On the paper "Jacobi polynomial expansions of Jacobi polynomials with nonnegative coefficients" by R. Askey and G. Gasper

Errata and comment by Tom H. Koornwinder, T.H.Koornwinder@uva.nl
March 28, 2012
This note deals with the paper
R. Askey and G. Gasper, Jacobi polynomial expansions of Jacobi polynomials with non-negative coefficients, Proc. Cambridge Philos. Soc. 70 (1971), 243-255; MR0296369.
In (1.6) the term $-(a-2)(a+b)$ should read $-(\alpha-2)(a+b)$. This follows from the expression for $N(\alpha, \alpha)$ on p. 251 together with substitution of $\beta=\alpha$ in the expression for H_{0} on p.249.

So the statement is that for $-1<\alpha \leq 0$ we have

$$
P_{n}^{(a, b)}(x)=\sum_{k=0}^{n} g(n, k) P_{k}^{(\alpha, \alpha)}(x) \quad \text { with } g(n, k) \geq 0
$$

iff (always assuming $a, b>-1$) we have $a \geq b$ and

$$
(\alpha+2)\left(a^{2}+b^{2}\right)-2(\alpha+1) a b-(\alpha-2)(a+b)-4 \alpha \geq 0
$$

Thus, for given $\alpha \in(-1,0]$ nonnegativity of the $g(n, k)$ holds iff $-1<b \leq a$ while (a, b) is not in the interior of the ellipse with long axis from $(-2,-2)$ to (α, α) and short axis from

$$
\left(\frac{1}{2} \alpha-1+\frac{\frac{1}{2} \alpha+1}{\sqrt{2 \alpha+3}}, \frac{1}{2} \alpha-1-\frac{\frac{1}{2} \alpha+1}{\sqrt{2 \alpha+3}}\right) \quad \text { to } \quad\left(\frac{1}{2} \alpha-1-\frac{\frac{1}{2} \alpha+1}{\sqrt{2 \alpha+3}}, \frac{1}{2} \alpha-1+\frac{\frac{1}{2} \alpha+1}{\sqrt{2 \alpha+3}}\right)
$$

A few further errata communicated to me by George Gasper:

- p.245, line 12: $a+b$ should read $a-b$
- p.252, line 6: the a coefficient in the first sum should read a_{n}
- p.254, line 13: put 0 (zero) as the missing lower limit on the integral sign

