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These are errata and comments for the book

R. Askey, Special Functions and orthogonal polynomials, Regional Conference Series in
Applied Mathematics 21, SIAM, 1975.

p.1, (1.4): On the right replace the summation sign by a product sign.

p.3, line above (1.14): Replace “equivalent to” by “implied by”.

p.7, l.−1: We can rewrite (2.2) as

P (α,β)
n (x) =

n∑
k=0

(n+ α+ β + 1)k (α+ k + 1)n−k
k! (n− k)!

(
x− 1

2

)k
,

which makes sense for α, β ∈ C.

p.8, (2.16): The argument of the 2F1 should be 1+x
2 instead of 1−x

2 .

p.14, l.11,12: The argument in Askey and Gasper [4, pp. 66–67] that the generalized
translation operator for Hahn polynomials Qn(x;α, β,N) is not a positive operator is only
given for α, β > −1. As shown in

C. F. Dunkl, Spherical functions on compact groups and applications to special functions,
Symposia Mathematica 22, Academic Press, 1977, 145–161 ,

and

M. Rahman, A positive kernel for Hahn-Eberlein polynomials, SIAM J. Math. Anal. 9
(1978), 891–905,

there are many instances for α, β < −N where this operator is nonnegative.

p.15, (2.42a): On the right replace an by a−n.

p.16, (2.47): This formula was first obtained in

J. Meixner, Erzeugende Funktionen der Charlierschen Polynome,
Math. Z. 44 (1938), 531–535.

p.20, (3.6): Write R
(α,β)
n (x) := P

(α,β)
n (x)/P

(α,β)
n (1). For positive integers p, q, r with q > r

and α = 1
2p− 1, β = 1

2q− 1, µ = 1
2r formula (3.6) also follows from the characterization of

(x21 + · · ·+ x2q+p)
nR

( 1
2
p−1, 1

2
q−1)

n

(
(x21 + · · ·+ x2q)− (x2q+1 + · · ·+ x2q+p)

x21 + · · ·+ x2q+p

)
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as an O(q) × O(p)-invariant spherical harmonics of degree 2n on Rq+p which is equal to
1 at (1, 0, . . . , 0). Then (3.6) means symmetrization of this expression with respect to
O(q − r)×O(p+ r):

(x21 + · · ·+ x2q+p)
nR

( 1
2
(p+r)−1, 1

2
(q−r)−1)

n

(
(x21 + · · ·+ x2q−r)− (x2q−r+1 + · · ·+ x2q+p)

x21 + · · ·+ x2q+p

)

=

∫ π/2

0
(x21 + · · ·+ x2q+p)

nR
( 1
2
p−1, 1

2
q−1)

n

(
(x21 + · · ·+ x2q−r)− cos(2φ)(x2q−r+1 + · · ·+ x2q+p)

x21 + · · ·+ x2q+p

)

× (sinφ)r−1(cosφ)p−1 dφ
/∫ π/2

0
(sinφ)r−1(cosφ)p−1 dφ.

Formula (3.7) can be interpreted in a similar way by symmetrization with respect to
O(q + r)×O(p− r).

p.22, line after (3.23): Replace (3.22) by (3.19). The formal limiting case can be seen
by rewriting (3.19) as

1

m

∑
t∈m−1Z≥0

Γ(α+ µ+mt)

Γ(α+ 1 +mt)(mt)µ−1
e−yt

1

(mt)α
P

(α,µ−1)
mt

(
1− (xt)2

2(mt)2

) (
xt

2

)α
tµ−1

=

(
m−1y

1− e−m−1y

)α+µ (12x)α

yα+µ
2F1

(
1
2(α+ µ), 12(α+ µ+ 1)

α+ 1
;− x

2

y2
e−y/m

(
m−1y

1− e−m−1y

)2
)
.

Then let m→∞ and use (3.24) in the form

lim
n→∞

n−α P (α,β)
n

(
1− x2

2n2

)(x
2

)α
= Jα(x).

The generating function (3.20) is the special case β = −1 of (3.17) by DLMF, (15.4.17).
In a similar way as above we see that this has limiting case (3.20), which is the special
case µ = 0 of (3.19), again by DLMF, (15.4.17).

A common special case of (3.17) and (3.18) for β = 0 is

∞∑
n=0

P (α,0)
n (x)rn = 2αR−1(1− r +R)−α.

In a similar way as above we see that this has limiting case (3.21), which is the special
case µ = 1 of (3.19) by DLMF, (15.4.18).

In a similar way as above we see that (3.16), i.e., the special case β = α of (3.17), has
limiting case (3.23), i.e., the special case µ = α+ 1 of (3.19).

In a similar way as above we see that the special case β = α+ 1 of (3.17) has limiting
case (3.24), i.e., the special case µ = α+ 2 of (3.19).
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Since (3.20)–(3.23) all correspond to specializations of µ in (3.19), i.e., specializations
of β in (3.17), there is no need to find other generating functions of Jacobi polynomials
for general α, β having (3.20)–(3.23) as limiting cases.

p.24, (3.30): As for Vilenkin [1], MR0095986 quotes formula (3.30) and mentions a
connection with a group theoretic interpretation. The formula also occurs in Vilenkin
[2, Ch. 9, 4.11(5)], where it is derived from the interpretation of Gegenbauer polynomials

C
1
2
p−1

n as zonal spherical harmonics on Sp−1. By using this interpretation, a proof of (3.30)
even simpler than in Vilenkin [2] can be given for q > p ≥ 3 integers and ν = 1

2q − 1,
λ = 1

2p− 1 (the general case then probably follows by analytic continuation). Indeed,(
x21 + · · ·+ x2p

) 1
2
n
C

1
2
q−1

n

(
x1/(x

2
1 + · · ·+ x2p)

1
2
)
/C

1
2
q−1

n (1)

=

∫ π/2

0

(
x21 + sin2 φ(x22 + · · ·+ x2p)

) 1
2
n
C

1
2
p−1

n

(
x1/(x

2
1 + sin2 φ(x22 + · · ·+ x2p))

1
2
)
/C

1
2
p−1

n (1)

× (sinφ)p−2(cosφ)q−p−1 dφ

/∫ π/2

0
(sinφ)p−2(cosφ)q−p−1 dφ,

because
(
x21 + · · ·+ x2p

) 1
2
n
C

1
2
p−1

n

(
x1/(x

2
1 + · · · + x2p)

1
2

)
is a homogeneous harmonic poly-

nomial of degree n on Rp, and therefore also on Rq if considered as a polynomial in
x1, . . . , xp, xp+1, . . . , xq. Then we symmetrize this with respect to the group SO(q − 1),
i.e., the group of rotations of Rq which leave (1, 0, . . . , 0) fixed.

p.27, l.1: Replace “Theorem 3.3” by “Theorem 3.4”.

p.37, 6th line after (4.43): Replace Boursma by Boersma.

p.42, l.−11: This is a limit case of (5.7).

p.45, l. 4–6: On l.4 multiply pm(x)pn−1(x)− pm−1(x)pn(x) by a coefficient bn.
On l.5 multiply p1(x)pn−m(x)− pn−m+1(x) by a coefficient bn . . . bn−m+1.
On l.6 multiply an−mpn−m(x) + bn−mpn−m−1(x) by a coefficient bn . . . bn−m+1.

p.63, (7.34): In the fraction on the right, before the summation sign, replace the denom-
inator by (2γ + 1)n.

p.66, Theorem 7.1, l.6: Replace (7.19) by (7.23).

p.76–77: These formulas and positivity results also occur in Askey & Gasper [5], formula
(1.16), and in

G. Gasper, Positivity and special functions, in: Theory and application of special func-
tions, Academic Press, 1975, pp. 375–433, formula (8.12).

Gasper also observes a limit case (see (8.14) in Gasper’s paper) for Bessel functions of this
positivity result. Indeed, the positivity result implies the positivity (for α > −1) of

m−1
∑

t∈m−1{0,1,...,[mx]}

P
(α,0)
mt

(
1− t2

2(mt)2

)
(mt)−α(t/2)α,
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which formally tends, as m→∞, to ∫ x

0
Jα(t) dt.

The positivity of the right-hand side of (8.21), which is implied by the positivity of the
right-hand side of (8.28) plays a crucial role in the proof of the Bieberbach conjecture, see
p.150 in

L. de Branges, A proof of the Bieberbach conjecture, Acta Math. 154 (1985), 137–152.

p.109, Askey and Gasper [4]: This has appeared in J. Analyse Math. 31 (1977), 48–68.

p.109, Askey and Gasper [5]: This has appeared in Amer. J. Math. 98 (1976), 709–737.
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