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1. Left A-module algebra and left A-module coalgebra (p.109)

Let A be a bialgebra over over a commutative ring k£ with identity element. So A\y: A —
Endg (V) is an algebra homomorphism and we write a.v := Ay (a)v (a € A, v e V). If W
is another left A-module then V' ® W becomes a left A-module with

Avew(a) == (Av @ Aw)(A(a), so a(v@w) =Y (am).v)® (ae.w).
(a)
Also, k becomes a left A-module (the trivial A-module) by
Ap(a) :==¢€(a), so a.a:=¢(a)a.

I will give the definitions of left A-module algebra and left A-module coalgebra.

1.1. Left A-module algebra. V is moreover an algebra such that the following two dia-
grams commute for each a € A:

Avev(a)

a(_a?

VeVv — Vev k k
‘l/,uv AV_((}) ‘l/,uv }/Lv AV_((}) }/Lv

Equivalently, py:V ® V.— V and ty:k — V are are left A-module homomorphisms.
Another equivalent way to write this is by:

a.(vw) = Z(a(l).v) (agz).w), aly =ea(a)ly.
(a)

1.2. Left A-module coalgebra. V is moreover a coalgebra such that the following two
diagrams commute for each a € A:

v MOy v Moy
lAV lAV J{‘C«‘V lgV
A
vev el yoy G

Equivalently, Ay:V — V®V and ey: V — k are left A-module homomorphisms. Another
equivalent way to write this is by:

Ay (a.v) = a.Ay(v), ey(av) =cea(a)ey(v).



2. Quantum trace and quantum character (p.126)

Assume now that A is a Hopf algebra over a field k. Let all left A-modules under consider-
ation be finite dimensional. Let V' be a left A-module and write V* := Homy(V, k). This
gives a pairing between V* and V:

(&) =€) (veV, eV

Then V* becomes a left A-module by

Av-(a) == (Av(S(a))", so (a.&v) = (& S(a)v).

V and V** can be naturally identified as k-modules. However, for the left A-module
structures we have

(€ Av=(a) v) = (Av=(S(a)) €,v) = (€, Av(S*(a)) v).

So
Ay« (a) = Ay (S?(a)).

From now on we assume that there is an invertible element u € A such that S?(a) = uau~1.
By Proposition 4.2.3 the element u := p(S®id)(R2;) satisfies this property if A is an almost
cocommutative Hopf algebra as in Definition 4.2.1.

Now it follows that the following diagram is commutative for each a € A:

y Ay

l)\v(u) lxv(w
o )

* )\Vja Ak

Identify W ® V* and Homy(V, W) as k-modules such that w ® € € W ® V* corre-
sponds with (¢, . ) w € Homy(V, W). The k-module structure of W ® V* is carried by this
identification to Homy (V, W). We obtain

(Awev-(a) )(v) = (a.f)(v) =Y aq). f(Sag).v) (f € Homp(V,W), a€ A, ve V).
(a)

The adjoint representation of A on A, denoted by ad, is defined by

ad(a) b := Z aybS(ap) (a,beA).
(a)
Now the following diagram commutes for each a € A:

A ad(a) A

[ [ (2.1)
End; (V) Avev:(a) End; (V)
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So Ay: A — Endg(V) is an intertwining operator for the representations ad on A and
Avey+ on Endg (V). For the proof note that

(a-Xv()(v) = a@y. Av(0)(S(ae).v) =Y Av(ambS(ae))v = Av(ad(a)b)v.
(a) (a)

The mapping tr: §{ ® v — (£,v): V*® V — k is a homomorphism of left A-modules:

tr(a.(§ @ v)) = e(a) (§,v) = (a) tr (@ v).

However, the mapping tr: v ® £ — (&, v): V@ V* — k is generally not a homomorphism of
left A-modules. Under the identification of V @ V* and Endg (V') the mapping tr: V@V —
k is carried to the usual trace mapping from Endg (V') to k, but this mapping will neither
be a homomorphism of left A-modules in general.

As k-modules we can identify V ® V* and V** @ V*, but they are generally different
as left A-modules. We have

Avegye(a) (0@ E) = (S (aq))v) © (a)-£).
(a)

Hence

tr ()\V**®V* (a) (v&® f)) = Z<a(2)-f; SQ(a(l)).v> = Z<§7 Ay (5(0(2) 52(0(1))) v)
(a) (a)
= (&M (S(S(a)) ae)) v) = (€ Av(e(a)1) v) = e(a) (€, v) = e(a) tr (v © §).
(a)
We conclude that the mapping tr: V** @ V* — k is a homomorphism of left A-modules.

Now identify Endg(V) and V** @ V* as k-modules. Carrying the left A-module
structure of V** ® V* to End(V) yields

()\V**®V* Z S a(l) a(g)).v) (f S Endk(V), ac€ A ve V)
(a)
Then tr:Endg (V) — k intertwines the representations Ay««gy+ on Endg (V) and € on k.
So the following diagram is commutative for each a € A:

ltr ltr (2.2)
e(a)
k — k
Let v € A be as before. Then
Av (u) Avgy+(a Zu ag). f(S(ag)). ZS acy)-u. f(S(ag)), v)

(a) (a)
= Ay=gv+(a) (Av(u) f(v)).



Hence the following diagram commutes for each a € A:

End,, (V) Avgvs(a) Endy,(V)
JAV(U) . pv () . (2.3)
Endy, (V) Ave-ov-(a) Endy,(V)

Here A\, (u) . means left multiplication by Ay (u) in Endg (V).
Combination of the diagrams (2.1), (2.3) and (2.2) yields the commutative diagram

4 ad(a) 4
)\V )\V
Endy(v) VS pua, o
)\V(U) Av(u)
End Ave=gv-(a)
ndg (V) — Endg (V)
tr tr
k &La) k

Define the quantum trace, quantum character and quantum dimension by
qtry (f) := tr (Av(u) ) (f € Endp(V)),
qchy (b) == qtry, (Av (D)) = tr (Ay (ub)) (b e A),
qdim(V') := qchy, (1) = qtry, (Iy) = tr (Ay(u)).

Then the following two diagrams commute for each a € A:

Aveay- d
Endp(v) VS paa, ) A 2y
lqtl"v lqtl"v quhV quhV
k () k O

In particular, we have

qchy (ad(a) b) = e(a) qchy (b)  (a,b € A).

Now assume that the element u satisfis moreover:

Au) =u @ u.
Then:
Avew (1) = Av(u) ® Aw (u)
qtryew (f @ g) = atry (f) atry (9),
thV®W(b) = qchy, () qchy, (),
qdim(V @ W) = qdim(V') qdim(W).

4



So the quantum trace, quantum character and quantum dimension then have properties
quite similar to their classical analogues.

Let A be quasitriangular and take v := pu(S ® id)(Ro1). If A is triangular then
A(u) = u ® u. Otherwise, A can be enlarged with a certain central element v such that
v? = u S(u) by which v~!u will have the required properties (cf. §4.2C).

If A is the Hopf x-algebra for a Woronowicz compact matrix group (or more generally
a Dijkhuizen-Koornwinder CQG-algebra) then there is an invertible element u in the dual
A° of A such that, for each irreducible unitary corepresentation Ay of A, the operator
Ay (u) intertwines Ay and Ay« and satisfies tr (Ay(u)) = tr (Ay(u™1)) > 0. This element
u will have the required properties in A°. See §2.4 in the following reference:

T. H. Koornwinder, Compact quantum groups and gq-special functions, in Representations
of Lie groups and quantum groups, V. Baldoni & M. A. Picardello (eds.), Pitman Research
Notes in Mathematics Series 311, Longman Scientific & Technical, 1994, pp. 46-128.

3. The inversion map on a Poisson-Lie group is an anti-Poisson map (p.21)
(personal communication by A. Pressley to T. H. Koornwinder)

In the Warning on p.21 it is stated that the inversion map ¢ on a Poisson-Lie group G
satisfies

{fiow, faory =—{f1, fa} o
for all f1, fo € C°°(G). Here follows a proof. We have

{froe, faoi}(g) = (wg,d(fror)g ®d(f201),)
= ((1g ® tg)(wg), (df1) g1 ® (df2)g-1)-

Differentiating the identity
L = Lg_1 oLoRg_1

at g, and noting that ¢, = —id, gives

Ly = _<Lg*1)/e(Rg*1)/

g g

= (L)) Ry

where the last equation was obtained by differentiating the identity L,-1 0L, =id at gt
So

(1 @ ) wy) = ([(L)yoi] ™ (Ry )y © [(Lg)yms] ™ (Bya)y ) (),

1

which, by taking ¢’ = ¢g7" in formula (8) on p.22, we see is exactly —w,-1. Thus,

{fion, faoi}(g) = —((df1)g-1 @ (df2)g-1,w4-1) = —{f1, f2}(97).



