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1. Introduction

One of the interesting aspects of the rapidly developing subject of quantum groups is that they
seem to provide the natural setting for q-hypergeometric functions and orthogonal polynomials.
For the relatively simple case of SUq(2) a first example of this phenomenon was given by Vaksman
& Sŏıbel’man [21] (see also Masuda e.a. [14] [13] and the author [10]), where it was shown that
the matrix elements of the irreducible representations of SUq(2) can be expressed in terms of little
q-Jacobi polynomials. Next Noumi and Mimachi [16] showed that the “spherical harmonics” on
quantum homogeneous spaces of SUq(2) can be expressed in terms of big q-Jacobi polynomials.
As a following step, the author [11] gave an interpretation of a two-parameter family of Askey-
Wilson polynomials (including continuous q-Legendre polynomials) as (zonal) spherical functions
on SUq(2). Here the notion of spherical function was generalized in the sense that biinvariance with
respect to the quantum subgroup U(1) was replaced by “infinitesimal” left and right invariance
with respect to twisted primitive elements of the corresponding quantized universal enveloping
algebra Uq(sl(2, C)). Since this paper [11] was meant as a survey paper, the full results were only
announced there, while a proof was sketched for the most simple case (parameter values σ = τ = 0)
corresponding to the continuous q-Legendre polynomials. Nevertheless, the paper [11] has already
had some follow-ups by (i) the work of Koelink [8] (appearing as a companion paper to the present
paper), which culminates into a quantum group derivation of the continuous q-Legendre case of
the Rahman-Verma addition formula [19] for continuous q-ultraspherical polynomials, and (ii) an
announcement by Noumi and Mimachi [17], [15], where they extend the author’s result to the
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expression of all corresponding matrix elements (not just the left and right infinitesimally invariant
ones) as Askey-Wilson polynomials.

It is the purpose of the present paper to give full proofs of the results announced in [11]. The
contents are as follows. In section 2 we give the preliminaries about q-hypergeometric functions
and orthogonal polynomials, mainly referring to Askey & Wilson [5] and Gasper & Rahman [7]. In
section 3 we give preliminaries on the quantum group SLq(2, C). Section 4 introduces the (σ, τ)-
spherical elements on SUq(2) and derives an explicit Fourier series for such elements belonging to
irreducible representations. An important tool here is the explicit matrix of dual q-Krawtchouk
polynomials for the basis change from the standard basis to a basis of eigenfunctions for an (almost)
twisted primitive element. This last result (already announced in [11]) is also crucial in Koelink
[8].

In section 5 we prove that the elementary (σ, τ)-spherical matrix elements, when expressed as
polynomials, satisfy the same second order q-difference equation as the Askey-Wilson polynomials.
This is done by use of the Casimir operator on the quantum group. This way of proving that
our polynomials are Askey-Wilson polynomials is different from the proof we had in mind when
writing [11]. There we worked with the explicit Fourier series and the knowledge obtained from the
quantum group theory that we were dealing with orthogonal polynomials. Then the result could be
derived by deriving the three-term recurrence relation. Section 5 contains also the expression of the
Haar functional as an Askey-Wilson integral, when applied to (σ, τ)-spherical elements. Finally, in
section 6 we examine the limit cases as σ or τ tend to ∞. For the Askey-Wilson polynomials this
means a limit transition to big or little q-Jacobi polynomials.

Notation. Z+ denotes the set of nonnegative integers.

2. Preliminaries on q-hypergeometric orthogonal polynomials

Let 0 < q < 1. Define q-shifted factorials

(a; q)n :=

n−1
∏

k=0

(1 − aqk),

(a; q)∞ := lim
n→∞

(a; q)n ,

(a1, . . . , ar; q)n :=

r
∏

j=1

(aj ; q)n ,

and the q-hypergeometric series

s+1φs

[

a1, . . . , as+1

b1, . . . , bs
; q, z

]

:=
∞
∑

k=0

(a1, . . . , as+1; q)k zk

(b1, . . . , bs; q)k (q; q)k
. (2.1)

Usually in this paper we will have the case of a terminating series in (2.1), i.e. a1 = q−n (n ∈
Z+), so the series terminates after the term with k = n. Then we require that b1, . . . , bs /∈
{1, q−1, . . . , q−n+1}. See Gasper & Rahman [7, Ch.1] for standard facts about q-hypergeometric
series.

Askey-Wilson polynomials are defined by

pn(cos θ; a, b, c, d | q) := a−n (ab, ac, ad; q)n 4φ3

[

q−n, qn−1abcd, aeiθ, ae−iθ

ab, ac, ad
; q, q

]

. (2.2)
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See Askey & Wilson [5, (1.15)]. They are symmetric in a, b, c, d (cf. [5, p.6]). Sometimes it will be
useful to write the 4φ3 factor in (2.2) as

rn(cos θ; a, b, c, d | q) := 4φ3

[

q−n, qn−1abcd, aeiθ, ae−iθ

ab, ac, ad
; q, q

]

. (2.3)

The orthogonality properties are stated in [5, Theorems 2.2, 2.5].

Proposition 2.1. Assume a, b, c, d are real, or if complex, appear in conjugate pairs, and that
|a|, |b|, |c|, |d| ≤ 1, but the pairwise products of a, b, c, d have absolute value less than one, then

1

2π

∫ π

0

pn(cos θ) pm(cos θ)w(cos θ) dθ = δm,n hn ,

where

pn(cos θ) = pn(cos θ; a, b, c, d | q),

w(cos θ) =
(e2iθ, e−2iθ; q)∞

(aeiθ, ae−iθ, beiθ, be−iθ, ceiθ, ce−iθ, deiθ, de−iθ; q)∞
,

hn

h0
=

(1 − qn−1abcd) (q, ab, ac, ad, bc, bd, cd; q)n

(1 − q2n−1abcd) (abcd; q)n
, (2.4)

and

h0 =
(abcd; q)∞

(q, ab, ac, ad, bc, bd, cd; q)∞
. (2.5)

Proposition 2.2. Assume a, b, c, d are real, or if complex, appear in conjugate pairs, and that
the pairwise products of a, b, c, d are not ≥ 1, then

1

2π

∫ π

0

pn(cos θ) pm(cos θ)w(cos θ) dθ +
∑

k

pn(xk) pm(xk)wk = δm,n hn , (2.6)

where pn(cos θ), w(cos θ) and hn are as in Proposition 2.1, while the xk are the points (eqk +
e−1q−k)/2 with e any of the parameters a, b, c or d whose absolute value is larger than one, the
sum is over the k ∈ Z+ with |eqk| > 1 and wk is wk(a; b, c, d) as defined by 5, (2.10)] when
xk = (aqk +a−1q−k)/2. (Be aware that (1−aq2k)/(1−a) should be replaced by (1−a2q2k)/(1−a2)
in [5, (2.10)].

With notation as in Proposition 2.2 let dm = dma,b,c,d;q be the normalized orthogonality
measure for the Askey-Wilson polynomials. So, for any polynomial p:

∫ ∞

−∞

p(x)dm(x) =
1

h0

{

1

2π

∫ 1

−1

p(x)w(x)
dx

(1 − x2)1/2
+
∑

k

p(xk)wk

}

. (2.7)

By [5, (5.7)–(5.9)] the Askey-Wilson polynomials, written as

Rn(eiθ) := 4φ3

[

q−n, qn−1abcd, aeiθ, ae−iθ

ab, ac, ad
; q, q

]

,
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are eigenfunctions of a second order q-difference operator:

A(−θ) (Rn(q−1eiθ)−Rn(eiθ))+A(θ)(Rn(qeiθ)−Rn(eiθ)) = −(1−q−n) (1−qn−1abcd)Rn(eiθ), (2.8)

where

A(θ) :=
(1 − aeiθ) (1 − beiθ) (1 − ceiθ) (1 − deiθ)

(1 − e2iθ) (1 − qe2iθ)
.

If f(eiθ) is a polynomial of degree ≤ n in cos θ and if (2.8) with Rn replaced by f is valid, then f
will be a constant multiple of Rn.

We will need some special Askey-Wilson polynomials which happen to have simple explicit
Fourier-cosine expansions: Chebyshev polynomials of the first kind

pn(cos θ; 1,−1, q
1
2 ,−q

1
2 | q) = (2 − δn,0) (qn; q)n cos(nθ) (2.9)

(cf. [5,(4.25)¿]) and continuous q-Legendre polynomials

pn(cos θ; q1/2,−q1/2, q1/2,−q1/2 | q) = (−q; q)2n (q; q)n

n
∑

k=0

(q; q2)k (q; q2)n−k

(q2; q2)k (q2; q2)n−k
ei(n−2k)θ

(cf. [3, (3.1)] together with [5, (4.2), (4.20)]).

Lemma 2.3. The connection coefficients ck,n in

pn(x; q1/2a, β, qa2/β, q1/2a | q) =
n
∑

k=0

ck,n pk(x; a,−a,−q1/2a, q1/2a | q) (2.10)

can be explicitly written as

ck,n =
(qa2, q; q)n (qn+1a4; q)k

(qa2, q, qka4; q)k (q; q)n−k

(

−q1/2

a2β

)n−k

q(n−k)2/2

{

2φ1

[

q−n+k, q−na2

qk+1a2
; q, qn+1/2aβ

]}2

(2.11).

Proof. Askey and Wilson 5, (6.1), (6.2)] gave the connection coefficients between two families of
Askey-Wilson polynomials with one common parameter. Their expression involved a terminating
balanced 5φ4 of argument q. With our special choice of parameters in (2.10) this 5φ4 has the
form occurring in the q-Clausen formula as given by formulas (2.16) (first identity) and (2.4) (with
α = q−n) in Gasper and Rahman [6]. (Note that both the left and right hand side of this version
of the q-Clausen formula are written differently from the usual formulation [6, (1.6)].) Substitution
of this q-Clausen formula yields (2.11).

Now substitute a = 1 in (2.10), (2.11) and apply (2.9). Then

pn(cos θ; q1/2, β, q/β, q1/2 | q) =

n
∑

k=−n

c|k|,n (q|k|; q)|k| e
ikθ,

with ck,n given by (2.11) for a = 1. When we switch to base q2 and put β = −q2σ+1 then we obtain

pn(cos θ; q,−q2σ+1,−q−2σ+1, q | q2) =
n
∑

k=−n

c|k|,n (q2|k|; q2)|k| e
ikθ (2.12)
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with

(q2k; q2)k ck,n =
(q2; q2)2n (q2n+2; q2)k q(n−k)(n−k+2σ)

(q2; q2)2k (q2; q2)n−k

{

2φ1

[

q−2n+2k, q−2n

q2k+2
; q2,−q2n−2σ+2

]}2

.

(2.13)
Finally, by Jackson’s transformation formula, [7, (III.7)], formula (2.13) can be rewritten as

(q2k; q2)k ck,n =
(q2; q2)22n q(n−k)(n−k+2σ)

(q2; q2)n (q2; q2)n+k (q2; q2)n−k

{

3φ2

[

q−2n+2k, q−2n,−q−2n−2σ

q−4n, 0
; q2, q2

]}2

.

(2.14)

Next we define little q-Jacobi polynomials

pn(x; a, b; q) := 2φ1(q
−n, abqn+1; aq; q, qx) (2.15)

(cf. Andrews & Askey [1]) and big q-Jacobi polynomials

P (α,β)
n (x; c, d; q) = 3φ2

[

q−n, qn+α+β+1, xqα+1/c

qα+1,−qα+1d/c
; q, q

]

(2.16)

(cf. Andrews & Askey [2]). In this last reference some different normalization is suggested for
the big q-Jacobi polynomials, but the authors are not very definite about it. Here we follow the
normalization used by Noumi & Mimachi [16]. Little and big q-Jacobi polynomials are orthogonal
with respect to discrete measures.

We define dual q-Krawtchouk polynomials by

Rn(q−x − qx−N−c; qc, N | q) := 3φ2(q
−n, q−x,−qx−N−c; 0, q−N ; q, q). (2.17)

These are special q-Racah polynomials and satisfy the orthogonality relations

1

(−qc; q)N

N
∑

x=0

(RnRm)(q−x − qx−N−c; qc,N | q)

×
(1 + q2x−N−c)(−q−N−c, q−N ; q)x

(1 + q−N−c)(q,−q−c+1; q)x(−qx−2N−c)x
= δnm

(q; q)n

(q−N ; q)n
(−q−N−c)n,

(2.18)

where n,m = 0, . . . , N . See Askey and Wilson 4] and Stanton [20]. They satisfy the three-term
recurrence relation

y Rn(y; qc, N | q) = (1 − qn−N )Rn+1(y; qc,N | q)

+(q−N − q−N−c) qn Rn(y; qc, N | q) − (1 − qn) q−N−c Rn−1(y; qc,N | q), (2.19)

see [20].
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3. Preliminaries on the quantum SL(2, C) group

The reader may use the author’s survey [11] and the references given there for further reading in
connection with this section. Fix q ∈ (0, 1). Let Aq be the complex associative algebra with unit
1, generators α, β, γ, δ and relations

αβ = qβα, αγ = qγα, βδ = qδβ, γδ = qδγ, βγ = γβ,

αδ − qβγ = δα − q−1βγ = 1.
(3.1)

It turns out that Aq becomes a Hopf algebra over C under the following actions of the comultipli-
cation ∆:Aq → Aq ⊗ Aq, counit ε:Aq → C (unital multiplicative linear mappings) and antipode
S:Aq → Aq (unital antimultiplicative linear mapping) on the generators:

∆

(

α β
γ δ

)

=

(

α β
γ δ

)

⊗

(

α β
γ δ

)

,

ε

(

α β
γ δ

)

=

(

1 0
0 1

)

, S

(

α β
γ δ

)

=

(

δ −q−1β
−qγ α

)

,

where the formula for ∆ has to be interpreted in the sense of matrix multiplication: ∆(α) =
α ⊗ α + β ⊗ γ, etc. .

A Hopf ∗-algebra is a Hopf algebra A over C with an involution a 7→ a∗ such that A becomes
a unital ∗-algebra and ∆:A → A⊗A and ε:A → C are ∗-homomorphisms. Then it can be shown
that, if S is invertible (which is the case in our example Aq), we have

S ◦ ∗ ◦ S ◦ ∗ = id.

We can make Aq into a Hopf ∗-algebra by taking for the involution the unital antimultiplicative
anti-linear mapping a 7→ a∗ such that

(

α∗ β∗

γ∗ δ∗

)

=

(

δ −qγ
−q−1β α

)

.

Let Uq be the complex associative algebra with unit 1, generators A,B,C,D and relations

AD = DA = 1, AB = qBA, AC = q−1CA, BC − CB =
A2 − D2

q − q−1
. (3.2)

We can make Uq into a Hopf ∗-algebra with comultiplication ∆:Uq → Uq ⊗ Uq, counit ε:Uq → C,
antipode S:Uq → Uq and involution ∗:Uq → Uq by requiring that

∆(A) = A ⊗ A, ∆(D) = D ⊗ D,

∆(B) = A ⊗ B + B ⊗ D, ∆(C) = A ⊗ C + C ⊗ D,

ε(A) = ε(D) = 1, ε(B) = ε(C) = 0,

S(A) = D, S(D) = A, S(B) = −q−1B, S(C) = −qC, (3.3)

A∗ = A, D∗ = D, B∗ = C, C∗ = B. (3.4)

Two Hopf algebras U ,A are said to be in duality if there is a doubly nondegenerate bilinear
form (u, a) 7→ 〈u, a〉:U ×A → C such that, for u, v ∈ U , a, b ∈ A:

〈∆(u), a ⊗ b〉 = 〈u, ab〉, 〈u ⊗ v,∆(a)〉 = 〈uv, a〉, (3.5)

〈1U , a〉 = εA(a), 〈u, 1A〉 = εU (u), 〈S(u), a〉 = 〈a, S(u)〉.
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If U ,A are moreover Hopf ∗-algebras then they are said to be Hopf ∗-algebras in duality if the
above pairing satisfies in addition that

〈u∗, a〉 = 〈u, (S(a))∗〉. (3.6)

Instead of 〈u, a〉 we will also write u(a) or a(u).
It can be shown that Uq and Aq become Hopf ∗-algebras in duality with the following pairing

between the generators:

〈A,

(

α β
γ δ

)

〉 =

(

q
1
2 0
0 q−

1
2

)

, 〈D,

(

α β
γ δ

)

〉 =

(

q−
1
2 0

0 q
1
2

)

,

〈B,

(

α β
γ δ

)

〉 =

(

0 1
0 0

)

, 〈C,

(

α β
γ δ

)

〉 =

(

0 0
1 0

)

.

The pairing between products of generators then follows by the rules (3.5).
The element

Ω :=
q−1A2 + qD2 − 2

(q−1 − q)2
+ BC = Ω∗ (3.7)

is a Casimir element of Uq: it commutes with any X ∈ Uq.
In a Hopf algebra U an element u is called group-like if u 6= 0 and ∆(u) = u ⊗ u, primitive

if ∆(u) = 1 ⊗ u + u ⊗ 1 and twisted primitive (with respect to a group-like element g) if ∆(u) =
g ⊗ u + u ⊗ S(g). In Uq the group-like elements are all elements An (n ∈ Z) and (cf. Masuda e.a.
[12]):

Lemma 3.1. The twisted primitive elements with respect to A are the elements X in the linear
span of A − D, B and C. They satisfy

∆(X) = A ⊗ X + X ⊗ D.

For t 6= 1 the twisted primitive elements with respect to At are the constant multiples of At −A−t.

Let U and A be Hopf algebras in duality. For u ∈ U and a ∈ A define elements u.a and a.u of
A by

u.a := (id ⊗ u)(∆(a)), a.u := (u ⊗ id)(∆(a)). (3.8)

Hence, if v ∈ U ,
(u.a)(v) = a(vu), (a.u)(v) = a(uv).

The operations defined in (3.8) are left respectively right algebra actions of Uq on Aq:

(uv).a = u.(v.a), a.(uv) = (a.u).v. (3.9)

If ∆(u) =
∑

(u) u(1) ⊗ u(2) (u ∈ U) and a, b ∈ A then

u.(ab) =
∑

(u)

(u(1).a) (u(2).b), (ab).u =
∑

(u)

(a.u(1)) (b.u(2)). (3.10)

Furthermore, if u ∈ U , a ∈ A then

(id ⊗ u.)(∆(a)) = ∆(u.a) (3.11)
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and if, moreover, v ∈ U then
〈v, u.a∗〉 = 〈S(v)∗, S(u)∗.a〉. (3.12)

We call an element a ∈ A left (right) invariant with respect to an element u ∈ U if u.a = ε(u)a
respectively a.u = ε(u)a. Note that the unit 1 of A is biinvariant with respect to all u ∈ U . If u is
twisted primitive then ε(u) = 0 and:

u.a = 0 & b.u = 0 =⇒ u.(ab) = 0,

a.u = 0 & b.u = 0 =⇒ (ab).u = 0.

Hence:

Lemma 3.2. The left (or right) invariant elements of A with respect to some twisted primitive
element of U form a unital subalgebra of A. In particular, if X ∈ Span{A − D,B,C} then the set
of all a ∈ Aq satisfying X.a = 0 (respectively a.X = 0) forms a unital subalgebra of Aq.

Let U and A be Hopf algebras in duality. A matrix corepresentation of A is a square matrix
t = (ti,j) of elements of A such that

∆(ti,j) =
∑

k

ti,k ⊗ tk,j, ε(ti,j) = δi,j . (3.13)

To a matrix corepresentation t of A corresponds a matrix representation of U , also denoted by t
and defined by

(t(u))i,j := ti,j(u) = 〈u, ti,j〉, u ∈ U .

The matrix entries of a corepresentation of A (elements of A) are completely determined by the ma-
trix entries of the corresponding representation of U (linear functionals on U). A matrix corepresen-
tation t of A is called unitary if t∗i,j = S(tj,i) and a representation t of U is called a ∗-representation

if ti,j(u
∗) = tj,i(u) (u ∈ U). Note that a matrix corepresentation of A is unitary if and only if the

corresponding matrix representation of U is a ∗-representation.
Up to equivalence, there is for each finite dimension precisely one irreducible matrix corepre-

sentation of Aq, which can be chosen to be unitary. The corresponding irreducible ∗-representation
of Uq is realized as a representation tl = (tli,j)i,j=−l,−l+1,...,l (l ∈ 1

2Z+) on a (2l + 1)-dimensional

vector space with orthonormal basis {el
n}n=−l,−l+1,...,l such that

tl(A) el
n = q−n el

n, tl(D) el
n = qn el

n,

tl(B) el
n =

(q−l+n−1 − ql−n+1)
1
2 (q−l−n − ql+n)

1
2

q−1 − q
el
n−1,

tl(C) el
n =

(q−l+n − ql−n)
1
2 (q−l−n−1 − ql+n+1)

1
2

q−1 − q
el
n+1,

(3.14)

with the convention that el
−l−1 and el

l+1 are zero. The tli,j , being elements of Aq, can be expressed in
terms of the generators by expressions involving little q-Jacobi polynomials. The lowest dimensional
cases are particularly simple:

t0 = (t00,0) = (1), t
1
2 =





t
1
2
1
2
, 1
2

t
1
2
1
2
,− 1

2

t
1
2

− 1
2
, 1
2

t
1
2

− 1
2
,− 1

2



 =

(

δ γ
β α

)

,
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t1 =





t11,1 t11,0 t11,−1

t10,1 t10,0 t10,−1

t1−1,1 t1−1,0 t1−1,−1



 =





δ2 (1 + q2)
1
2 δγ γ2

(1 + q2)
1
2 δβ 1 + (q + q−1)βγ (1 + q2)

1
2 γα

β2 (1 + q2)
1
2 βα α2



 . (3.15)

Define
Al

q := Span{tli,j | i, j = −l,−l + 1, . . . , l}. (3.16)

It is known that:

Proposition 3.3. The tli,j (i, j = −l,−l + 1, . . . , l) form a basis of Al
q and

Aq =
⊕

l∈ 1
2

Z+
Al

q . (3.17)

Let a :=
∑l

i,j=−l γi,j tli,j ∈ Al
q (γi,j ∈ C). Let X ∈ Uq. It follows from (3.8) and (3.13) that

X.a =
∑

i,k (
∑

j tlk,j(X) γi,j) tli,k, (3.18)

a.X =
∑

k,j (
∑

i tli,k(X) γi,j) tlk,j. (3.19)

Lemma 3.4. With a and X as above we have:

(i) X.a = 0 ⇐⇒ tl(X) (
∑l

j=−l γij el
j) = 0 for all i;

(ii) a.X = 0 ⇐⇒ tl(X∗) (
∑l

i=−l γij el
i) = 0 for all j.

Proof. (i) By (3.18) and Proposition 3.3:

X.a = 0 ⇐⇒
∑

j tlk,j(X) γi,j = 0 for all i, k ⇐⇒ tl(X) (
∑l

j=−l γij el
j) = 0 for all i.

(ii) By (3.19): a.X = 0 ⇐⇒
∑

i tli,k(X) γi,j = 0 for all k, j

⇐⇒
∑

i tlk,i(X
∗) γi,j = 0 for all k, j ⇐⇒ tl(X∗) (

∑

i γi,j el
i) = 0 for all j,

where we used that tl is a ∗-representation of Uq.

For the Casimir element Ω (cf. (3.7)) we compute from (3.14) that

tl(Ω) =

(

q−l− 1
2 − ql+ 1

2

q−1 − q

)2

id .

Hence, by (3.18), (3.19):

Ω.a =

(

q−l− 1
2 − ql+ 1

2

q−1 − q

)2

a = a.Ω if a ∈ Al
q . (3.20)

The tensor product tl ⊗ tl
′

is defined as the matrix corepresentation of Aq with matrix entries

(tl ⊗ tl
′

)i,i′;j,j′ := tli,j tl
′

i′,j′ (i, j = −l,−l + 1, . . . , l; i′, j′ = −l′,−l′ + 1, . . . , l′).

Then:

Proposition 3.5. tl⊗ tl
′

is equivalent to the direct sum of the corepresentations tk (k = l+ l′, l+
l′ − 1, . . . , |l − l′|).
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There is a unique linear functional h:Aq → C, called the Haar functional on Aq, with the
properties

(i) h(1) = 1,
(ii) h(aa∗) ≥ 0 for all a ∈ Aq,
(iii) (h ⊗ id)(∆(a)) = h(a)1 = (id ⊗ h)(∆(a)).

Then h(aa∗) > 0 if a > 0. It can also be shown that

h((tl
′

i′,j′)∗ tli,j) = δl,l′ δi,i′ δj,j′ q2(l−i) 1 − q2

1 − q2(2l+1)
. (3.21)

For θ ∈ C let π1
θ :Aq → C be the unital algebra homomorphism (one-dimensional representation

of Aq) defined by

π1
θ

(

α β
γ δ

)

:=

(

eiθ 0
0 e−iθ

)

. (3.22)

In particular, if θ ∈ R, π1
θ is a ∗-representation of Aq. We have

π1
θ(t

l
n,m) = e−2inθ δn,m . (3.23)

4. (σ, τ)-spherical elements

Define, for σ ∈ R,

Xσ := i q1/2 B − i q−1/2 C −
q−σ − qσ

q−1 − q
(A − D). (4.1)

Then

X∗
σ = i q−1/2 B − i q1/2 C −

q−σ − qσ

q−1 − q
(A − D) = −S(Xσ) (4.2)

by (3.3), (3.4) and Xσ is twisted primitive with respect to A (cf. Lemma 3.1):

∆(Xσ) = A ⊗ Xσ + Xσ ⊗ D.

Define also the twisted primitive element

X∞ := D − A = lim
σ→∞

(q−1 − q) qσ Xσ = lim
σ→−∞

(q − q−1) q−σ Xσ.

Left or right invariance of an element of Aq with respect to X∞ is the same as left or right invariance
with respect to the diagonal quantum subgroup of SLq(2, C).

We will call an element a ∈ Aq (σ, τ)-spherical if a is left invariant with respect to Xσ and
right invariant with respect to Xτ :

Xσ.a = 0 & a.Xτ = 0.

The nonzero (σ, τ)-spherical elements in the subspaces Al
q (defined by (3.16)) will be called elemen-

tary (σ, τ)-spherical. It follows from Lemma 3.2 that the (σ, τ)-spherical elements form a subalgebra
with 1 of Aq. Since the subspaces Al

q are invariant under left and right action of Uq (cf. (3.18),
(3.19)), it follows from the direct sum decomposition (3.17) that any (σ, τ)-spherical element in Aq

will be a sum of elementary (σ, τ)-spherical elements.
From now on assume that σ and τ are finite. From (3.14) we obtain:
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Lemma 4.1. Let l ∈ 1
2Z+, a−l, a−l+1, . . . , al ∈ C. Let v :=

∑l
m=−l am el

m. Then

tl
(

iq±
1
2 B − iq∓

1
2 C −

q−σ − qσ

q−1 − q
(A − D)

)

v = 0 (4.3)

iff

i q±
1
2 (q−l+m − ql−m)

1
2 (q−l−m−1 − ql+m+1)

1
2 am+1 − i q∓

1
2 (q−l+m−1 − ql−m+1)

1
2

× (q−l−m − ql+m)
1
2 am−1 − (q−σ − qσ) (q−m − qm) am = 0, m = −l,−l + 1, . . . , l,

(4.4)
with the convention that a−l−1 = 0 = al+1 .

By Lemma 4.1 one easily finds the general solution to (4.3) for low l:

if l = 0 then v = const. ,

if l = 1
2 then v = 0,

if l = 1 then

v = const.

(

−i q∓
1
2 e1

1 +
q−σ − qσ

(q−1 + q)
1
2

e1
0 − iq±

1
2 e1

−1

)

. (4.5)

Also, if σ = 0 then the coefficient of am in (4.4) vanishes, so (4.4) becomes a two-term recurrence
relation with solution v = 0 if l ∈ Z+ + 1

2
, and

v = const.
∑

m=−l,−l+2,...,l

q∓
1
2
m

(

(q2; q4)(l−m)/2 (q2; q4)(l+m)/2

(q4; q4)(l−m)/2 (q4; q4)(l+m)/2

)

1
2

el
m

if l ∈ Z+ .
From Lemma 3.4 we derive:

Lemma 4.2. Let, for some l ∈ 1
2Z+ and σ, τ ∈ R, tl(Xσ) and tl(X∗

τ ) have both one-dimensional

zero-space spanned by
∑l

m=−l amel
m and

∑l
m=−l bmel

m, respectively. Then the (σ, τ)-spherical

elements in Al
q form a one-dimensional subspace spanned by

l
∑

i,j=−l

bi aj tli,j . (4.6)

In view of (3.15), (4.5) and (4.6), the (σ, τ)-spherical elements in A1
q are just the constant

multiples of

2ρσ,τ +
(q−σ − qσ)(q−τ − qτ )

q−1 + q
, (4.7)

where

ρσ,τ := 1
2

(

α2 + δ2 + qγ2 + q−1β2 + i(q−σ − qσ)(qδγ + βα)

− i(q−τ − qτ )(δβ + qγα) + (q−σ − qσ)(q−τ − qτ )βγ
)

. (4.8)

Note that
ρ∗σ,τ = ρσ,τ .
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In order to compute the null space of tl(Xσ) in general, we consider the more general problem
of finding the eigenvectors of tl(−DXσ). Note that

(DXσ)∗ = DXσ ,

hence tl(−DXσ) is self-adjoint. Clearly, tl(Xσ) and tl(−DXσ) have the same zero space.

Let λ ∈ R, v =
∑l

m=−l am el
m. Then

tl(−DXσ) v = λ v

iff

−i q
1
2 (q−l+m − ql−m)

1
2 (q−l−m−1 − ql+m+1)

1
2 am+1 + i q−

1
2 (q−l+m−1 − ql−m+1)

1
2

× (q−l−m − ql+m)
1
2 am−1 + (q−σ − qσ) (q−m − qm) am = q−m λ (q−1 − q) am

(4.9)

for m = −l,−l + 1, . . . , l. Put

Rn := in q−
1
2
n(n−1) q−nσ (q2; q2)

1
2
n (q4l; q−2)

− 1
2

n a−l+n ,

x := q−2l−σ ((q−1 − q)λ + qσ − q−σ).

Then (4.9) can be rewritten as

(1 − q2n−4l)Rn+1 − (1 − q2n) q−4l−2σ Rn−1 + (q−4l − q−4l−2σ) q2n Rn = xRn , n = 0, 1, . . . , 2l,
(4.10)

with the convention that R−1 = 0 = R2l+1. We recognize (4.10) as the three-term recurrence
relation (2.19) for the dual q-Krawtchouk polynomials (2.17). Thus the possible eigenvalues in
(4.10) are

xj := q−2j−2l − q2j−2l−2σ , j = −l,−l + 1, . . . , l, (4.11)

and the corresponding eigenvectors, up to a constant factor, are given by

Rn = Rn(xj ; q
2σ , 2l | q2).

When we translate this back to (4.9) we obtain

Theorem 4.3. tl(−DXσ) has simple spectrum consisting of eigenvalues

λj :=
−q2j−σ + qσ−2j − qσ + q−σ

q−1 − q
, j = −l,−l + 1, . . . , l,

with corresponding eigenvectors

const.

2l
∑

n=0

i−n qnσ qn(n−1)/2 (q2; q2)−1/2
n (q4l; q−2)1/2

n Rn(xj ; q
2σ , 2l | q2) el

n−l ,

where xj is given by (4.11).



–13–

Similarly, in order to compute the null space of tl(X∗
σ) in general, we consider the more general

problem of finding the eigenvectors of tl(AX∗
σ). Note that

(AX∗
σ)∗ = AX∗

σ ,

so tl(AX∗
σ) is self-adjoint and has the same zero space as tl(X∗

σ). But also,

AX∗
σ = XσA = J(−X∗

σD) = J(−DXσ),

where J :Uq → Uq is the involutive algebra isomorphism generated by

J(A) = D, J(D) = A, J(B) = C, J(C) = B

(well-defined in view of (3.2)). Also observe from (3.14) that

tlm,n(J(X)) = tl−m,−n(X), X ∈ Uq.

Hence

Lemma 4.4.
∑l

m=−l am el
m is eigenvector of tl(−DXσ) with eigenvalue λ iff

∑l
m=−l am el

−m is

eigenvector of tl(AX∗
σ) with eigenvalue λ.

Since X∗
σD = DXσ, we see also that tl(Xσ) v = 0 iff tl(X∗

σ) (tl(D) v) = 0. In combination with
Lemma 4.4 this yields:

Lemma 4.5. Let l ∈ 1
2
Z+ and c−l, c−l+1, . . . , cl ∈ C. Then:

tl(Xσ) (

l
∑

m=−l

q−
1
2
mcmel

m) = 0 ⇐⇒ tl(X∗
σ) (

l
∑

m=−l

q
1
2
mcmel

m) = 0

⇐⇒ tl(Xσ) (
l
∑

m=−l

q−
1
2
mc−mel

m) = 0.

So, by Theorem 4.3 and Lemma 4.2:

Lemma 4.6. tl(Xσ) and tl(X∗
σ) have zero-dimensional null space if l ∈ Z++ 1

2 and one-dimensional
null space spanned by

l
∑

m=−l

q−
1
2
m cl,σ

m el
m resp.

l
∑

m=−l

q
1
2
m cl,σ

m el
m

if l ∈ Z+ . Here

cl,σ
m :=

im q−(l+σ)m qm2/2

(q2; q2)
1/2
l+m (q2; q2)

1/2
l−m

3φ2

(

q−2l+2m, q−2l,−q−2l−2σ

q−4l, 0
; q2, q2

)

= cl,σ
−m. (4.12)

Furthermore, the subspace of (σ, τ)-spherical elements in Al
q is zero-dimensional if l ∈ Z+ + 1

2
and

one-dimensional if l ∈ Z+. For l ∈ Z+ , the (σ, τ)-spherical elements are spanned by

l
∑

n,m=−l

q(n−m)/2 cl,σ
m cl,τ

n tln,m . (4.13)
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The symmetry cl,σ
m = cl,σ

−m in (4.12) follows from Lemma 4.5, but this symmetry can also be
shown for the 3φ2 in (4.12) by iteration of [7, (3.2.3)].

We already found that the (σ, τ)-spherical elements in A1
q were spanned by the element given

by (4.7). Since, by Proposition 3.5, the l-fold tensor product of the representation t1 will be a
direct sum of irreducible representations equivalent to tk, k = 0, 1, . . . , l, the polynomials of degree
≤ l in ρσ,τ will certainly be (σ, τ)-spherical elements contained in ⊕l

k=0A
l
q . On the other hand,

the algebra homomorphism π1
θ/2:Aq → C (cf. (3.22)) sends (ρσ,τ )k to (cos θ)k, so the monomials

(ρσ,τ )k will be linearly independent in Aq. So the element given by (4.13) must be a polynomial of
degree l in ρσ,τ . Thus we can state:

Proposition 4.7. The algebra of (σ, τ)-spherical elements in Aq is generated by ρσ,τ (given by
(4.8)) and is, as a linear space, the direct sum of the (σ, τ)-spherical elements in Al

q (l = 0, 1, 2, . . .),
which are spanned by

l
∑

n,m=−l

q(n−m)/2 cl,σ
m cl,τ

n tln,m = P σ,τ
l (ρσ,τ ), (4.14)

where P σ,τ
l is a certain polynomial of degree l.

Apply π1
−θ/2 to both sides of (4.14). Then, by (3.23):

l
∑

n=−l

cl,σ
n cl,τ

n einθ = P σ,τ
l (cos θ). (4.15)

Remark 4.8. Consider (4.15) with σ = τ , together with (4.12). Compare it with (2.12) together
with (2.14). Then we obtain

P σ,σ
l =

|cl,σ
l |2

(q2l+2; q2)l
pl( . ;−q2σ+1,−q−2σ+1, q, q | q2), (4.16)

where pl is an Askey-Wilson polynomial (2.2).

Lemma 4.9. We have

h
(

Pσ,τ
l′ (ρ)∗ P σ,τ

l (ρ)
)

= δl,l′
(1 − q2)q2l

1 − q2(2l+1)
Pσ,σ

l ( 1
2
(q + q−1))P τ,τ

l ( 1
2
(q + q−1)). (4.17)

Proof. Apply (3.21) and (4.14). The case l 6= l′ is clear. For l = l′ we have:

h
(

Pσ,τ
l (ρ)∗ P σ,τ

l (ρ)
)

=
l
∑

n,m=−l

qn−m cl,τ
n cl,σ

m cl,τ
n cl,σ

m q2(l−n) 1 − q2

1 − q2(2l+1)

=
(1 − q2)q2l

1 − q2(2l+1)

(

l
∑

m=−l

q−m |cl,σ
m |2

) (

l
∑

n=−l

q−n |cl,τ
n |2

)

=
(1 − q2)q2l

1 − q2(2l+1)
Pσ,σ

l ( 1
2
(q + q−1))P τ,τ

l ( 1
2
(q + q−1)).
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5. The action of the Casimir operator

Let λ ∈ Z+, let Ω be the Casimir element given by (3.7), let ρσ,τ be given by (4.8) and P σ,τ
l by

(4.15). We have

〈AλΩ, Pσ,τ
l (ρσ,τ )〉 = 〈Aλ,Ω.Pσ,τ

l (ρσ,τ )〉

=

(

q−l− 1
2 − ql+ 1

2

q−1 − q

)2

〈Aλ, Pσ,τ
l (ρσ,τ )〉

=

(

q−l− 1
2 − ql+ 1

2

q−1 − q

)2

Pσ,τ
l ( 1

2
(qλ + q−λ)), (5.1)

where the second identity follows from (3.20). Let Xσ be given by (4.1).

Lemma 5.1. We have

q(q−1 − q)2 AλΩ ∈ f(qλ) (Aλ+2 −Aλ)+f(q−λ) (Aλ−2 −Aλ)+ (1− q)2 Aλ +Uq Xσ +Xτ Uq , (5.2)

where

f(qλ) :=
(1 + qσ+τ+1+λ) (1 + q−σ−τ+1+λ) (1 − qσ−τ+1+λ) (1 − q−σ+τ+1+λ)

(1 − q2λ) (1 − q2λ+2)
. (5.3)

Proof. If Y,Z ∈ Uq then Y ∼ Z will mean that

Y ∈ Z + UqXσ + XτUq .

First observe that

AλBC = qλ(B − q−1C)AλC + qλCAλ(q−1C − B) + q2λAλCB.

Substitute
AλCB = AλBC − Aλ(A2 − D2)/(q − q−1)

and
q

1
2 B − q−

1
2 C = −i

(

Xτ + (q−τ − qτ )(A − D)/(q−1 − q)
)

(5.4)

and similarly for Xσ. Then

iq
1
2 (1 − q2λ)(q−1 − q)AλBC ∼

(

q−1(q−τ − qτ ) − qλ(q−σ − qσ)
)

CAλ+1

−
(

q(q−τ − qτ ) − qλ(q−σ − qσ)
)

CAλ−1 + iq2λ+ 1
2 (Aλ+2 − Aλ−2). (5.5)

Observe that
CAµ = (C − qB)Aµ + q1−µ Aµ(B − q−1C) + q−2µ CAµ.

Substitute again (5.4) and its analogue for Xσ . We obtain

(q−2µ − 1)(q−1 − q)CAµ ∼ i
(

q
1
2
−µ(q−σ − qσ) − q

1
2 (q−τ − qτ )

)

(Aµ+1 − Aµ−1).

Substitute this last equivalence in (5.5). We obtain

(1 − q2λ)(q−1 − q)2 AλBC

∼ (q−2λ−2 − 1)−1
(

q−1(q−τ − qτ ) − qλ(q−σ − qσ)
) (

q−1−λ(q−σ − qσ) − (q−τ − qτ )
)

(Aλ+2 − Aλ)

− (q−2λ+2 − 1)−1
(

q(q−τ − qτ ) − qλ(q−σ − qσ)
) (

q1−λ(q−σ − qσ) − (q−τ − qτ )
)

(Aλ − Aλ−2)

+ q2λ(q−1 − q) (Aλ+2 − Aλ−2).

Now add (1−q2λ)Aλ(q−1A2+qD2−2) to both sides and next multiply both sides with q(1−q2λ)−1.
Then the left hand side becomes q(q−1 − q)2 AλΩ and the right hand side can be rewritten as

f(qλ) (Aλ+2 − Aλ) + f(q−λ) (Aλ−2 − Aλ) + (1 − q)2 Aλ

with f given by (5.3).
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Substitute (5.2) into the left hand side of (5.1). With the notation

Rl(q
λ) := P σ,τ

l ( 1
2
(qλ + q−λ))

we obtain

f(qλ) (Rl(q
λ+2) − Rl(q

λ)) + f(q−λ) (Rl(q
λ−2) − Rl(q

λ)) = −(1 − q−2l)(1 − q2l+2)Rl(q
λ). (5.6)

Since this is an identity of rational functions in qλ which is valid for infinitely many values of qλ,
it will remain valid if qλ is arbitrarily complex, in particular if qλ is replaced by eiθ. Then we
recognize (5.6) as the second order q-difference equation for Askey-Wilson polynomials, cf. (2.8).
Hence

Rl(e
iθ) = const. pl(cos θ;−qσ+τ+1,−q−σ−τ+1, qσ−τ+1, q−σ+τ+1 | q2),

where pl is an Askey-Wilson polynomial (2.2). We can compute the constant by comparing the
coefficient of eilθ at both sides (use (4.15)). The result generalizing (4.16) is:

Theorem 5.2. The polynomial P σ,τ
l occurring in (4.14) and (4.15) equals

P σ,τ
l =

cl,σ
l cl,τ

l

(q2l+2; q2)l
pl( . ;−qσ+τ+1,−q−σ−τ+1, qσ−τ+1, q−σ+τ+1 | q2). (5.7)

Theorem 5.3. Let dm(x) = dma,b,c,d;q(x) be the normalized orthogonality measure for the
Askey-Wilson polynomials pn(x; a, b, c, d | q) as in (2.7). Let p be any polynomial. Then

h(p(ρσ,τ )) =

∫

p(x) dma,b,c,d;q2(x), (5.8)

where a = −qσ+τ+1, b = −q−σ−τ+1, c = qσ−τ+1, d = q−σ+τ+1.

Proof. By (4.17) (for l′ = 0) and (5.7) the theorem is valid for p = P σ,τ
l (l ∈ Z+).

In the proof of Theorem 5.3 we only used the case l′ = 0 of (4.17). Substitution of (5.7) and
(5.8) into (4.17) for general l, l′ should yield the full orthogonality relations for the Askey-Wilson
polynomials of these particular parameters. We can indeed check that this is true. For l = l′ the
left hand side of (4.17) becomes

|cl,σ
l |2 |cl,τ

l |2

(q2l+2; q2)2l

∫

pl(x; a, b, c, d; q2)2 dma,b,c,d;q2(x),

where a, b, c, d are as in Theorem 5.3, while the right hand side becomes

|cl,σ
l |2 |cl,τ

l |2 (q2; q2)2l
(q2l+2; q2)2l q4l

(−q2σ+2,−q−2σ+2,−q2τ+2,−q−2τ+2; q2)l .

These two expressions are equal because of (2.4), (2.5) and (2.6).
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Remark 5.4. It follows from (4.15), (4.12) and (5.7) that

pn(cos θ;−q(σ+τ+1)/2,−q(−σ−τ+1)/2, q(σ−τ+1)/2, q(−σ+τ+1)/2 | q) =

n
∑

k=−n

(qn+1; q)n (q; q)2n

(q; q)n+k(q; q)n−k

×q(n−k)(n−k+σ+τ)/2
3φ2

[

q−n+k, q−n,−q−n−σ

q−2n, 0
; q, q

]

3φ2

[

q−n+k, q−n,−q−n−τ

q−2n, 0
; q, q

]

eikθ.

(5.9)

This formula, obtained from the quantum group interpretation, cannot be found in the literature
in the case of general σ, τ . For σ = τ we already gave an analytic proof of (5.9) in (2.12), (2.14).
In a forthcoming paper [9] we will give an analytic proof for (5.9) in general and even for an
extension of it with one more parameter. There it will turn out that the addition formula for
classical ultraspherical polynomials (for Legendre polynomials in the case of (5.9)) is a limit case of
our result. So it may be considered as an alternative to the Rahman-Verma [19] addition formula.
In fact its derivation will be similar as for the Rahman-Verma formula.

6. Little and big q-Jacobi polynomials as limit cases of Askey-Wilson polynomials

Propositions 6.1 and 6.3 in this section are limit results for special functions, motivated by quantum
group theory, but independent of quantum groups in formulation and proof. Before the author’s
paper [11] these limits have not been mentioned in literature, although R. Askey told me that he
had been aware of them already some years ago.

Let Xσ (σ ∈ R) be given by (4.1). Let

Bσ := {a ∈ Aq | Xσ.a = 0}.

By Lemma 3.2, Bσ is a subalgebra of Aq and, by (3.12) and (4.2), Bσ is moreover a ∗-subalgebra. It
follows from (3.11) that ∆(Bσ) ⊂ Aq ⊗Bσ. Thus the quantum group SUq(2) corresponding to the
Hopf ∗-algebra Aq acts on the quantum space corresponding to the ∗-algebra Bσ. Thus it is natural
to conjecture that this quantum action of SUq(2) coincides with its action on some quantum sphere
as considered by Podleś [18]. According to Noumi & Mimachi [17, §5] this is indeed the case and
they have made a precise identification between the two models.

Here we will restrict ourselves to the question of finding the elementary (σ,∞)-spherical el-
ements in Aq. These can also be characterized as the elements of Bσ belonging to irreducible
subspaces (with respect to SUq(2)) and being invariant with respect to the diagonal quantum sub-
group of SUq(2). We will obtain these (σ,∞)-spherical elements as limit cases for τ → ∞ of the
corresponding (σ, τ)-spherical elements.

It follows from Proposition 4.7, Theorem 5.2 and (2.3) that the (σ,∞)-spherical elements in
Al

q (l = 0, 1, 2, . . .) are spanned by

lim
τ→∞

rl(ρσ,τ ; qτ−σ+1, q−τ+σ+1,−q−τ−σ+1,−qτ+σ+1 | q2), (6.1)

provided this limit exists and is nonzero. The limit can be obtained from the following limit
transition from general Askey-Wilson polynomials to general big q-Jacobi polynomials.
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Proposition 6.1. Let Askey-Wilson polynomials and big q-Jacobi polynomials be denoted by
(2.3) and (2.16), respectively. Then

lim
a→0

rn

(

q1/2x

2a(cd)1/2
; qα+1/2a(d/c)1/2 , q1/2a−1(c/d)1/2,−q1/2a−1(d/c)1/2,−qβ+1/2a(c/d)1/2 | q

)

= P (α,β)
n (x; c, d; q). (6.2)

Proof. The left hand side of (6.2) can be written as

n
∑

k=0

(q−n, qn+α+β+1; q)k qk

(qα+1,−qα+1d/c,−qα+β+1a2, q; q)k

k−1
∏

j=0

(

1 −
qα+1x

c
qj +

q2α+1a2d

c
q2j

)

.

From (6.1), (6.2) and (4.7) we now obtain:

Theorem 6.2. The (σ,∞)-spherical elements in Al
q (l = 0, 1, 2, . . .) are spanned by

P
(0,0)
l (q−1(1 − q2σ)βγ − iqσ−1(δβ + qγα); q2σ , 1; q2),

where P
(0,0)
l is a big q-Jacobi polynomial.

The above theorem corresponds nicely with the interpretation of big q-Jacobi polynomials on quan-
tum spheres by Noumi & Mimachi [16].

We can also try to get the (∞,∞)-spherical elements in Al
q by the limit

lim
τ→∞

rl(ρ−τ,τ ; q2τ+1, q−2τ+1,−q,−q | q2). (6.3)

For this we need:

Proposition 6.3. Let Askey-Wilson polynomials and little q-Jacobi polynomials be denoted by
(2.3) and (2.15), respectively. Then

lim
a→0

rn

(

q1/2x

2a2
; qα+1/2a2, q1/2a−2,−q1/2,−qβ+1/2 | q

)

=
(qβ+1; q)n

(q−n−α; q)n
pn(x; qβ , qα; q). (6.4)

Proof. Put d := a2 in the proof of Proposition 6.1. Then we obtain for the limit in (6.4)

3φ2

[

q−n, qn+α+β+1, qα+1x

qα+1, 0
; q, q

]

.

Now the proposition follows from [7, (III.7)] and (2.15).

From (6.3), (6.4) and (4.7) we now obtain:

Theorem 6.4. The (∞,∞)-spherical elements in Al
q (l = 0, 1, 2, . . .) are spanned by

pl(−q−1βγ; 1, 1; q2),

where pl is a little q-Jacobi polynomial.
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The (∞,∞)-spherical elements in Al
q coincide with the biinvariant elements in Al

q with respect
to the diagonal quantum subgroup of SUq(2). These last ones are well-known, cf. for instance [10].
where we find the same explicit expression as in Theorem 6.3.

Remark 6.5. Askey-Wilson polynomials, with q fixed but with dilation of the argument admitted,
form a five-parameter family of orthogonal polynomials. When these parameters are chosen as
the α, β, a, c, d in the left hand side of (6.2) then, for each choice of α, β, we obtain a three-
parameter family of orthogonal polynomials which contain on the one hand the continuous q-Jacobi

polynomials in Rahman’s notation P
(α,β)
n (x; q) (cf. [5, (4.17)]) and on the other hand big and little

q-Jacobi polynomials as limit cases.

Remark 6.6. When we compare Proposition 6.1 with Proposition 2.2 we see that the orthogonal
polynomials in x after the limit sign in the left hand side of (6.2) will have continuous mass on the
interval [−2a(cd/q)1/2, 2a(cd/q)1/2 ] and discrete mass points on the two sets

{cqk + a2dq−k−1 | k ∈ Z+, qk > a(qc/d)−1/2}

and

{−dqk − a2cq−k−1 | k ∈ Z+, qk > a(qd/c)−1/2}.

Clearly, when a tends to 0, the continuous mass interval shrinks to {0}, while the discrete mass
points tend two the two infinite sets {cqk | k ∈ Z+} and {−dqk | k ∈ Z+}, just the location for
the mass points of the big q-Jacobi polynomials. A similar remark can be made about the limit
transition in Proposition 6.3.
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