Comment on the paper "A remarkable identity involving Bessel functions"

 by D. E. Dominici, P. M. W. Gill and T. Limpanuparb, arXiv:1103.0058v1 [math.CA]Note by Tom H. Koornwinder, T.H.Koornwinder@uva.nl, March 11, 2011
A more conceptual proof of Corollary 1 is obtained by observing that for $f, g \in L^{2}([-\pi, \pi])$ we have

$$
2 \pi \int_{-\pi}^{\pi} f(x) \overline{g(x)} d x=\int_{-\infty}^{\infty} \widehat{f}(y) \overline{\widehat{g}(y)} d y=\sum_{n=-\infty}^{\infty} \widehat{f}(n) \overline{\widehat{g}(n)},
$$

where

$$
\widehat{f}(y):=\int_{-\pi}^{\pi} f(x) e^{-i x y} d x
$$

Apply this to

$$
\begin{aligned}
& f(x):=\left(1-x^{2} / a^{2}\right)^{\mu-k-\frac{1}{2}} C_{k}^{\mu-k}(x / a) \quad(-a<x<a), \\
& g(x):=\left(1-x^{2} / b^{2}\right)^{\bar{\nu}-\ell-\frac{1}{2}} C_{\ell}^{\bar{\nu}-\ell}(x / b) \quad(-b<x<b),
\end{aligned}
$$

and $f(x):=0$ outside $(-a, a), g(x):=0$ outside $(-b, b)$. Assume that $a, b \in(0, \pi]$ and that the nonnegative integers k, ℓ satisfy $k<\operatorname{Re} \mu$ and $\ell<\operatorname{Re} \nu$. Then

$$
\begin{aligned}
& \int_{-\infty}^{\infty} t^{k+\ell}{ }_{0} F_{1}\left(\begin{array}{c}
- \\
\mu+1
\end{array} ;-\frac{1}{4} a^{2} t^{2}\right){ }_{0} F_{1}\left(\begin{array}{c}
- \\
\nu+1
\end{array} ;-\frac{1}{4} b^{2} t^{2}\right) d t \\
& =\sum_{n=-\infty}^{\infty} n^{k+\ell}{ }_{0} F_{1}\left(\begin{array}{c}
- \\
\mu+1
\end{array} ;-\frac{1}{4} a^{2} n^{2}\right){ }_{0} F_{1}\left(\begin{array}{c}
- \\
\nu+1
\end{array} ;-\frac{1}{4} b^{2} n^{2}\right) .
\end{aligned}
$$

By analytic continuation this remains valid and convergent for $k+l<\operatorname{Re} \mu+\operatorname{Re} \nu$. For $\mu+\nu=k+\ell+1$ we obtain the first equality in Corollary 2. Note that we need for this special case that $\mu+\nu$ is integer.

