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1. Left A-module algebra and left A-module coalgebra (p.109)

Let A be a bialgebra over over a commutative ring k with identity element. So λV : A →
Endk(V ) is an algebra homomorphism and we write a.v := λV (a) v (a ∈ A, v ∈ V ). If W

is another left A-module then V ⊗ W becomes a left A-module with

λV ⊗W (a) := (λV ⊗ λW )(∆(a)), so a.(v ⊗ w) =
∑

(a)

(a(1).v) ⊗ (a(2).w).

Also, k becomes a left A-module (the trivial A-module) by

λk(a) := ε(a), so a.α := ε(a) α.

I will give the definitions of left A-module algebra and left A-module coalgebra.

1.1. Left A-module algebra. V is moreover an algebra such that the following two dia-
grams commute for each a ∈ A:

V ⊗ V
λV ⊗V (a)

−→ V ⊗ V




y

µV





y

µV

V
λV (a)
−→ V

k
ε(a)
−→ k





y

ιV





y

ιV

V
λV (a)
−→ V

Equivalently, µV : V ⊗ V → V and ιV : k → V are are left A-module homomorphisms.
Another equivalent way to write this is by:

a.(vw) =
∑

(a)

(a(1).v) (a(2).w), a.1V = εA(a) 1V .

1.2. Left A-module coalgebra. V is moreover a coalgebra such that the following two
diagrams commute for each a ∈ A:

V
λV (a)
−→ V





y∆V





y∆V

V ⊗ V
λV ⊗V (a)

−→ V ⊗ V

V
λV−→ V





y

εV





y

εV

k
ε(a)
−→ k

Equivalently, ∆V : V → V ⊗V and εV : V → k are left A-module homomorphisms. Another
equivalent way to write this is by:

∆V (a.v) = a.∆V (v), εV (a.v) = εA(a) εV (v).
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2. Quantum trace and quantum character (p.126)

Assume now that A is a Hopf algebra over a field k. Let all left A-modules under consider-
ation be finite dimensional. Let V be a left A-module and write V ∗ := Homk(V, k). This
gives a pairing between V ∗ and V :

〈ξ, v〉 := ξ(v) (v ∈ V, ξ ∈ V ∗).

Then V ∗ becomes a left A-module by

λV ∗(a) := (λV (S(a))∗, so 〈a.ξ, v〉 = 〈ξ, S(a).v〉.

V and V ∗∗ can be naturally identified as k-modules. However, for the left A-module
structures we have

〈ξ, λV ∗∗(a) v〉 = 〈λV ∗(S(a)) ξ, v〉 = 〈ξ, λV (S2(a)) v〉.

So
λV ∗∗(a) = λV (S2(a)).

From now on we assume that there is an invertible element u ∈ A such that S2(a) = uau−1.
By Proposition 4.2.3 the element u := µ(S⊗id)(R21) satisfies this property if A is an almost
cocommutative Hopf algebra as in Definition 4.2.1.

Now it follows that the following diagram is commutative for each a ∈ A:

V
λV (a)
−→ V





y
λV (u)





y
λV (u)

V ∗∗
λV ∗∗(a)
−→ V ∗∗

Identify W ⊗ V ∗ and Homk(V, W ) as k-modules such that w ⊗ ξ ∈ W ⊗ V ∗ corre-
sponds with 〈ξ, . 〉w ∈ Homk(V, W ). The k-module structure of W ⊗ V ∗ is carried by this
identification to Homk(V, W ). We obtain

(λW⊗V ∗(a) f)(v) = (a.f)(v) =
∑

(a)

a(1). f(S(a(2)).v) (f ∈ Homk(V, W ), a ∈ A, v ∈ V ).

The adjoint representation of A on A, denoted by ad, is defined by

ad(a) b :=
∑

(a)

a(1) b S(a(2)) (a, b ∈ A).

Now the following diagram commutes for each a ∈ A:

A
ad(a)
−→ A





yλV





yλV

Endk(V )
λV ⊗V ∗(a)

−→ Endk(V )

(2.1)
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So λV : A → Endk(V ) is an intertwining operator for the representations ad on A and
λV ⊗V ∗ on Endk(V ). For the proof note that

(a.λV (b))(v) =
∑

(a)

a(1). λV (b)(S(a(2)).v) =
∑

(a)

λV (a(1)bS(a(2))) v = λV (ad(a) b) v.

The mapping tr : ξ ⊗ v 7→ 〈ξ, v〉: V ∗ ⊗ V → k is a homomorphism of left A-modules:

tr (a.(ξ ⊗ v)) = ε(a) 〈ξ, v〉 = ε(a) tr (ξ ⊗ v).

However, the mapping tr : v⊗ ξ 7→ 〈ξ, v〉: V ⊗ V ∗ → k is generally not a homomorphism of
left A-modules. Under the identification of V ⊗V ∗ and Endk(V ) the mapping tr : V ∗⊗V →
k is carried to the usual trace mapping from Endk(V ) to k, but this mapping will neither
be a homomorphism of left A-modules in general.

As k-modules we can identify V ⊗ V ∗ and V ∗∗ ⊗ V ∗, but they are generally different
as left A-modules. We have

λV ∗∗⊗V ∗(a) (v ⊗ ξ) =
∑

(a)

(S2(a(1)).v) ⊗ (a(2).ξ).

Hence

tr
(

λV ∗∗⊗V ∗(a) (v ⊗ ξ)
)

=
∑

(a)

〈a(2).ξ, S
2(a(1)).v〉 =

∑

(a)

〈ξ, λV

(

S(a(2) S2(a(1))
)

v〉

=
∑

(a)

〈ξ, λV

(

S(S(a(1)) a(2))
)

v〉 = 〈ξ, λV (ε(a)1) v〉 = ε(a)〈ξ, v〉 = ε(a) tr (v ⊗ ξ).

We conclude that the mapping tr : V ∗∗ ⊗ V ∗ → k is a homomorphism of left A-modules.
Now identify Endk(V ) and V ∗∗ ⊗ V ∗ as k-modules. Carrying the left A-module

structure of V ∗∗ ⊗ V ∗ to End(V ) yields

(λV ∗∗⊗V ∗(a) f)(v) =
∑

(a)

S2(a(1)). f(S(a(2)).v) (f ∈ Endk(V ), a ∈ A, v ∈ V ).

Then tr : Endk(V ) → k intertwines the representations λV ∗∗⊗V ∗ on Endk(V ) and ε on k.
So the following diagram is commutative for each a ∈ A:

Endk(V )
λV ∗∗⊗V ∗(a)

−→ Endk(V )




ytr




ytr

k
ε(a)
−→ k

(2.2)

Let u ∈ A be as before. Then

λV (u) (λV ⊗V ∗(a) f) (v) =
∑

(a)

u.a(1). f(S(a(2)). v) =
∑

(a)

S2(a(1)).u. f(S(a(2)), v)

= λV ∗∗⊗V ∗(a) (λV (u) f(v)).
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Hence the following diagram commutes for each a ∈ A:

Endk(V )
λV ⊗V ∗(a)

−→ Endk(V )




y
λV (u) .





y
λV (u) .

Endk(V )
λV ∗∗⊗V ∗(a)

−→ Endk(V )

(2.3)

Here λv(u) . means left multiplication by λV (u) in Endk(V ).
Combination of the diagrams (2.1), (2.3) and (2.2) yields the commutative diagram

A
ad(a)
−→ A





yλV





yλV

Endk(V )
λV ⊗V ∗(a)

−→ Endk(V )




y
λV (u) .





y
λV (u) .

Endk(V )
λV ∗∗⊗V ∗(a)

−→ Endk(V )




ytr




ytr

k
ε(a)
−→ k

Define the quantum trace, quantum character and quantum dimension by

qtrV (f) := tr (λV (u) f) (f ∈ Endk(V )),

qchV (b) := qtrV (λV (b)) = tr (λV (ub)) (b ∈ A),

qdim(V ) := qchV (1) = qtrV (IV ) = tr (λV (u)).

Then the following two diagrams commute for each a ∈ A:

Endk(V )
λV ⊗V ∗(a)

−→ Endk(V )




y

qtrV





y

qtrV

k
ε(a)
−→ k

A
ad(a)
−→ A





y
qchV





y
qchV

k
ε(a)
−→ k

In particular, we have

qchV (ad(a) b) = ε(a) qchV (b) (a, b ∈ A).

Now assume that the element u satisfis moreover:

∆(u) = u ⊗ u.

Then:

λV ⊗W (u) = λV (u) ⊗ λW (u)

qtrV ⊗W (f ⊗ g) = qtrV (f) qtrW (g),

qchV ⊗W (b) = qchV (b) qchW (b),

qdim(V ⊗ W ) = qdim(V ) qdim(W ).
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So the quantum trace, quantum character and quantum dimension then have properties
quite similar to their classical analogues.

Let A be quasitriangular and take u := µ(S ⊗ id)(R21). If A is triangular then
∆(u) = u ⊗ u. Otherwise, A can be enlarged with a certain central element v such that
v2 = u S(u) by which v−1u will have the required properties (cf. §4.2C).

If A is the Hopf ∗-algebra for a Woronowicz compact matrix group (or more generally
a Dijkhuizen-Koornwinder CQG-algebra) then there is an invertible element u in the dual
A◦ of A such that, for each irreducible unitary corepresentation λV of A, the operator
λV (u) intertwines λV and λV ∗∗ and satisfies tr (λV (u)) = tr (λV (u−1)) > 0. This element
u will have the required properties in A◦. See §2.4 in the following reference:

T. H. Koornwinder, Compact quantum groups and q-special functions, in Representations
of Lie groups and quantum groups, V. Baldoni & M. A. Picardello (eds.), Pitman Research
Notes in Mathematics Series 311, Longman Scientific & Technical, 1994, pp. 46–128.

3. The inversion map on a Poisson-Lie group is an anti-Poisson map (p.21)

(personal communication by A. Pressley to T. H. Koornwinder)

In the Warning on p.21 it is stated that the inversion map ι on a Poisson-Lie group G

satisfies
{f1 ◦ ι, f2 ◦ ι} = −{f1, f2} ◦ ι

for all f1, f2 ∈ C∞(G). Here follows a proof. We have

{f1 ◦ ι, f2 ◦ ι}(g) = 〈wg, d(f1 ◦ ι)g ⊗ d(f2 ◦ ι)g〉

= 〈(ι′g ⊗ ι′g)(wg), (df1)g−1 ⊗ (df2)g−1〉.

Differentiating the identity
ι = Lg−1 ◦ ι ◦ Rg−1

at g, and noting that ι′e = −id, gives

ι′g = −(Lg−1)′e(Rg−1)′g

= −[(Lg)
′

g−1 ]−1(Rg−1)′g.

where the last equation was obtained by differentiating the identity Lg−1 ◦Lg = id at g−1.
So

(ι′g ⊗ ι′g)(wg) =
(

[(Lg)
′

g−1 ]−1(Rg−1)′g ⊗ [(Lg)
′

g−1 ]−1(Rg−1)′g

)

(wg),

which, by taking g′ = g−1 in formula (8) on p.22, we see is exactly −wg−1 . Thus,

{f1 ◦ ι, f2 ◦ ι}(g) = −〈(df1)g−1 ⊗ (df2)g−1 , wg−1〉 = −{f1, f2}(g
−1).
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