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1 Introduction

• Implied volatility appears as a natural candidate for parametriza-
tion, since it is industry standard to quote option prices in terms
of their implied volatility. However, the static and dynamic con-
straints on implied volatility are so awkward that it is very hard to
analyse geometrically and analytically time evolutions of implied
volatility surfaces, see [7, 8, 9]. Additionally it would be difficult to
express stochastic interest rates or multivariate situations within
this framework of the implied volatility codebook.
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• Local volatility constitutes an industry standard to construct inter-
polations of (implied) volatility surfaces. It seems therefore nat-
ural to construct time evolutions of local volatility functions, see
[1, 2]. This is even more attractive, since it is much easier to
tell whether a function is a local volatility than an implied volatility.
However, the description of the time evolution of local volatilities
contains extremely non-linear and non-continuous operations, so
that this parametrization also appears less useful. Additionally
the extension towards stochastic interest rates is not well under-
stood within the local volatility codebook.
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• A last approach was independently and in parallel proposed by
Carmona-Nadtochiy (see [4, 3]) and Kallsen-Krühner (see [6]),
where option prices are parametrized by a time-dependent Lévy
processes with characteristics absolutely continuous with respect
to Lebesgue measure. From an analytic point of view it seems
a bit more delicate to describe this set of parameters, however,
the drift conditions are considerably less complicated in the Lévy
codebook.
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Following a generalization of the approaches of Carmona-Nadtochiy
and Kallsen-Krühner, subsequently abbreviated by (generalized) CNKK-
approach, we are equipped with tractable parameterizations. In this
article we prefer the KK-approach to the CN-approach, since we see
the following two advantages:
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• In contrast to CN the time-inhomogenous Lévy process is en-
coded by its Lévy exponent, i.e. the logarithm of its Fourier-Laplace
transform. CN choose the Lévy-Khintchine triplet (and assume
the absense of volatility), which seems – from a purely analytic
point of view – more appropriate, since the set of Lévy-Khintchine
triplets is more easy to describe analytically than the set of Lévy
exponents. On the other hand, and that is a main insight, the nec-
essary martingale conditions, which express the lack of dynamic
arbitrage, can be formulated again easier in the Lévy exponent
parametrization.

• Dependence between increments of the underlying(s) and the
increments of option prices (“leverage effect”) are easily included
into the KK-framework since this effect is easily expressed in the
language of Lévy exponents.
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Having fixed the generalized Lévy codebook the geometric and ana-
lytic approaches of [5] can be performed and due to several structural
similarities the conclusions are of a very similar nature: if we assume
that the term structure evolution of Lévy exponents, which describes
the liquid option market prices, allows for regular finite dimensional
realizations (i.e. we have a regular finite dimensional foliation on a
subset of the state Hilbert space), then each leaf of this foliation is
a ruled surface, i.e. an affine subspace moving transversally along a
one-dimensional trajetory in Hilbert space.
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2 The (generalized) CNKK-approach

Definition
The set Γn denotes the collection of continuous functions η : R≥0 ×
Rn → C such that there exists a càdlàg process Z with finite exponen-
tial moments E(exp((1 + ε) ‖ZT‖)) <∞ for all maturity times T ≥ 0, for
some ε > 0 and

E [exp(i〈u, ZT 〉)] = exp

(
i〈u, Z0〉 +

∫ T

0
η(S, u) dS

)
(2.1)

for T ≥ 0. In particular the Fourier transform on the left hand side can
be extended to an open superset of the strip −i[0, 1]n ×Rn. Any such
function η will necessarily be of Lévy-Khintchine form at the short end
r = 0.
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Additionally often elements of Γn are subject to no-arbitrage-constraints.
For instance, when the processes Z i correspond to log-price-processes,
we additionally assume that exp(Z i ) is a martingale, which translates
to η(r ,−iei ) = 0 with ei being the i-th basis vector of Rn, i.e. 〈ei , ZT 〉 =
Z i

T . We assume tacitly that such conditions are imposed if necessary.
Notice in case of a components of Z corresponding to interest rates
we do not need to impose such a condition.
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Remark
The set Rn×Γn is the “chart” or “codebook” for all liquid market prices
at one moment in time, since the knowledge of a tuple (Z0, η) allows
to construct all marginal distributions of a process ZT . There are two
assumptions implicitly involved: first it is assumed that having the liq-
uid market prices is equivalent to having the marginal distributions
of several underlying processes. Second it is assumed that the so
given marginal distributions have differentiable (forward) characteris-
tics absolutely continuous with respect to Lebesgue measure (with
continuous derivative).
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Remark
Notice that we extend the definitions of CNKK since we only assume
the Lévy-Khintchine form of η at the short end.
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Definition
Let (Ω,F , (Ft )t≥0, P) be a filtered probability space. A stochastic pro-
cess η is called a Γn-valued semimartingale if (ηt (T , u))0≤t≤T is a
complex-valued semimartingale for T ≥ 0 and u ∈ Rn and if(

(r , u) 7→ ηt (r + t , u)
)
∈ Γn .

In particular all trajectories are assumed to be càdlàg.
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We say that η allows for a regular decomposition with respect to a
d-dimensional semimartingale M if there exist predictable processes
(αt (T , u))0≤t≤T and (βt (T , u))0≤t≤T taking values in C and Cd for T ≥
0 and u ∈ Rn such that

ηt (T , u) = η0(T , u) +
∫ t

0
αs(T , u) ds +

d∑
i=1

∫ t

0
β i

s(T , u) dM i
s (2.2)

for 0 ≤ t ≤ T , and
(√∫ T

t ‖βt (S, u)‖2 dS
)

t≥0
∈ L(M).
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Definition (Conditional expectation condition)
Let (Ω,F , (Ft )t≥0, P) be a filtered probability space, then we say that a
tuple (X , η) of an n-dimensional semimartingale X and of a Γn-valued
semimartingale η satisfies the conditional expectation condition if

E [exp(i〈u, Xt〉)| Fs] = exp
(

i〈u, Xs〉 +
∫ t

s
ηs(r , u) dr

)
(2.3)

for t ≥ s ≥ 0.
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Remark
Shortly we shall call a tuple (X , η) of an n-dimensional semimartin-
gale X and of a Γn-valued semimartingale η satisfying the conditional
expectation condition a term structure model for derivatives’ prices.

Remark
We call the stochastic process η the process of forward characteristics
of the process X .

Remark
Let (X , η) satisfy the conditional expectation condition: if n = 1 and
η(.,−i) = 0, then exp(X ) describes a peacock, i.e. a process with
marginals increasing in convex order, since it is a martingale. To con-
sider peacocks as chart for option prices is the most general point of
view.
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Not every process η qualifies as a forward characteristics process, but
it can be easily characterized whether it is the case.

Theorem
Let (Ω,F , (Ft )t≥0, P) be a filtered probability space together with a tu-
ple (X , η) of an n-dimensional semimartingale X and of a Γn-valued
semimartingale η satisfying the conditional expectation condition, then
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• the differentiable, predictable characteristic κX of the n-dimensional
semimartingale X exists and is given by κX

t (u) = ηt−(t , u) for t ≥ 0
and u ∈ Rn, i.e. the process

exp
(

i〈u, Xt〉 −
∫ t

0
ηs−(s, u)ds

)
(2.4)

is a local martingale.

• If η allows for a regular decomposition (2.2) with respect to a d-
dimensional semimartingale M, then the drift condition∫ T

t
αt (r , u) dr = ηt−(t , u)− κ(X ,M)

t (u,−i
∫ T

t
βs(r , u) dr ) (2.5)

holds for T ≥ t ≥ 0 and u ∈ −i[0, 1]n × Rn.
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Theorem
Let (Ω,F , (Ft )t≥0, P) be a filtered probability space together with a tu-
ple (X , η) of an n-dimensional semimartingale X and of a Γn-valued
semimartingale η. Assume furthermore that η allows for a regular
decomposition (2.2) with respect to a d-dimensional semimartingale
M such that the predictable characteristics of X satisfy (2.4) and such
that the drift condition (2.5) hold, then the conditional expectation con-
dition holds true.
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Corollary
Let (Ω,F , (Ft )t≥0, P) be a filtered probability space together with a tu-
ple (X , η) of an n-dimensional semimartingale X and of a Γn-valued
semimartingale η satisfying the conditional expectation condition. As-
sume furthermore that η allows for a regular decomposition (2.2) with
respect to a d-dimensional semimartingale M and that the processes
X and M are locally independent, i.e.

κ(X ,M)
t (u1, u2) = κX

t (u1) + κM
t (u2)

for u1 ∈ Rn and u1 ∈ Rd . Then
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∫ T

t
αt (r , u) dr = −κM

t (−i
∫ T

t
βs(r , u) dr )

for T ≥ t ≥ 0 and u ∈ −i[0, 1]n × Rn, and furthermore the conditional
expectation condition (2.3) reads in this case

E
[

exp(
∫ t

s
ηr−(r , u)dr )

∣∣∣∣Fs

]
= exp

(∫ t

s
ηs(r , u) dr

)
for t ≥ s ≥ 0.
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3 Affine processes as generic example for the CNNK-approach

In this section we build a generic example for term structure models
for derivatives’ prices: consider a proper convex cone C ⊂ Rm (the
stochastic covariance structures) and a homogenous affine process
(X , Y ) taking values in Rn × C, i.e. (X , Y ) is a time-homogeneous
Markov process relative to some filtration (Ft ) and with state space
D = Rn × C such that
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• it is stochastically continuous, that is, lims→t ps(x , y , ·) = pt (x , y , ·)
weakly on D for every t ≥ 0 and (x , y ) ∈ D, and

• its Fourier-Laplace transform has exponential affine dependence
on the initial state. This means that there exist functions Φ : R≥0×
U → C and ψC : R≥0 × U → Cm with

Ex ,y

[
e〈u,Xt 〉+〈v ,Yt 〉

]
= Φ(t , u, v )e〈u,x〉+〈ψC (t ,u,v ),y〉,

for all x ∈ D and (t , u, v ) ∈ R≥0 × U , where

U := {(u, v ) ∈ Cm+n | e〈u,.〉+〈v ,.〉 ∈ L∞(D)}.
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Remark
In line with the standard literature on affine processes there is a Cm+n-
valued function ψ, whose projection onto the X -directions is u. Whence
we only need the projection in the C-directions, which we denote by
ψC .

January 2011 Josef Teichmann 24



D MATH
Departement of Mathematics

We shall need the following results on affine processes on general
state spaces:

Proposition
Let (X , Y ) be a homogenous affine process taking values in Rn × C,
then we have that Φ(t , u, 0) = exp(φ(t , u, 0)),

φ(t , u, 0) =
∫ t

0
F (u,ψ(s, u, 0)) ds

and

ψC(t , u, 0) =
∫ t

0
RC(u,ψ(s, u, 0)) ds,

where (u, v ) 7→ F (u, v ) and (u, v ) 7→ 〈RC(u, v ), y〉 are of Lévy-Khintchine
form.
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Corollary
Let (X , Y ) be a homogeneous affine process taking values in Rn × C
and assume that E [exp((1 + ε) ‖Xt‖)] < ∞, for some ε > 0, then for
T ≥ t ≥ 0

ηt (T , u) = F (iu,ψ(T − t , iu, 0)) + 〈RC(iu,ψ(T − t , iu, 0)), Yt〉

defines a Γn-valued semimartingale and the tuple (X , η) satisfies the
conditional expectation condition.
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The analogue of Hull-White extensions from interest rate theory is
described in the following theorem. Instead of making a drift time-
dependent we make the whole constant part of the affine process,
which is encoded in F time-dependent:

Corollary
Let (X , Y ) be a time-inhomogenous, homogeneous affine process tak-
ing values in Rn × C with time-dependent T 7→ FT , and assume that
the finite moment condition E [exp((1 + ε) ‖Xt‖)] < ∞ holds true for
some ε > 0, then T ≥ t ≥ 0

ηt (T , u) = FT (iu,ψ(T − t , u, 0)) + 〈RC(iu,ψ(T − t , u, 0)), Yt〉

defines a Γn-valued semimartingale and the tuple (X , η) satisfies the
conditional expectation condition.
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Remark
Here time-inhomogenous, homogenous affine processes appear as
generic realization of the CNKK-approach, since we can calibrate any
initial term structure into T 7→ FT . In the next section we shall argue
that there is a a hard mathematical reason for this generic property.
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Let us describe several more concrete examples:

3.1 Deterministic term structure of forward characteristics

Deterministic forward term structure models correspond to time-depen-
dent Lévy processes. More precisely let (X , η) be a tuple satisfying
the conditional expectation condition and assume that η is a deter-
ministic, then X is an additive process and ηt (T , u) = η0(T , u) is of
Lévy-Khintchine form for every T ≥ t ≥ 0. The processes X are then
time-dependent Lévy models.
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3.2 Interest rate models

If the process X is one-dimensional, pure-drift and absolutely contin-
uous with respect to Lebesgue measure, then∫ T

t
αt (r , u) dr = −κM

t (−i
∫ T

t
βs(r , u) dr )

and

uXt = uX0 −
∫ t

0
ηs−(s, u)ds,

which then yields the well-known formula of interest rate theory

E
[

exp(−
∫ T

t
ηs−(s, u)ds)

∣∣∣∣∣Ft

]
= exp(−

∫ T

t
ηt (S, u) dS)

for T ≥ t ≥ 0 and u ∈ R. Notice that (ηs−(s, u))s≥0 is linear in u, since
X is pure drift.

January 2011 Josef Teichmann 30



D MATH
Departement of Mathematics

3.3 Stochastic volatility models with jumps in log-prices

Consider a jump-extended Heston stochastic volatility model

dXt = −Yt

2
dt +

√
Yt dW 1

t + dLt (3.1)

dYt = λ(b − Yt ) dt + σ
√

Yt dW 2
t , (3.2)

where the two Brownian motions W 1 and W 2 are correlated,
d〈W 1, W 2〉t = ρdt and where L is an additive process with Lévy expo-
nent F L. Then for T ≥ t ≥ 0

ηt (T , u) = FT (iu,ψ(T − t , iu, 0)) + 〈RC(iu,ψ(T − t , iu, 0)), Yt〉
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defines a Γ1-valued semimartingale and the tuple (X , η) satisfies the
conditional expectation condition. C denotes here the non-negative
real numbers. We have

FT (u, v ) = F L
T (u) + λbv , (3.3)

RC(u, v ) =
u2

2
+ ρσuv +

σ2v2

2
+

u
2

+ λv (3.4)

for u, v ∈ R.
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4 The CNKK-equation as SPDE

In order to analyse the structure of finite factor models in the CNKK-
approach we have to set up a framework, where the CNKK-equation
appears as SPDE, in particular as a Markov process taking values in
a Hilbert space of system states.

Definition
Let G be a Hilbert space of continuous complex-valued functions de-
fined on the strip −i[0, 1]n × Rn, i.e.

G ⊂ C((−i[0, 1]n)× Rn;C).

H is called a Lévy codebook Hilbert space if H is a Hilbert space of
continuous functions η : R≥0 → G, i.e. H ⊂ C(R≥0; G) such that
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• we have a continuous embedding

H ⊂ C(R≥0 × (−i[0, 1]n)× Rn;C).

• The shift semigroup (Stη)(x , u) := η(t + x , u) acts as strongly con-
tinuous semigroup of linear operators on H.

• Continuous functions of finite activity Lévy-Khintchine type

(t , u) 7→ ia(t)u − uT b(t)u
2

+
∫
Rn

(exp(iuξ)− 1)νt (dξ)

lie in H, where a, b, ν are continuous functions defined on R≥0
taking values in Rn, the positive-semidefinite matrices on Rn and
the finite positive measures on Rn (this corresponds to processes
with independent increments and finite activity).
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Remark
Notice that we do not assume that there are additional stochastic fac-
tors outside the considered parametrization of liquid market prices.

Remark
Notice that elements of the Hilbert space H are understood in Musiela
parametrization and therefore denoted by a different letter in the se-
quel. We have the relationship ηt (t + x , u) = θt (x , u), with T − t =: x .
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In the sequel we are defining stochastic partial differential equations,
which express the conditions of the CNKK-approach in the correspond-
ing Musiela parametrization.

Definition
Let H be a Lévy codebook Hilbert space. We call the following stochas-
tic partial differential equation

dθt = (Aθt + µCNKK(θt ))dt +
d∑

i=1

σi (θt ) dBi
t (4.1)

a CNKK-equation (θ0,κ,σ) with initial term structure θ0 and character-
istics σ and κ,
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• if A = d
dx is the generator of the shift semigroup on H,

• if σi : U ⊂ H → H, U an open subset of H, are locally Lipschitz
vector fields, and

• if µCNKK : U → H is locally Lipschitz and satisfies that for all
η ∈ Γn we have∫ T−t

0
µCNKK(θ)(r , u) dr = θ(0, u)− κθ(0, u,−i

∫ T−t

0
σ(θ)(r , u) dr ),

(4.2)
where (κθ)θ∈U is Γn+d -valued for each θ ∈ Γn, such that κθ(0, u, 0) =
θ(0, u) and κθ(0, 0, v ) = −‖v‖2 , for u ∈ Rn, v ∈ Rd .
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Remark
We do not require that all solutions of equation (4.2) are Γn-valued,
which would be too strong a condition and difficult to characterize.

Proposition
Let θ be a Γn-valued solution of a CNKK-equation and let X be a
semimartingale such that the predictable characteristics satisfy

κ(X ,W )
t (u, v ) = κθt (t , u, v )

for u ∈ Rn, v ∈ Rd and t ≥ 0, then the tuple (X , θ) satisfies the
conditional expectation condition.
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We can construct one particular example, which corresponds literally
to the HJM-equation: consider a situation without leverage, i.e. we
assume that

κθ(0, u, v ) = θ(0, u)− ‖v‖
2

for u ∈ Rn, v ∈ Rd and t ≥ 0.
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This means that the CNKK-equation is a parameter-dependent HJM-
equation, i.e.

dθt = (Aθt + µCNKK(θt ))dt +
d∑

i=1

σi (θt ) dBi
t , (4.3)

where

µCNKK(θ)(x , u) = −
d∑

i=1

σi (θ)(x , u)
∫ x

0
σi (θ)(y , u)dy (4.4)

for x ≥ 0 and u ∈ Rn.
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5 Finite dimensional realizations for CNKK-equations

In the sequel we shall consider particular vector fields σ, which only
depend on the state θ via a tenor 0 ≤ x1, ... , xn of times-to-maturity. As
in interest rate theory such vector fields allow for a geometric analysis
of solutions of CNKK-equations.

This idea is (generalized and) expressed in terms of the following reg-
ularity and non-degeneracy assumptions. Recall that G is a Hilbert
space of continuous complex-valued functions defined on the strip
−i[0, 1]n × Rn, i.e. G ⊂ C((−i[0, 1]n)× Rn;C).
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Definition
We call the volatility vector fields σ1, ... ,σd of a CNKK-equation tenor-
dependent if

• we have that
σi (θ) = φi (`(θ)), 1 ≤ i ≤ d ,

where ` ∈ L(H, Gp), for some p ∈ N, and φ1, ... ,φd : Gp → D(A∞)
are smooth and pointwise linearly independent maps. Moreover

µCNKK(θ) = φ0(`(η)),

where φ0 : Gp → D(A∞) is smooth. We usually have to assume
`1(η) = η(0, .));
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• for every q ≥ 0, the map(
`, ` ◦ (d/dx), ... , ` ◦ (d/dx)q) : D

(
(d/dx)∞

)
→ Gp(q+1)

is open; and

• A is an unbounded linear operator; that is, D(A) is a strict subset
of H. Equivalently, A : D(A∞)→ D(A∞) is not a Banach map.
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Theorem
Let σ1, ... ,σd be a tenor-dependent volatility structure of a CNKK-
equation. Assume furthermore that for initial values in a large enough
subset of Γn the local mild solutions θ of the CNKK-equation leave
leaves of a given foliation with constant dimension N ≥ 2 locally in-
variant (regular finite dimensional realization).

Then there exist λ1, ... ,λN−1 such that σi (θ) ∈ span(λ1, ... ,λN−1). This
means in particular that

θt (x , u) = At (x , u) +
N−1∑
i=1

λi (x , u)Y i
t

up to some stopping time τ , for x ≥ 0 and u ∈ Rn.
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Remark
The affine character of the representation of the solution process θ
is apparent. In particular this representation leads via the conditional
expectation formula (in case of global solution of the CNKK-equation)
to affine factor processes Y and a homogenous, time-inhomogenous
affine process (X , Y ).
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• formulate the CNKK-equation as SPDE.

• show the literatal equivalence to the HJM-equation in case of “no
leverage”.

• apply the geometric reasonings from interest rate theory to this
general case and conclude the central importance of affine pro-
cesses.
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