Errata and comments for the the Lecture Notes

Orthogonal polynomials and special functions by R. Askey
collected by Tom Koornwinder, T.H.Koornwinder@uva.nl
last modified: August 21, 2015
These are errata and comments for the book
R. Askey, Special Functions and orthogonal polynomials, Regional Conference Series in Applied Mathematics 21, SIAM, 1975.
p.1, (1.4): On the right replace the summation sign by a product sign.
p.3, line above (1.14): Replace"equivalent to" by "implied by".
p.7, l. -1 : We can rewrite (2.2) as

$$
P_{n}^{(\alpha, \beta)}(x)=\sum_{k=0}^{n} \frac{(n+\alpha+\beta+1)_{k}(\alpha+k+1)_{n-k}}{k!(n-k)!}\left(\frac{x-1}{2}\right)^{k}
$$

which makes sense for $\alpha, \beta \in \mathbb{C}$.
p.8, (2.16): The argument of the ${ }_{2} F_{1}$ should be $\frac{1+x}{2}$ instead of $\frac{1-x}{2}$.
p.14, 1.11,12: The argument in Askey and Gasper [4, pp. 66-67] that the generalized translation operator for Hahn polynomials $Q_{n}(x ; \alpha, \beta, N)$ is not a positive operator is only given for $\alpha, \beta>-1$. As shown in
C. F. Dunkl, Spherical functions on compact groups and applications to special functions, Symposia Mathematica 22, Academic Press, 1977, 145-161,
and
M. Rahman, A positive kernel for Hahn-Eberlein polynomials, SIAM J. Math. Anal. 9 (1978), 891-905,
there are many instances for $\alpha, \beta<-N$ where this operator is nonnegative.
p.15, (2.42a): On the right replace a^{n} by a^{-n}.
p.16, (2.47): This formula was first obtained in
J. Meixner, Erzeugende Funktionen der Charlierschen Polynome, Math. Z. 44 (1938), 531-535.
p.20, (3.6): Write $R_{n}^{(\alpha, \beta)}(x):=P_{n}^{(\alpha, \beta)}(x) / P_{n}^{(\alpha, \beta)}(1)$. For positive integers p, q, r with $q>r$ and $\alpha=\frac{1}{2} p-1, \beta=\frac{1}{2} q-1, \mu=\frac{1}{2} r$ formula (3.6) also follows from the characterization of

$$
\left(x_{1}^{2}+\cdots+x_{q+p}^{2}\right)^{n} R_{n}^{\left(\frac{1}{2} p-1, \frac{1}{2} q-1\right)}\left(\frac{\left(x_{1}^{2}+\cdots+x_{q}^{2}\right)-\left(x_{q+1}^{2}+\cdots+x_{q+p}^{2}\right)}{x_{1}^{2}+\cdots+x_{q+p}^{2}}\right)
$$

as an $O(q) \times O(p)$-invariant spherical harmonics of degree $2 n$ on \mathbb{R}^{q+p} which is equal to 1 at $(1,0, \ldots, 0)$. Then (3.6) means symmetrization of this expression with respect to $O(q-r) \times O(p+r)$:

$$
\begin{gathered}
\left(x_{1}^{2}+\cdots+x_{q+p}^{2}\right)^{n} R_{n}^{\left(\frac{1}{2}(p+r)-1, \frac{1}{2}(q-r)-1\right)}\left(\frac{\left(x_{1}^{2}+\cdots+x_{q-r}^{2}\right)-\left(x_{q-r+1}^{2}+\cdots+x_{q+p}^{2}\right)}{x_{1}^{2}+\cdots+x_{q+p}^{2}}\right) \\
=\int_{0}^{\pi / 2}\left(x_{1}^{2}+\cdots+x_{q+p}^{2}\right)^{n} R_{n}^{\left(\frac{1}{2} p-1, \frac{1}{2} q-1\right)}\left(\frac{\left(x_{1}^{2}+\cdots+x_{q-r}^{2}\right)-\cos (2 \phi)\left(x_{q-r+1}^{2}+\cdots+x_{q+p}^{2}\right)}{x_{1}^{2}+\cdots+x_{q+p}^{2}}\right) \\
\times(\sin \phi)^{r-1}(\cos \phi)^{p-1} d \phi / \int_{0}^{\pi / 2}(\sin \phi)^{r-1}(\cos \phi)^{p-1} d \phi .
\end{gathered}
$$

Formula (3.7) can be interpreted in a similar way by symmetrization with respect to $O(q+r) \times O(p-r)$.
p.22, line after (3.23): Replace (3.22) by (3.19). The formal limiting case can be seen by rewriting (3.19) as

$$
\begin{aligned}
& \frac{1}{m} \sum_{t \in m^{-1} \mathbb{Z}_{\geq 0}} \frac{\Gamma(\alpha+\mu+m t)}{\Gamma(\alpha+1+m t)(m t)^{\mu-1}} e^{-y t} \frac{1}{(m t)^{\alpha}} P_{m t}^{(\alpha, \mu-1)}\left(1-\frac{(x t)^{2}}{2(m t)^{2}}\right)\left(\frac{x t}{2}\right)^{\alpha} t^{\mu-1} \\
& =\left(\frac{m^{-1} y}{1-e^{-m^{-1} y}}\right)^{\alpha+\mu} \frac{\left(\frac{1}{2} x\right)^{\alpha}}{y^{\alpha+\mu}}{ }_{2} F_{1}\left(\begin{array}{c}
\frac{1}{2}(\alpha+\mu), \frac{1}{2}(\alpha+\mu+1) \\
\alpha+1
\end{array}-\frac{x^{2}}{y^{2}} e^{-y / m}\left(\frac{m^{-1} y}{1-e^{-m^{-1} y}}\right)^{2}\right) .
\end{aligned}
$$

Then let $m \rightarrow \infty$ and use (3.24) in the form

$$
\lim _{n \rightarrow \infty} n^{-\alpha} P_{n}^{(\alpha, \beta)}\left(1-\frac{x^{2}}{2 n^{2}}\right)\left(\frac{x}{2}\right)^{\alpha}=J_{\alpha}(x) .
$$

The generating function (3.20) is the special case $\beta=-1$ of (3.17) by DLMF, (15.4.17). In a similar way as above we see that this has limiting case (3.20), which is the special case $\mu=0$ of (3.19), again by DLMF, (15.4.17).

A common special case of (3.17) and (3.18) for $\beta=0$ is

$$
\sum_{n=0}^{\infty} P_{n}^{(\alpha, 0)}(x) r^{n}=2^{\alpha} R^{-1}(1-r+R)^{-\alpha}
$$

In a similar way as above we see that this has limiting case (3.21), which is the special case $\mu=1$ of (3.19) by DLMF, (15.4.18).

In a similar way as above we see that (3.16), i.e., the special case $\beta=\alpha$ of (3.17), has limiting case (3.23), i.e., the special case $\mu=\alpha+1$ of (3.19).

In a similar way as above we see that the special case $\beta=\alpha+1$ of (3.17) has limiting case (3.24), i.e., the special case $\mu=\alpha+2$ of (3.19).

Since (3.20)-(3.23) all correspond to specializations of μ in (3.19), i.e., specializations of β in (3.17), there is no need to find other generating functions of Jacobi polynomials for general α, β having (3.20)-(3.23) as limiting cases.
p.24, (3.30): As for Vilenkin [1], MR0095986 quotes formula (3.30) and mentions a connection with a group theoretic interpretation. The formula also occurs in Vilenkin [2, Ch. $9,4.11(5)]$, where it is derived from the interpretation of Gegenbauer polynomials $C_{n}^{\frac{1}{2} p-1}$ as zonal spherical harmonics on S^{p-1}. By using this interpretation, a proof of (3.30) even simpler than in Vilenkin [2] can be given for $q>p \geq 3$ integers and $\nu=\frac{1}{2} q-1$, $\lambda=\frac{1}{2} p-1$ (the general case then probably follows by analytic continuation). Indeed,

$$
\begin{aligned}
& \left(x_{1}^{2}+\cdots+x_{p}^{2}\right)^{\frac{1}{2} n} C_{n}^{\frac{1}{2} q-1}\left(x_{1} /\left(x_{1}^{2}+\cdots+x_{p}^{2}\right)^{\frac{1}{2}}\right) / C_{n}^{\frac{1}{2} q-1}(1) \\
& =\int_{0}^{\pi / 2}\left(x_{1}^{2}+\sin ^{2} \phi\left(x_{2}^{2}+\cdots+x_{p}^{2}\right)\right)^{\frac{1}{2} n} C_{n}^{\frac{1}{2} p-1}\left(x_{1} /\left(x_{1}^{2}+\sin ^{2} \phi\left(x_{2}^{2}+\cdots+x_{p}^{2}\right)\right)^{\frac{1}{2}}\right) / C_{n}^{\frac{1}{2} p-1}(1) \\
& \quad \times(\sin \phi)^{p-2}(\cos \phi)^{q-p-1} d \phi / \int_{0}^{\pi / 2}(\sin \phi)^{p-2}(\cos \phi)^{q-p-1} d \phi,
\end{aligned}
$$

because $\left(x_{1}^{2}+\cdots+x_{p}^{2}\right)^{\frac{1}{2} n} C_{n}^{\frac{1}{2} p-1}\left(x_{1} /\left(x_{1}^{2}+\cdots+x_{p}^{2}\right)^{\frac{1}{2}}\right)$ is a homogeneous harmonic polynomial of degree n on \mathbb{R}^{p}, and therefore also on \mathbb{R}^{q} if considered as a polynomial in $x_{1}, \ldots, x_{p}, x_{p+1}, \ldots, x_{q}$. Then we symmetrize this with respect to the group $S O(q-1)$, i.e., the group of rotations of \mathbb{R}^{q} which leave $(1,0, \ldots, 0)$ fixed.
p.27, 1.1: Replace "Theorem 3.3" by "Theorem 3.4".
p.37, 6th line after (4.43): Replace Boursma by Boersma.
p.42, l. -11: This is a limit case of (5.7).
p.45, 1. 4-6: On 1.4 multiply $p_{m}(x) p_{n-1}(x)-p_{m-1}(x) p_{n}(x)$ by a coefficient b_{n}.

On 1.5 multiply $p_{1}(x) p_{n-m}(x)-p_{n-m+1}(x)$ by a coefficient $b_{n} \ldots b_{n-m+1}$.
On 1.6 multiply $a_{n-m} p_{n-m}(x)+b_{n-m} p_{n-m-1}(x)$ by a coefficient $b_{n} \ldots b_{n-m+1}$.
p.63, (7.34): In the fraction on the right, before the summation sign, replace the denominator by $(2 \gamma+1)_{n}$.
p.66, Theorem 7.1, l.6: Replace (7.19) by (7.23).
p.76-77: These formulas and positivity results also occur in Askey \& Gasper [5], formula (1.16), and in
G. Gasper, Positivity and special functions, in: Theory and application of special functions, Academic Press, 1975, pp. 375-433, formula (8.12).
Gasper also observes a limit case (see (8.14) in Gasper's paper) for Bessel functions of this positivity result. Indeed, the positivity result implies the positivity (for $\alpha>-1$) of

$$
m^{-1} \sum_{t \in m^{-1}\{0,1, \ldots,[m x]\}} P_{m t}^{(\alpha, 0)}\left(1-\frac{t^{2}}{2(m t)^{2}}\right)(m t)^{-\alpha}(t / 2)^{\alpha},
$$

which formally tends, as $m \rightarrow \infty$, to

$$
\int_{0}^{x} J_{\alpha}(t) d t
$$

The positivity of the right-hand side of (8.21), which is implied by the positivity of the right-hand side of (8.28) plays a crucial role in the proof of the Bieberbach conjecture, see p. 150 in
L. de Branges, A proof of the Bieberbach conjecture, Acta Math. 154 (1985), 137-152.
p.109, Askey and Gasper [4]: This has appeared in J. Analyse Math. 31 (1977), 48-68.
p.109, Askey and Gasper [5]: This has appeared in Amer. J. Math. 98 (1976), 709-737.

