Comments to the book by W. N. Bailey, Generalized hypergeometric series

collected by T. H. Koornwinder, thk@science.uva.nl
last modified: February 8, 2006
These are errata and comments to the book
W. N. Bailey, Generalized hypergeometric series, Cambridge University Press, 1935; reprinted by Hafner, 1972.
The two errata were communicated to me by George Gasper.
p.32, §4.5, formula (1), first line: On the left-hand side skip the lower semicolon.
p.93, 1.3 For $n=2$ this formula yields

$$
{ }_{3} F_{2}\left(\begin{array}{c}
a, b, f+1 \tag{1}\\
e, f
\end{array}{ }^{2}\right)=\frac{\Gamma(e) \Gamma(e-a-b)}{\Gamma(e-a) \Gamma(e-b)}\left(1-\frac{a b}{(a+b-e+1) f}\right) .
$$

Hence we get by Taylor series expansion at $z=1$ that, for $n \in \mathbb{Z}_{\geq 0}$,

$$
{ }_{3} F_{2}\left(\begin{array}{c}
-n, b, f+1 \tag{2}\\
e, f
\end{array} ; z\right)=\frac{\rho(f-e+1)}{(b-e+1) f} \frac{(e-b-1)_{n}}{(e)_{n}}{ }_{3} F_{2}\left(\begin{array}{c}
-n, b, \rho+1 \\
-n+b-e+2, \rho
\end{array} ; 1-z\right),
$$

where

$$
\begin{equation*}
\rho=\frac{f(-n+b-e+1)+n b}{f-e+1} . \tag{3}
\end{equation*}
$$

This also gives in the paper T. H. Koornwinder, Orthogonal polynomials with weight function $(1-x)^{\alpha}(1+x)^{\beta}+M \delta(x+1)+N \delta(x-1)$, Canad. Math. Bull. 27 (1984), 205-214 the identitity (2.5) with $N=0$ and formulas (5.3), (5.4) substituted.
p.95, §10.4, formula (7):
second line: replace in denominator $(v+n-1)(w+n-1)$ by $\Gamma(v+n-1) \Gamma(w+n-1)$;
third line: replace in denominator $\Gamma(v+n-1)$ by $(v+n-1)$;
fifth line: replace in denominator $\Gamma(w+n-1)$ by $(w+n-1)$.

