Errata and Comments to Higher Transcendental Functions and Tables of Integral Transforms

collected by Tom Koornwinder, T.H.Koornwinder@uva.nl
last modified: July 17, 2023
These are comments and possibly not yet published errata to the volumes
A. Erdélyi et al., Higher transcendental functions, Vols. 1,2,3, McGraw-Hill, 1953, 1953, 1955, and Tables of integral transforms, Vols. 1,2, McGraw-Hill, 1954, 1954.
See also the lists of errata which are included in the volumes, and the errata collected by H. van Haeringen and L. P. Kok in Math. Comp. 41 (1983), 778-780 at http:// www.jstor.org/stable/2007718. Furthermore, see the i-boxes of the references to these volumes by A. Erdélyi et al. at http://dlmf.nist.gov/bib/E.

Higher transcendental functions, Vol. 1

2.5(16): An equivalent summation formula can be found in the paper
M. Lerch, Einiges über den Integrallogarithmus, Monatsh. Math. Phys. 16 (1905), 125-134, see there formula (3) on p.129; however with a different proof than given here (I thank Michael Schlosser for this reference). Another equivalent form of the formula is:

$$
\sum_{k=0}^{n} \frac{(a)_{k}}{(c)_{k}}={ }_{3} F_{2}\left(\begin{array}{c}
-n, a, 1 \\
-n, c
\end{array} ; 1\right)=\frac{c-1}{c-a-1}\left(1-\frac{(a)_{n+1}}{(c-1)_{n+1}}\right) .
$$

This is an indefinite sum which can also be found by Gosper's algorithm.
2.8(54): On the left replace $3 a+5 / 6$ (the third argument of F) by $2 a+5 / 6$.

See the correct formula in http://dlmf.nist.gov/15.4\#iii, formula (15.4.32). For the proof and an observation of the error in Higher Transcendental Functions click there on the information on the right of the subsection header.
2.10 (1)-(4): The side condition for 2.10(1) and 2.10(4) should be:
$|\arg z|<\pi,|\arg (1-z)|<\pi$.
The side condition for $2.10(2)$ and $2.10(3)$ should be $|\arg (-z)|<\pi$.
2.11(29): Read $z^{2}(2-z)^{-2}$ instead of $z^{2} /(2-z)^{-2}$ (already in errata list in the volume).
2.12(6): The side condition on the parameters should be $\operatorname{Re} c>\operatorname{Re} b>0$.
3.2(36), Remarks: Instead of 2.11(17) better use 2.11(29) (after correction of that formula).
3.4(8): On the right, after the equality sign, replace $i \pi$ by $-i \pi$
(observed by E. Diekema; see Ch. IV, (99) in L. Robin, Fonctions sphériques de Legendre et fonctions sphéroidales, Tome II, Gauthier-Villars, 1958).
after 3.5(3): For the convergence of both series require additionally that $\operatorname{Re} \mu<\frac{1}{2}$.
3.15(4): This formula is valid for $z \in \mathbb{C} \backslash(-\infty, 1]$. For $z \in(-1,1)$ the formula remains valid if we replace $\left(z^{2}-1\right)^{\frac{1}{4}-\frac{1}{2} \nu}$ by $\left(1-z^{2}\right)^{\frac{1}{4}-\frac{1}{2} \nu}$ and $P_{n+\nu-\frac{1}{2}}^{\frac{1}{2}-\nu}$ by $P_{n+\nu-\frac{1}{2}}^{\frac{1}{2}-\nu}$:

$$
C_{n}^{\nu}(x)=2^{\nu-\frac{1}{2}} \frac{\Gamma(n+2 \nu) \Gamma\left(\nu+\frac{1}{2}\right)}{\Gamma(2 \nu) \Gamma(n+1)}\left(1-x^{2}\right)^{\frac{1}{4}-\frac{1}{2} \nu} \mathrm{P}_{n+\nu-\frac{1}{2}}^{\frac{1}{2}-\nu}(x) \quad(x \in(-1,1))
$$

5.8(3): In the integrand the exponent of $(1-u-v)$ should be $\gamma-\beta-\beta^{\prime}-1$.

Although the formula is given correctly in http://dlmf.nist.gov/16.15.E3, DLMF curiously refers there to Erdélyi et al. (1953a, §5.8) without observing the error in $5.8(3)$.
5.11(10): On the right the factor $(1-y)^{-\mu}$ should be replaced by $(-y)^{-\mu}$.
6.15(15): The first factor $\Gamma(-a)$ in the integrand should be $\Gamma(a)$.

Higher transcendental functions, Vol. 2
$7.7(29)$: In the first constraint replace λ by ρ.
10.9(6): The limit should be for $\lambda \rightarrow 0$ insted of $\lambda \rightarrow \infty$, and the equalities hold for $n=1,2, \ldots$.
Two lines below this formula sec. 10.10 should be sec. 10.11 .
10.9(8): In the formula for K_{n} insert a factor n ! on the right.
10.10(5): In the formula for C_{n} delete the minus sign on the right.
10.11(16): But for $n=0$ and $z_{m}=T_{m}$ we have $z_{1}(x)=x z_{0}(x)$.
10.12(2): The formula for r_{n} should read: $r_{n}=-n(n+\alpha)$.
10.20(3): In the second line in the numerator of the fraction after the summation sign replace $\Gamma(2 n+\alpha+\beta+1)$ by $(2 n+\alpha+\beta+1)$.
§10.21: On p. 219 (line after (8)) and p. 220 (line before (14)) replace "(4)" by "(3)".
$\S 12.9, \mathrm{p} .287$, last formula: The last term on the left-hand side should be preceded by a plus sign rather than a minus sign.
$\mathbf{1 2 . 9 (9) , (1 0) : ~ I n ~ t h e s e ~ t w o ~ f o r m u l a s ~ t h e ~ l a s t ~ t e r m ~ o n ~ t h e ~ l e f t - h a n d ~ s i d e ~ s h o u l d ~ b e ~ p r e c e d e d ~}$ by a plus sign rather than a minus sign.

Tables of integral transforms, Vol. 1

1.10(5): On the left replace the expression for $f(x)(0<x<1)$ by $(1-x)^{\nu}(1+x)^{\mu} P_{2 n}^{(\nu, \mu)}(x)+(1+x)^{\nu}(1-x)^{\mu} P_{2 n}^{(\mu, \nu)}(x)$.
$\mathbf{1 . 1 0 (6) : ~ O n ~ t h e ~ l e f t ~ r e p l a c e ~ t h e ~ e x p r e s s i o n ~ f o r ~} f(x)(0<x<1)$ by
$(1-x)^{\nu}(1+x)^{\mu} P_{2 n+1}^{(\nu, \mu)}(x)-(1+x)^{\nu}(1-x)^{\mu} P_{2 n+1}^{(\mu, \nu)}(x)$.
On the right replace $(-1)^{n+1}$ by $(-1)^{n}$.
1.14(4): The formula is incorrect. See the corrected formula in a note by R. J. Mathar, https://vixra.org/abs/2207.0148, 2022, formula (8).
2.10(6): On the left replace the expression for $f(x)(0<x<1)$ by $(1-x)^{\nu}(1+x)^{\mu} P_{2 n}^{(\nu, \mu)}(x)-(1+x)^{\nu}(1-x)^{\mu} P_{2 n}^{(\mu, \nu)}(x)$.
2.10(7): On the left replace the expression for $f(x)(0<x<1)$ by $(1-x)^{\nu}(1+x)^{\mu} P_{2 n+1}^{(\nu, \mu)}(x)+(1+x)^{\nu}(1-x)^{\mu} P_{2 n+1}^{(\mu, \nu)}(x)$.
On the right replace $(-1)^{n+1}$ by $(-1)^{n}$.
3.3(4): On the left replace $P_{n}^{(\nu, \nu)}$ by $P_{n}^{(\nu, \mu)}$.

This formula implies $1.10(5), 1.10(6), 2.10(6)$ and $2.10(7)$.

Tables of integral transforms, Vol. 2

20.2(6): On the right replace $(1-z)^{\sigma}$ by $(1-z)^{-\sigma}$.

This formula is correctly reproduced in Gradshteyn \& Ryzhik, sixth ed., (7.512.9).
20.2(7): In the ${ }_{3} F_{2}$ on the right replace the second lower parameter σ by $\sigma+\rho$ (error observed by M. L. Glasser, Solution to Problem 85-19, SIAM Review 28 (1986), 572-573)

