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1 Introduction

e Implied volatility appears as a natural candidate for parametriza-
tion, since it is industry standard to quote option prices in terms
of their implied volatility. However, the static and dynamic con-
straints on implied volatility are so awkward that it is very hard to
analyse geometrically and analytically time evolutions of implied
volatility surfaces, see [7, 8, 9]. Additionally it would be difficult to
express stochastic interest rates or multivariate situations within
this framework of the implied volatility codebook.
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e Local volatility constitutes an industry standard to construct inter-
polations of (implied) volatility surfaces. It seems therefore nat-
ural to construct time evolutions of local volatility functions, see
[1, 2]. This is even more attractive, since it is much easier to
tell whether a function is a local volatility than an implied volatility.
However, the description of the time evolution of local volatilities
contains extremely non-linear and non-continuous operations, so
that this parametrization also appears less useful. Additionally
the extension towards stochastic interest rates is not well under-
stood within the local volatility codebook.
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e A last approach was independently and in parallel proposed by
Carmona-Nadtochiy (see [4, 3]) and Kallsen-Krihner (see [6]),
where option prices are parametrized by a time-dependent Lévy
processes with characteristics absolutely continuous with respect
to Lebesgue measure. From an analytic point of view it seems
a bit more delicate to describe this set of parameters, however,
the drift conditions are considerably less complicated in the Lévy
codebook.
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Following a generalization of the approaches of Carmona-Nadtochiy
and Kallsen-Krihner, subsequently abbreviated by (generalized) CNKK-
approach, we are equipped with tractable parameterizations. In this
article we prefer the KK-approach to the CN-approach, since we see
the following two advantages:
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e In contrast to CN the time-inhomogenous Lévy process is en-
coded by its Lévy exponent, i.e. the logarithm of its Fourier-Laplace
transform. CN choose the Lévy-Khintchine triplet (and assume
the absense of volatility), which seems — from a purely analytic
point of view — more appropriate, since the set of Lévy-Khintchine
triplets is more easy to describe analytically than the set of Lévy
exponents. On the other hand, and that is a main insight, the nec-
essary martingale conditions, which express the lack of dynamic
arbitrage, can be formulated again easier in the Lévy exponent
parametrization.

e Dependence between increments of the underlying(s) and the
increments of option prices (“leverage effect”) are easily included
into the KK-framework since this effect is easily expressed in the
language of Lévy exponents.
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Having fixed the generalized Lévy codebook the geometric and ana-
lytic approaches of [5] can be performed and due to several structural
similarities the conclusions are of a very similar nature: if we assume
that the term structure evolution of Lévy exponents, which describes
the liquid option market prices, allows for regular finite dimensional
realizations (i.e. we have a regular finite dimensional foliation on a
subset of the state Hilbert space), then each leaf of this foliation is
a ruled surface, i.e. an affine subspace moving transversally along a
one-dimensional trajetory in Hilbert space.
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2 The (generalized) CNKK-approach

Definition

The set I'; denotes the collection of continuous functions 1 : R>g x
R"” — C such that there exists a cadlag process Z with finite exponen-
tial moments E(exp((1 +¢) || Z7]])) < oo for all maturity times T > 0, for
some ¢ > 0 and

.
E[exp(i(u, Z7))] = exp <i<u, Z) + /0 (S, u) dS) (2.1)

for T > 0. In particular the Fourier transform on the left hand side can
be extended to an open superset of the strip —i[0, 1]” x R". Any such
function n will necessarily be of Lévy-Khintchine form at the short end
r=0.
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Additionally often elements of ', are subject to no-arbitrage-constraints.
For instance, when the processes Z' correspond to log-price-processes,
we additionally assume that exp(Z’) is a martingale, which translates
to n(r, —ie;) = 0 with e; being the /-th basis vector of R", i.e. (g;, Z7) =
Z}. We assume tacitly that such conditions are imposed if necessary.
Notice in case of a components of Z corresponding to interest rates
we do not need to impose such a condition.
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Remark

The set R" x I is the “chart” or “codebook” for all liquid market prices
at one moment in time, since the knowledge of a tuple (£, ) allows
to construct all marginal distributions of a process Zr. There are two
assumptions implicitly involved: first it is assumed that having the lig-
uid market prices is equivalent to having the marginal distributions
of several underlying processes. Second it is assumed that the so
given marginal distributions have differentiable (forward) characteris-
tics absolutely continuous with respect to Lebesgue measure (with
continuous derivative).
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Remark
Notice that we extend the definitions of CNKK since we only assume
the Lévy-Khintchine form of n at the short end.
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Definition

Let (2, F, (Ft)1>0, P) be a filtered probability space. A stochastic pro-
cess 7 is called a I'p-valued semimartingale if (7T, u))g<i<7 iS @
complex-valued semimartingale for T > 0and u € R" and if

((r,u) = ni(r+ t,u)) €Ty

In particular all trajectories are assumed to be cadlag.
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We say that n allows for a regular decomposition with respect to a
d-dimensional semimartingale M if there exist predictable processes
(at(T, U))g<t<7 @nd (B(T, U))g<s< 7 taking values in C and Cc9for T >
0 and u € R” such that o

T—TtTddt"TdM"22
(T, u) = 0 ,u)+/0as< 1) s+§/063< Uy oMl (2.2)

for0<t<T,and (W,T 1548, u)H2d8> e L(M).

>0
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Definition (Conditional expectation condition)

Let (22, F, (Ft);~0, P) be afiltered probability space, then we say that a
tuple (X, n) of an n-dimensional semimartingale X and of a I',-valued
semimartingale n satisfies the conditional expectation condition if

t
B[expl{u, X)) il = o0 (ilu Xe) + [ ma(rv)ar)  (23)

fort >s>0.
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Remark

Shortly we shall call a tuple (X, n) of an n-dimensional semimartin-
gale X and of a I';-valued semimartingale n satisfying the conditional
expectation condition a term structure model for derivatives’ prices.

Remark
We calll the stochastic process n the process of forward characteristics
of the process X.

Remark

Let (X, n) satisfy the conditional expectation condition: if n = 1 and
n(.,—i) = 0, then exp(X) describes a peacock, i.e. a process with
marginals increasing in convex order, since it is a martingale. To con-
sider peacocks as chart for option prices is the most general point of
view.
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Not every process n qualifies as a forward characteristics process, but
it can be easily characterized whether it is the case.

Theorem

Let (2, F, (Ft)s>0, P) be a filtered probability space together with a tu-
ple (X,n) of an n-dimensional semimartingale X and of a I',-valued
semimartingale 7 satisfying the conditional expectation condition, then
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e the differentiable, predictable characteristic X of the n-dimensional
semimartingale X exists and is given by nf(u) =n_(t,u)fort >0
and u € R", i.e. the process

exp <i<u, X)) — /0 e (s, u)ds) (2.4)

is a local martingale.

e If 1y allows for a regular decomposition (2.2) with respect to a d-
dimensional semimartingale M, then the drift condition

/ " orlr Uy dr = mp(t.U) KMy, i / Tsrudy)  (25)
t t

holds for T >t > 0 and u € —i[0,1]" x R".
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Theorem

Let (Q, F, (Fi)i~0, P) be a filtered probability space together with a tu-
ple (X,n) of an n-dimensional semimartingale X and of a I',-valued
semimartingale n. Assume furthermore that » allows for a regular
decomposition (2.2) with respect to a d-dimensional semimartingale
M such that the predictable characteristics of X satisfy (2.4) and such
that the drift condition (2.5) hold, then the conditional expectation con-
dition holds true.
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Corollary

Let (2, F, (Fi)s>0, P) be a filtered probability space together with a tu-
ple (X,n) of an n-dimensional semimartingale X and of a I',-valued
semimartingale n satisfying the conditional expectation condition. As-
sume furthermore that » allows for a regular decomposition (2.2) with
respect to a d-dimensional semimartingale M and that the processes
X and M are locally independent, i.e.

(X,M)(

ry (U, tp) = K (Up) + K (Up)

for uy € R" and uy; € RY. Then
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T T
/ arlr, u) dr = —xM(—i / Bs(r, u) dr)
t t

for T >t > 0and u e —i[0,1]” x R", and furthermore the conditional
expectation condition (2.3) reads in this case

E [exp(/stn,_(r, u)dr)‘ FS} =exp (/st ns(r, u) dr>

fort > s> 0.
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3 Affine processes as generic example for the CNNK-approach

In this section we build a generic example for term structure models
for derivatives’ prices: consider a proper convex cone C ¢ R™ (the
stochastic covariance structures) and a homogenous affine process
(X,Y) taking values in R" x C, i.e. (X,Y) is a time-homogeneous
Markov process relative to some filtration (F;) and with state space
D =R" x C such that
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e it is stochastically continuous, that is, limgs_; ps(X, y, ) = pt(X, ¥, )
weakly on D for every t > 0 and (x, y) € D, and

e its Fourier-Laplace transform has exponential affine dependence
on the initial state. This means that there exist functions ® : R x
U — Cand ¢ : R>p x U — C™ with

Ex,y {e<U,X1)+<V,Yz>} = d(t, u, V)e(u,x>+(1/zc(t,u,v),y),

forall x € D and (t, u, v) € R>o x U, where

i (10 € €77 20 < L),
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Remark

In line with the standard literature on affine processes there is a C"*"-

valued function v, whose projection onto the X-directions is u. Whence
we only need the projection in the C-directions, which we denote by

e
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We shall need the following results on affine processes on general
state spaces:

Proposition
Let (X, Y) be a homogenous affine process taking values in R"” x C,
then we have that (¢, u, 0) = exp(¢(t, u, 0)),

t
é(t, U, 0) = /0 F(u, (s, u,0)) ds
and .
¢C(t! u, 0) = /0 RC(U: w(s! u, 0)) ds,

where (u, v) — F(u, v)and (u, v) — (Rc(u, v), y) are of Lévy-Khintchine
form.
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Corollary
Let (X, Y) be a homogeneous affine process taking values in R” x C
and assume that E[exp((1 + ¢) || Xt||)] < oo, for some £ > 0, then for
T>t>0

ne(T,u) = F(iu, (T — t,iu,0)) + (Re(iu, (T — t,iu, 0)), Yr)

defines a I,-valued semimartingale and the tuple (X, n) satisfies the
conditional expectation condition.
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The analogue of Hull-White extensions from interest rate theory is
described in the following theorem. Instead of making a drift time-
dependent we make the whole constant part of the affine process,
which is encoded in F time-dependent:

Corollary

Let (X, Y) be a time-inhomogenous, homogeneous affine process tak-
ing values in R" x C with time-dependent T — F7, and assume that
the finite moment condition E[exp((1 +¢) || Xt||)] < oo holds true for
somee >0,thenT>t>0

ni(T,u) = Fr(iu, (T —t,u,0)) + (Re(iu, o(T — t,u,0)), Y1)

defines a I',-valued semimartingale and the tuple (X, n) satisfies the
conditional expectation condition.
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Remark

Here time-inhomogenous, homogenous affine processes appear as
generic realization of the CNKK-approach, since we can calibrate any
initial term structure into T — Fr. In the next section we shall argue
that there is a a hard mathematical reason for this generic property.
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Let us describe several more concrete examples:

3.1 Deterministic term structure of forward characteristics

Deterministic forward term structure models correspond to time-depen-
dent Lévy processes. More precisely let (X, n) be a tuple satisfying

the conditional expectation condition and assume that 7 is a deter-
ministic, then X is an additive process and n:(T, u) = no(T, u) is of

Lévy-Khintchine form for every T >t > 0. The processes X are then

time-dependent Lévy models.
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3.2 Interest rate models

If the process X is one-dimensional, pure-drift and absolutely contin-
uous with respect to Lebesgue measure, then

T T
/ anlr, u) dr = —kM (=i / Bs(r, u) dr)
t t

and .
uX; = uXy —/ ns_(S, U)ds,
0

which then yields the well-known formula of interest rate theory

)
E | exp(— /t ns- (s, U)ds)

)
ﬂ] - exp(— /t (S, u) dS)

for T >t > 0and u € R. Notice that (ns—(s, U)) s> is linear in u, since
X is pure drift.
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3.3 Stochastic volatility models with jumps in log-prices

Consider a jump-extended Heston stochastic volatility model
Yt

dXt=—?dt+\Mth1 +dLy (3.1)
dY;=Ab— Yy dt + o/ Y dW?, (3.2)

where the two Brownian motions W' and W2 are correlated,
d(W', W2), = pdt and where L is an additive process with Lévy expo-
nent FL. Thenfor T >t >0

(T, u) = Fr(iu, (T — t,iu,0)) + (Re(iu, (T — t,iu,0)), Y})
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defines a I'1-valued semimartingale and the tuple (X, n) satisfies the
conditional expectation condition. C denotes here the non-negative
real numbers. We have

Fr(u,v) = FE(u) + \bv, (3.3)
2 2,,2
Rc(u,v) = u? + pouv + i + g + AV (3.4)

foru,v e R.
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4 The CNKK-equation as SPDE

In order to analyse the structure of finite factor models in the CNKK-
approach we have to set up a framework, where the CNKK-equation
appears as SPDE, in particular as a Markov process taking values in
a Hilbert space of system states.

Definition

Let G be a Hilbert space of continuous complex-valued functions de-
fined on the strip —i[0, 1]" x R", i.e.

G C C((-i[0,1]") x R™; C).

H is called a Lévy codebook Hilbert space if H is a Hilbert space of
continuous functions 1 : R>o — G, i.e. H C C(R>¢; G) such that
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e we have a continuous embedding

H C C(Rsq x (~i[0,1]" x R™;C).

e The shift semigroup (Sin)(x, u) := n(t + x, u) acts as strongly con-
tinuous semigroup of linear operators on H.

e Continuous functions of finite activity Lévy-Khintchine type

uTb(t)u
2

lie in H, where a, b, v are continuous functions defined on Rxg
taking values in R", the positive-semidefinite matrices on R"” and
the finite positive measures on R” (this corresponds to processes
with independent increments and finite activity).

(f, u) —ia(t)u —

+ [ (expliug) = 1ur(ak)

Josef Teichmann
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Remark
Notice that we do not assume that there are additional stochastic fac-
tors outside the considered parametrization of liquid market prices.

Remark

Notice that elements of the Hilbert space H are understood in Musiela
parametrization and therefore denoted by a different letter in the se-
quel. We have the relationship n:(t + x, u) = 0¢(x, u), with T — t =: x.
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In the sequel we are defining stochastic partial differential equations,
which express the conditions of the CNKK-approach in the correspond-
ing Musiela parametrization.

Definition

Let H be a Lévy codebook Hilbert space. We call the following stochas-
tic partial differential equation

d
db; = (Ab: + onkk(6r))at + >~ ai(6r) dB (4.1)

i=1

a CNKK-equation (0y, , o) with initial term structure 6y and character-
istics o and k,
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e ifA= dx is the generator of the shift semigroup on H,

e ifo;: U C H— H, Uan open subset of H, are locally Lipschitz
vector fields, and

o if ucnkk © U — H is locally Lipschitz and satisfies that for all
n € ', we have

T—t Tt
| nonad®)r, u) o = 60,0) ~ wo(0,u, i [ o(6)(r,u) o)
0 0
(4.2)
where (kg)gcy is I neg-valued for each 6 € Iy, such that x4(0, u, 0) =
6(0, u) and x¢(0,0, v) = —%, forue R", v e RY,
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Remark
We do not require that all solutions of equation (4.2) are I',-valued,
which would be too strong a condition and difficult to characterize.

Proposition
Let 6 be a I',-valued solution of a CNKK-equation and let X be a
semimartingale such that the predictable characteristics satisfy

m(tX’W)(u, V) = kg, (L, U, V)

foru e R", v € R and t > 0, then the tuple (X, 0) satisfies the
conditional expectation condition.
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We can construct one particular example, which corresponds literally
to the HIM-equation: consider a situation without leverage, i.e. we

assume that
ko(0, u, v) = 0(0, u) — HZVH

forueR", veRqandt> 0.
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This means that the CNKK-equation is a parameter-dependent HJM-
equation, i.e.

d
df; = (Ab: + ponkk(0r))at + Y~ ai(6:) dB;, (4.3)

i=1

where
d x
tenkk(0)(X, u) = = > o'(0)(x, u) /0 a'(9)(y, u)dy (4.4)
i=1

for x > 0and u € R".
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5 Finite dimensional realizations for CNKK-equations

In the sequel we shall consider particular vector fields o, which only
depend on the state 6 via atenor 0 < xq, ..., x, of times-to-maturity. As
in interest rate theory such vector fields allow for a geometric analysis
of solutions of CNKK-equations.

This idea is (generalized and) expressed in terms of the following reg-
ularity and non-degeneracy assumptions. Recall that G is a Hilbert
space of continuous complex-valued functions defined on the strip
—i[0,1]" x R, i.e. G C C((-i[0,1]") x R";C).
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Definition
We call the volatility vector fields o4, ..., 04 0of a CNKK-equation tenor-
dependent if

e we have that
ai(f) = ¢i(€(0)), 1<i<d,

where ¢ € L(H, GP), for some p € N, and ¢4, ..., ¢q : G° — D(A™®)
are smooth and pointwise linearly independent maps. Moreover

penkk(8) = do(€(n)),

where ¢g : GP — D(A>) is smooth. We usually have to assume
t1(n) =n(0,.));
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o for every g > 0, the map
(¢, €0 (d/dx),...,L0(d/dx)?) : D ((d/dx)>*) — GPla+1)

is open; and

e Ais an unbounded linear operator; that is, D(A) is a strict subset
of H. Equivalently, A : D(A*) — D(A*) is not a Banach map.
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Theorem

Let o4,...,04 be a tenor-dependent volatility structure of a CNKK-
equation. Assume furthermore that for initial values in a large enough
subset of ', the local mild solutions 6 of the CNKK-equation leave
leaves of a given foliation with constant dimension N > 2 locally in-
variant (regular finite dimensional realization).

Then there exist A4, ..., Ay_1 such that ¢;(0) € span(\1, ..., Ay—1). This
means in particular that

N—1
Oi(x, u) = A(x, u) + > Ailx, u)Y{
i=1

up to some stopping time 7, for x > 0 and u € R".
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Remark

The affine character of the representation of the solution process 6
is apparent. In particular this representation leads via the conditional
expectation formula (in case of global solution of the CNKK-equation)
to affine factor processes Y and a homogenous, time-inhomogenous
affine process (X, Y).

January 2011 Josef Teichmann



ETH D MATH

Eidgenssische Technische Hochschule Ziirich Departement of Mathematics
Swiss Federal Institute of Technology Zurich

o formulate the CNKK-equation
¢ show the literatal equivalenc,'
leverage”. 2

e apply the geometric reasonin' rom intere
general case and conclude the ¢ ortance of affine pro-

cesses.
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