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Casselman & Miličić [3, Example 3.7] compute the τ -radial component Πr(C) of the Casimir
element C for SL(2,R). After an identification of the subgroup A with R∗+ this becomes the
differential operator
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I want to observe here that this can be transformed into a hypergeometric differential oper-
ator (see also Bargmann [2, §9,10] and see a check of the computation in my accompanying
Mathematica notebook):
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Thus, a possible solution of the differential equation

Πr(C)h(z) = −1
4(λ2 + 1)h(z),

expressed in terms of hypergeometric functions (see [4, Ch. 2], [1, Ch. 2]), is
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In terms of Jacobi functions (see [5], [7], [6, (2.28)]) this becomes

h(e2t) = (sinh t)(m+n)/2 (cosh t)(m+n)/2 φ
((m+n)/2,(m−n)/2)
λ (− sinh2 t).

In the Dissertation [8] by Vincent van der Noort the differential equation satsified by g(w) :=
h(e2w) and with λ = iζ should be his formula (2.29). However, in the transformation from (2.27)
to (2.29) by replacing w by e2w an error was made. Formula (2.29) in [8] becomes correct if all
powers of ew are replaced by powers of e2w.
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