Algebraic modal logic Summer 2013

Homework 3

(due Friday, 28 June)

- 1. (BdeRV Exercise 5.3.2) Let Λ be a normal modal logic. Give a detailed proof that the canonical frame \mathfrak{F}^{Λ} is isomorphic to the canonical extension of \mathcal{L}_{Λ} (the Lindenbaum-Tarski algebra of Λ). [6pts]
- 2. (BdeRV Exercise 5.3.4) Let W be the set Z ∪ {-∞,∞} and let S be the successor relation on Z, that is, S = {(z, z + 1) | z ∈ Z}
 (a) Give a BAO whose ultrafilter frame is isomorphic to the frame F = (W, R) with R =

 $S \cup \{(-\infty, \infty), (\infty, \infty)\}$. [4pts] (b) Give a BAO whose ultrafilter frame is isomorphic to the frame $\mathfrak{F} = (W, R)$ with R =

 $S \cup (W \times \{(-\infty, \infty), (\infty, \infty)\}).$ [4pts]

3. (BdeRV Exercise 5.3.5) An operation on a boolean algebra is called 2-additive if it satisfies

$$f(x + y + z) = f(x + y) + f(x + z) + f(y + z)$$

Now suppose that $\mathfrak{U} = (A, +, -, 0, f)$ such that (A, +, -, 0) is a boolean algebra on which f is a 2-additive operation. Prove that this algebra can be embedded in a complete and atomic algebra. [10pts]

4. (BdeRV Exercise 5.3.7) Let τ be a similarity type, and let $\mathfrak{F},\mathfrak{f}$ and \mathfrak{g} be a τ Kripke frame and two general τ -frames, respectively. Prove or disprove the following:

 $\begin{array}{l} (a)(\mathfrak{F}^{\sharp})_{\sharp} = \mathfrak{F} \ [4pts] \\ (b) \ \mathfrak{g} \mapsto (\mathfrak{g}_{\sharp})^{\sharp} \ [4pts] \\ (c) \ \mathfrak{g}^{*} \equiv \mathfrak{f}^{*} \ \text{only if } \mathfrak{g} \equiv \mathfrak{f}, \ [4pts] \\ (For notations see BdeRV Definition 5.73) \end{array}$

5. Closure operators and Consequence relations

Definition 0.1 (Closure operator). Given a set A, a mapping $C : \mathcal{P}(A) \to \mathcal{P}(A)$ is called a *closure operator* on A if, for $X, Y \subseteq A$, it satisfies: (C1): $X \subseteq C(X)$ (extensive) (C2): $C^2(X) = C(X)$ (idempotent) (C3): $X \subseteq Y$ implies $C(X) \subseteq C(Y)$ (isotone)

A subset X of A is called a *closed subset* if C(X) = X. The poset of closed subsets of A with set inclusion as the partial ordering is denoted by L_C .

(a) Define an appropriate meet and join of elements of L_C and show that it is a complete lattice. [4pts]

(b) Is the converse of (a) true, that is, is every complete lattice isomorphic to closed subsets of some set with a closure operator. Prove or give a counterexample. [4pts]

(c) Let Frm denote the set of formulas in the modal language and $\Gamma \subseteq \mathcal{P}(\mathsf{Frm})$. Define a mapping $Cn : \mathcal{P}(\mathsf{Frm}) \to \mathcal{P}(\mathsf{Frm})$ as $Cn(\Gamma) = \{\varphi \in \mathsf{Frm} \mid \Gamma \vdash_{\mathbf{K}} \varphi\}$, where $\vdash_{\mathbf{K}}$ is the consequence relation of normal modal logic \mathbf{K} .

Show that the mapping Cn is a closure operator. [4pts]

6. Term algebra and Free algebra

Definition 0.2 (Term algebra). Let X be a set of variables and $\mathcal{F} = \{f_1, \ldots, f_n\}$ an algebraic type. The set $Tm_{\mathcal{F}}(X)$ of terms of type \mathcal{F} over X is the smallest set T such that $X \subseteq T$ and, for every *n*-ary function symbol $f_i \in \mathcal{F}$ with arity k_i and $t_0, \ldots, t_{k_i-1} \in T$, $f(t_0, \ldots, t_{k_i-1}) \in T$.

Definition 0.3 (Free algebra). Let K be a class of algebras and X a set. An algebra $\mathbf{F} \in K$ with a map $i: X \to \mathbf{F}$ is called a free K algebra over X, if, for every $\mathbf{A} \in K$ and every map $h: X \to A$, there exists a unique homomorphism $\tilde{h}: \mathbf{F} \to \mathbf{A}$ such that $\tilde{h} \circ i = h$.

(a) Show that, for a type \mathcal{F} and a set X, the term algebra $Tm_{\mathcal{F}}(X)$ is the free algebra over X for the class of all \mathcal{F} -algebras. [5pts]

(b) Show that the Lindenbaum-Tarski algebra of the propositional language L is a free Boolean algebra freely generated by the set of all elements [p], where each p is a propositional variable of L. [5pts]