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These are errata and comments on the book

G. Gasper and M. Rahman, Basic hypergeometric series, Cambridge University Press,
Second ed., 2004, ISBN 9780521833578.

p. 101, Exercise 3.2(iii):
We can combine the two equalities in (i) and (ii) as
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Then the two equalities in (iii) are the limit case a → 0 of the above two equalities. In the
two equalities in (iii), with b replaced by qb and z by (1− q)z, we obtain for q → 1 that
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Equivalently, see Erdélyi [1953, Vol. 2, 7.2(3)],
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On the q-level, with notation as in Exercise 1.24, the equalities in Exercise 3.2(iii) can be
equivalently written as
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The first equality in this last formula is also given in Exercise 33.2(iii), and it is attributed
there to Hahn [1949c].

Note that by (i) respectively (iii) the functions (az,−z; q)∞ 3ϕ2
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By the expression given above for J
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ν (z; q2) the product formula
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(see formula (4.9) in H. M. Srivastava & V. K. Jain, q-Series identities and reducibility of
basic double hypergeometric functions, Canad. J. Math. 38 (1986), 215–231, and formula
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(2.1) in M. J. Schlosser, q-Analogues of two product formulas of hypergeometric functions
by Bailey, in Frontiers in orthogonal polynomials and q-series, World Scientific, 2018,
pp. 445–449) can be rewritten as

J (1)
µ (z; q2)J (1)

ν (z; q2) =
(q2µ+2, q2ν+2; q2)∞

(q2, q2; q2)∞

(12z)
µ+ν

(−1
4z

2; q2)∞

× 4ϕ3

(
qµ+ν+1,−qµ+ν+1, qµ+ν+2,−qµ+ν+2

q2µ+2, q2ν+2, q2µ+2ν+2
; q2,−1

4z
2

)
.

For the q = 1 limits of these product formulas see formulas (16.12.1) and (10.8.3) in
DLMF, https://dlmf.nist.gov/ .

p. 147, Exercise 5.10:
In the numerator on the left-hand side replace e/ab and q2f/e by c/qf and q2f/c
(error observed in p. 841 of W. Groenevelt & E. Koelink,
J. Approx. Theory 163 (2011), 836–863).
The formula with the same error occurs in (7.2.6) in the book
L. J. Slater, Generalized hypergeometric functions, Cambridge University Press, 1966.
A reference for Exercise 5.10 with the correct formula is formula (5) in
L. J. Slater, General transformations of bilateral series,
Quart. J. Math., Oxford Ser. (2) 3 (1952), 73–80.

p. 152, Exercise 5.26: (communicated by Slobodan Damjanovic)
On line 2 replace the denominator parameter ad/d by aq/d.

p. 189, (7.5.7): On the second line the comma after d e−iθ should be deleted.

p. 189, (7.5.8): Insert “q,” after the second semicolon of the first 8W7.

p. 212, l.5: (communicated by Slobodan Lj. Damjanovic)
In the 5ϕ4 insert a numerator parameter

√
q and replace the denominator parameter eq−2iθ

by qe−2iθ.

p. 236, (8.8.19), l.4: (communicated by Slobodan Lj. Damjanovic)
In the 6ϕ5 replace the numerator parameter abz by az/b.
The same correction should be made in formula (4.11) of the paper

G. Gasper and M. Rahman, A non-terminating q-Clausen formula and some related prod-
uct formulas, SIAM J. Math. Anal. 20 (1989), 1270–1282.

p. 324, (11.5.5): Note that λ = qa2/(bcd), just as in (11.5.1). Furthermore it is helpful
to observe that in the application of (11.5.1) to the right-hand side of (11.5.1) we replace
in (11.5.1) a, b, c, d, e, f , q−n, λ respectively by λ = qa2/(bcd), λb/a, f , λaqn+1/(ef), e,
λd/a, q−n, eq−n/b. In the resulting identity apply (11.2.50) in order to obtain (11.5.5).

A version of (11.5.5) was given formula (3) in the paper
H. Rosengren, New transformations for elliptic hypergeometric series on the root system
An, Ramanujan J. 12 (2006), 155–166.
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I thank Slobodan Damjanovic for this reference. Formula (11.5.5) can be obtained from
(3) by exchanging e and g, replacing N by n, and then applying (11.2.50) to the two
elliptic shifted factorials in the quotient (aq/(eg); q, p)n/(aq/g; q, p)n.

p. 392, Jackson, F. H. (1905a): This paper appeared in 1904.

p. 403, Rahman, M. (1988b): (communicated by Slobodan Damjanovic)
Replace 33 (4), 111–120 by 31 (4), 467–476.

p. 420, list of Jackson, F. H.: Move the number 138 to the list of Jackson, M.
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