}\right\} \circ \iota
$$

for all $f_{1}, f_{2} \in C^{\infty}(G)$. Here follows a proof. We have

$$
\begin{aligned}
\left\{f_{1} \circ \iota, f_{2} \circ \iota\right\}(g) & =\left\langle w_{g}, d\left(f_{1} \circ \iota\right)_{g} \otimes d\left(f_{2} \circ \iota\right)_{g}\right\rangle \\
& =\left\langle\left(\iota_{g}^{\prime} \otimes \iota_{g}^{\prime}\right)\left(w_{g}\right),\left(d f_{1}\right)_{g^{-1}} \otimes\left(d f_{2}\right)_{g^{-1}}\right\rangle .
\end{aligned}
$$

Differentiating the identity

$$
\iota=L_{g^{-1}} \circ \iota \circ R_{g^{-1}}
$$

at g, and noting that $\iota_{e}^{\prime}=-\mathrm{id}$, gives

$$
\begin{aligned}
\iota_{g}^{\prime} & =-\left(L_{g^{-1}}\right)_{e}^{\prime}\left(R_{g^{-1}}\right)_{g}^{\prime} \\
& =-\left[\left(L_{g}\right)_{g^{-1}}^{\prime}\right]^{-1}\left(R_{g^{-1}}\right)_{g}^{\prime} .
\end{aligned}
$$

where the last equation was obtained by differentiating the identity $L_{g^{-1}} \circ L_{g}=\mathrm{id}$ at g^{-1}. So

$$
\left(\iota_{g}^{\prime} \otimes \iota_{g}^{\prime}\right)\left(w_{g}\right)=\left(\left[\left(L_{g}\right)_{g^{-1}}^{\prime}\right]^{-1}\left(R_{g^{-1}}\right)_{g}^{\prime} \otimes\left[\left(L_{g}\right)_{g^{-1}}^{\prime}\right]^{-1}\left(R_{g^{-1}}\right)_{g}^{\prime}\right)\left(w_{g}\right),
$$

which, by taking $g^{\prime}=g^{-1}$ in formula (8) on p.22, we see is exactly $-w_{g^{-1}}$. Thus,

$$
\left\{f_{1} \circ \iota, f_{2} \circ \iota\right\}(g)=-\left\langle\left(d f_{1}\right)_{g^{-1}} \otimes\left(d f_{2}\right)_{g^{-1}}, w_{g^{-1}}\right\rangle=-\left\{f_{1}, f_{2}\right\}\left(g^{-1}\right) .
$$

