Errata and comments on the book Basic hypergeometric series, Second edition, by G. Gasper and M. Rahman

collected by Tom Koornwinder, T.H.Koornwinder@uva.nl
last modified: August 30, 2023

These are errata and comments on the book
G. Gasper and M. Rahman, Basic hypergeometric series, Cambridge University Press, Second ed., 2004, ISBN 9780521833578.
p. 101, Exercise 3.2(iii):

We can combine the two equalities in (i) and (ii) as

$$
{ }_{3} \phi_{2}\left(\begin{array}{l}
a, b,-b \\
b^{2},-a z
\end{array} ; q, z\right)=\frac{(-z ; q)_{\infty}}{(-a z ; q)_{\infty}}{ }_{2} \phi_{1}\left(\begin{array}{c}
a, a q \\
q b^{2}
\end{array} ; q^{2}, z^{2}\right)=\frac{\left(a z^{2} ; q^{2}\right)_{\infty}}{(z,-a z ; q)_{\infty}}{ }_{2} \phi_{2}\left(\begin{array}{l}
a, a^{-1} b^{2} \\
q b^{2}, a z^{2}
\end{array} ; q^{2}, a z^{2} q\right) .
$$

Then the two equalities in (iii) are the limit case $a \rightarrow 0$ of the above two equalities. In the two equalities in (iii), with b replaced by q^{b} and z by $(1-q) z$, we obtain for $q \rightarrow 1$ that

$$
{ }_{1} F_{1}\left(\begin{array}{c}
b \\
2 b
\end{array} ; 2 z\right)=\mathrm{e}^{z}{ }_{0} F_{1}\left(\begin{array}{c}
- \\
b+\frac{1}{2}
\end{array} ; \frac{1}{4} z^{2}\right)=\mathrm{e}^{z}{ }_{0} F_{1}\left(\begin{array}{c}
- \\
b+\frac{1}{2}
\end{array} ; \frac{1}{4} z^{2}\right) .
$$

Equivalently, see Erdélyi [1953, Vol. 2, 7.2(3)],

$$
J_{\nu}(z):=\frac{\left(\frac{1}{2} z\right)^{\nu}}{\Gamma(\nu+1)}{ }_{0} F_{1}\left(\begin{array}{c}
- \\
\nu+1
\end{array} ;-\frac{1}{4} z^{2}\right)=\frac{\left(\frac{1}{2} z\right)^{\nu} \mathrm{e}^{-\mathrm{i} z}}{\Gamma(\nu+1)}{ }_{1} F_{1}\left(\begin{array}{c}
\nu+\frac{1}{2} \\
2 \nu+1
\end{array} ; 2 \mathrm{i} z\right) .
$$

On the q-level, with notation as in Exercise 1.24, the equalities in Exercise 3.2(iii) can be equivalently written as
$J_{\nu}^{(1)}\left(z ; q^{2}\right)=\frac{1}{\left(-\frac{1}{4} z^{2} ; q^{2}\right)_{\infty}} J_{\nu}^{(2)}\left(z ; q^{2}\right)=\frac{\left(q^{2 \nu+2} ; q^{2}\right)_{\infty}}{\left(q^{2} ; q^{2}\right)_{\infty}} \frac{\left(\frac{1}{2} z\right)^{\nu}}{\left(-\frac{1}{2} \mathrm{i} z ; q\right)_{\infty}}{ }_{2} \phi_{1}\left(\begin{array}{c}q^{\nu+\frac{1}{2}},-q^{\nu+\frac{1}{2}} \\ q^{2 \nu+1}\end{array} ; q, \frac{1}{2} \mathrm{i} z\right)$.
The first equality in this last formula is also given in Exercise 33.2(iii), and it is attributed there to Hahn [1949c].

Note that by (i) respectively (iii) the functions $(a z,-z ; q)_{\infty} 3 \phi_{2}\left(\begin{array}{c}a, b,-b \\ b^{2}, a z\end{array} ; q,-z\right)$ and $(z ; q)_{\infty}{ }_{2} \phi_{1}\left(\begin{array}{c}b,-b \\ b^{2}\end{array} ; q, z\right)$ are even in z.

By the expression given above for $J_{\nu}^{(1)}\left(z ; q^{2}\right)$ the product formula

$$
{ }_{2} \phi_{1}\left(\begin{array}{c}
a,-a \\
a^{2}
\end{array} ; q, z\right){ }_{2} \phi_{1}\left(\begin{array}{c}
b,-b \\
b^{2}
\end{array} ; q,-z\right)={ }_{4} \phi_{3}\left(\begin{array}{c}
a b,-a b, a b q,-a b q \\
a^{2} q, b^{2} q, a^{2} b^{2}
\end{array} ; q^{2}, z^{2}\right)
$$

(see formula (4.9) in H. M. Srivastava \& V. K. Jain, q-Series identities and reducibility of basic double hypergeometric functions, Canad. J. Math. 38 (1986), 215-231, and formula
(2.1) in M. J. Schlosser, q-Analogues of two product formulas of hypergeometric functions by Bailey, in Frontiers in orthogonal polynomials and q-series, World Scientific, 2018, pp. 445-449) can be rewritten as

$$
\begin{aligned}
& J_{\mu}^{(1)}\left(z ; q^{2}\right) J_{\nu}^{(1)}\left(z ; q^{2}\right)=\frac{\left(q^{2 \mu+2}, q^{2 \nu+2} ; q^{2}\right)_{\infty}}{\left(q^{2}, q^{2} ; q^{2}\right)_{\infty}} \frac{\left(\frac{1}{2} z\right)^{\mu+\nu}}{\left(-\frac{1}{4} z^{2} ; q^{2}\right)_{\infty}} \\
& \times{ }_{4} \phi_{3}\left(\begin{array}{c}
q^{\mu+\nu+1},-q^{\mu+\nu+1}, q^{\mu+\nu+2},-q^{\mu+\nu+2} \\
q^{2 \mu+2}, q^{2 \nu+2}, q^{2 \mu+2 \nu+2}
\end{array} ; q^{2},-\frac{1}{4} z^{2}\right) .
\end{aligned}
$$

For the $q=1$ limits of these product formulas see formulas (16.12.1) and (10.8.3) in DLMF, https://dlmf.nist.gov/.

p. 147, Exercise 5.10:

In the numerator on the left-hand side replace $e / a b$ and $q^{2} f / e$ by $c / q f$ and $q^{2} f / c$ (error observed in p. 841 of W. Groenevelt \& E. Koelink, J. Approx. Theory 163 (2011), 836-863).

The formula with the same error occurs in (7.2.6) in the book
L. J. Slater, Generalized hypergeometric functions, Cambridge University Press, 1966.

A reference for Exercise 5.10 with the correct formula is formula (5) in L. J. Slater, General transformations of bilateral series, Quart. J. Math., Oxford Ser. (2) 3 (1952), 73-80.
p. 152, Exercise 5.26: (communicated by Slobodan Damjanovic)

On line 2 replace the denominator parameter $a d / d$ by $a q / d$.
p. 189, (7.5.7): On the second line the comma after $d e^{-i \theta}$ should be deleted.
p. 189, (7.5.8): Insert " q, " after the second semicolon of the first ${ }_{8} W_{7}$.
p. 212, 1.5: (communicated by Slobodan Lj. Damjanovic)

In the ${ }_{5} \phi_{4}$ insert a numerator parameter \sqrt{q} and replace the denominator parameter $e q^{-2 i \theta}$ by $q e^{-2 i \theta}$.
p. 236, (8.8.19), l.4: (communicated by Slobodan Lj. Damjanovic)

In the ${ }_{6} \phi_{5}$ replace the numerator parameter $a b z$ by $a z / b$.
The same correction should be made in formula (4.11) of the paper
G. Gasper and M. Rahman, A non-terminating q-Clausen formula and some related product formulas, SIAM J. Math. Anal. 20 (1989), 1270-1282.
p. 324, (11.5.5): Note that $\lambda=q a^{2} /(b c d)$, just as in (11.5.1). Furthermore it is helpful to observe that in the application of (11.5.1) to the right-hand side of (11.5.1) we replace in (11.5.1) $a, b, c, d, e, f, q^{-n}, \lambda$ respectively by $\lambda=q a^{2} /(b c d), \lambda b / a, f, \lambda a q^{n+1} /(e f), e$, $\lambda d / a, q^{-n}, e q^{-n} / b$. In the resulting identity apply (11.2.50) in order to obtain (11.5.5).

A version of (11.5.5) was given formula (3) in the paper
H. Rosengren, New transformations for elliptic hypergeometric series on the root system A_{n}, Ramanujan J. 12 (2006), 155-166.

I thank Slobodan Damjanovic for this reference. Formula (11.5.5) can be obtained from (3) by exchanging e and g, replacing N by n, and then applying (11.2.50) to the two elliptic shifted factorials in the quotient $(a q /(e g) ; q, p)_{n} /(a q / g ; q, p)_{n}$.
p. 392, Jackson, F. H. (1905a): This paper appeared in 1904.
p. 403, Rahman, M. (1988b): (communicated by Slobodan Damjanovic)

Replace 33 (4), 111-120 by 31 (4), 467-476.
p. 420, list of Jackson, F. H.: Move the number 138 to the list of Jackson, M.

