On the paper "Nonlinear integral-equation formulation of orthogonal polyno-

 mials" by C. M. Bender and E. Ben-Naim"Informal note by Tom H. Koornwinder, thk@science.uva.nl
November 9, 2007
In $[1,(1)]$ an interesting characterization of orthogonal polynomials is given. Here is an equivalent formulation of this result.

Let $\left\{P_{n}\right\}_{n=0}^{\infty}$ be a system of orthogonal polynomials with respect to the measure μ on $[0, \infty)$. Then

$$
\begin{equation*}
\int_{0}^{\infty} \frac{P_{n}(x+y)-P_{n}(x)}{y} P_{n}(y) d \mu(y)=0 \tag{1}
\end{equation*}
$$

This is evident because $y^{-1}\left(P_{n}(x+y)-P_{n}(x)\right)$ is a polynomial of degree $<n$ in y.
Conversely, if P_{n} is a n-th degree polynomial which satisfies (1) then P_{n} is the n-th degree orthogonal polynomial (determined up to a nonzero constant factor) for the orthogonality measure μ. Indeed, Taylor series expansion in (1) gives

$$
\sum_{k=1}^{n} \frac{P_{n}^{(k)}(x)}{k!} \int_{0}^{\infty} P_{n}(y) y^{k-1} d \mu(y)=0
$$

Then we see for successive $k=1,2, \ldots, n$ that the integral in the above formula must be zero because the coefficient of x^{n-k} on the left-hand side must be zero.

If $\int_{0}^{\infty} y^{-1} d \mu(y)<\infty$ then (1) can be rewritten as

$$
\begin{equation*}
\int_{0}^{\infty} P_{n}(x+y) P_{n}(y) y^{-1} d \mu(y)=P_{n}(x) \int_{0}^{\infty} P_{n}(y) y^{-1} d \mu(y) \tag{2}
\end{equation*}
$$

If $\int_{0}^{\infty} P_{n}(y) y^{-1} d \mu(y) \neq 0$ then we can renormalize P_{n} such that $\int_{0}^{\infty} P_{n}(y) y^{-1} d \mu(y)=1$. Compare this with [1, (1)].

References

[1] C. M. Bender and E. Ben-Naim, Nonlinear integral-equation formulation of orthogonal polynomials, J. Phys. A 40 (2007), F9-F15.

