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A more conceptual proof of Corollary 1 is obtained by observing that for f, g ∈ L2([−π, π]) we
have
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where
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Apply this to

f(x) := (1− x2/a2)µ−k−
1
2 Cµ−kk (x/a) (−a < x < a),

g(x) := (1− x2/b2)ν−`−
1
2 Cν−`` (x/b) (−b < x < b),

and f(x) := 0 outside (−a, a), g(x) := 0 outside (−b, b). Assume that a, b ∈ (0, π] and that the
nonnegative integers k, ` satisfy k < Reµ and ` < Re ν. Then∫ ∞
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By analytic continuation this remains valid and convergent for k + l < Reµ + Re ν. For
µ+ ν = k + `+ 1 we obtain the first equality in Corollary 2. Note that we need for this special
case that µ+ ν is integer.
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