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1 Stochastic processes

In this section we review some fundamental facts from the general theory of
stochastic processes.

1.1 General theory

Let (Ω,F ,P) be a probability space. We will use a set of time instants I. When
this set is not specified, it will be [0,∞), occasionally [0,∞], or N. Let (E, E)
another measurable space. If the set E is endowed with a metric, the Borel σ-
algebra that is generated by this metric will be denoted by B(E) or BE. Mostly
E will be R or Rd and E the ordinary Borel σ-algebra on it.

Definition 1.1. A random element of E is a map from Ω into E that is F/E-
measurable. A stochastic process X with time set I is a collection {Xt, t ∈ I}
of random elements of E. For each ω the map t 7→ Xt(ω) is called a (sample)
path, trajectory or realization of X.

Since we will mainly encounter processes where I = [0,∞), we will discuss
processes whose paths are continuous, or right-continuous, or cadlag. The latter
means that all paths are right-continuous functions with finite left limits at each
t > 0. We will also encounter processes that satisfy these properties almost
surely.

Often we have to specify in which sense two (stochastic) processes are the
same. The following concepts are used.

Definition 1.2. Two real valued or Rd valued processes X and Y are called
indistinguishable if the set {Xt = Yt,∀t ∈ I} contains a set of probability one
(hence the paths of indistinguishable processes are a.s. equal). They are called
modifications of each other if P(Xt = Yt) = 1, for all t ∈ I. The processes
are said to have the same finite dimensional distributions if for any n-tuple
(t1, . . . , tn) with the ti ∈ I the laws of the random vectors (Xt1 , . . . , Xtn

) and
(Yt1 , . . . , Ytn) coincide.

Clearly, the first of these three concepts is the strongest, the last the weakest.
Whereas the first two definitions only make sense for processes defined on the
same probability space, for the last one this is not necessary.

Example 1.3. Let T be a nonnegative real random variable with a continuous
distribution. Let X = 0 and Y be defined by Yt(ω) = 1t=T (ω), t ∈ [0,∞). Then
X is a modification of Y , whereas P(Xt = Yt,∀t ≥ 0) = 0.

Proposition 1.4 Let Y be a modification of X and assume that all paths of X
and Y are right-continuous. Then X and Y are indistinguishable.

Proof. Right-continuity allows us to write {Xt = Yt,∀t ≥ 0} = {Xt = Yt,∀t ∈
[0,∞) ∩ Q}. Since Y is a modification of X, the last set (is measurable and)
has probability one. �
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Throughout the course we will need various measurability properties of
stochastic processes. Viewing a process X as a map from [0,∞)×Ω into E, we
call this process measurable if X−1(A) belongs to B[0,∞)×F for all A ∈ B(E).

Definition 1.5. A filtration F = {Ft, t ≥ 0} is a collection of sub-σ-algebras
of F such that Fs ⊂ Ft for all s ≤ t. We put F∞ = σ(Ft, t ≥ 0). Given a
stochastic process X we denote by FX

t the smallest σ-algebra for which all Xs,
with s ≤ t, are measurable and FX = {FX

t , t ≥ 0}.
Given a filtration F for t ≥ 0 the σ-algebras Ft+ and Ft− for t > 0 are defined as
follows. Ft+ =

⋂
h>0 Ft+h and Ft− = σ(Ft−h, h > 0). We will call a filtration

F right-continuous if Ft = Ft+ for all t ≥ 0, left-continuous if Ft = Ft− for
all t > 0 and continuous if it is both left- and right-continuous. A filtration is
said to satisfy the usual conditions if it is right-continuous and if F0 contains
all F-null sets. We use the notation F+ for the filtration {Ft+, t ≥ 0}.

Definition 1.6. Given a filtration F a process X is called F-adapted, adapted
to F, or simply adapted, if for all t ≥ 0 the random variable Xt is Ft-measurable.
Clearly, any process X is adapted to FX . A process X is called progressive or
progressively measurable, if for all t ≥ 0 the map (s, ω) 7→ Xs(ω) from [0, t]× Ω
into R is B[0, t]⊗Ft-measurable. A progressive process is always adapted (Ex-
ercise 1.11) and measurable.

Proposition 1.7 Let X be a process that is (left-) or right-continuous. Then
it is measurable. Such a process is progressive if it is adapted.

Proof We will prove the latter assertion only, the first one can be established by
a similar argument. Assume that X is right-continuous and fix t > 0 (the proof
for a left-continuous process is analogous). Then, since X is right-continuous,
it is on [0, t] the pointwise limit of

Xn = X01{0}(·) +
2n∑

k=1

1((k−1)2−nt,k2−nt](·)Xk2−nt,

All terms in the summation on the right hand side are easily seen to be B[0, t]×
Ft-measurable, and so are Xn and its limit X. �

1.2 Stopping times

Definition 1.8. A map T : Ω → [0,∞] is a called a random time, if T is
a random variable. T is called a stopping time (w.r.t. the filtration F, or an
F-stopping time) if for all t ≥ 0 the set {T ≤ t} ∈ Ft.

If T < ∞, then T is called finite and if P(T < ∞) = 1 it is called a.s. finite.
Likewise we say that T is bounded if there is a K ∈ [0,∞) such that T (ω) ≤ K
and that T is a.s. bounded if for such a K we have P(T ≤ K) = 1. For a
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random time T and a process X one defines on the (measurable) set {T <∞}
the function XT by

XT (ω) = XT (ω)(ω). (1.1)

If next to the process X we also have a random variable X∞, then XT is defined
on the whole set Ω.

The set of stopping times is closed under many operations.

Proposition 1.9 Let S, T, T1, T2, . . . be stopping times. Then all random vari-
ables S ∨ T , S ∧ T , S + T , supn Tn are stopping times. The random variable
infn Tn is an F+-stopping time. If a > 0, then T + a is a stopping time as well.

Proof Exercise 1.5. �

Suppose that E is endowed with a metric d and that the E is the Borel σ-algebra
on E. Let D ⊂ E and X a process with values in E. The hitting time HD is
defined as HD = inf{t ≥ 0 : Xt ∈ D}. Hitting times are stopping times under
extra conditions.

Proposition 1.10 If G is an open set and X a right-continuous F-adapted
process, then HG is an F+-stopping time. Let F be a closed set and X a cadlag
process. Define H̃F = inf{t ≥ 0 : Xt ∈ F or Xt− ∈ F}, then H̃F is an F-
stopping time. If X is a continuous process, then HF is an F-stopping time.

Proof Notice first that {HG < t} = ∪s<t{Xs ∈ G}. Since G is open and
X is right-continuous, we may replace the latter union with ∪s<t,s∈Q{Xs ∈
G}. Hence {HG < t} ∈ Ft and thus HG is an F+-stopping time in view of
Exercise 1.4.
Since F is closed it is the intersection ∩∞n=1F

n of the open sets Fn = {x ∈ E :
d(x, F ) < 1

n}. The event {H̃F ≤ t} can be written as the union of {Xt ∈ F},
{Xt− ∈ F} and ∩n≥1 ∪s<t,s∈Q {Xs ∈ Fn} by an argument similar to the one
we used above. The result follows. �

Definition 1.11. For a stopping time T we define FT as the collection {F ∈
F∞ : F ∩ {T ≤ t} ∈ Ft,∀t ≥ 0}. Since a constant random variable T ≡ t0 is
a stopping time, one has for this stopping time FT = Ft0 . In this sense the
notation FT is unambiguous. Similarly, we have FT+ = {F ∈ F : F ∩ {T ≤
t} ∈ Ft+,∀t ≥ 0}.

Proposition 1.12 If S and T are stopping times, then for all A ∈ FS it holds
that A ∩ {S ≤ T} ∈ FT . Moreover FS ∩ FT = FS∧T and {S ≤ T} ∈ FS ∩ FT .
If S ≤ T , then FS ⊂ FT .

Proof Write A∩{S ≤ T}∩ {T ≤ t} as A∩{S ≤ t}∩ {S ∧ t ≤ T ∧ t}∩ {T ≤ t}.
The intersection of the first two sets belongs to Ft if A ∈ FS , the fourth one
obviously too. That the third set belongs to Ft is left as Exercise 1.6.
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It now follows from the first assertion (why?) that FS ∩ FT ⊃ FS∧T . Let
A ∈ FS ∩ FT . Then A ∩ {S ∧ T ≤ t} = (A ∩ {S ≤ t}) ∪ (A ∩ {T ≤ t}),
and this obviously belongs to Ft. From the previous assertions it follows that
{S ≤ T} ∈ FT . But then we also have {S > T} ∈ FT and by symmetry
{S < T} ∈ FS . Likewise we have for every n ∈ N that {S < T + 1

n} ∈ FS .
Taking intersections, we get {S ≤ T} ∈ FS . �

For a stopping time T and a stochastic process X we define the stopped process
XT by XT

t = XT∧t, for t ≥ 0.

Proposition 1.13 Let T be a stopping time, X a progressive process. Then
Y := XT 1T<∞ is FT -measurable and the stopped process XT is progressive too.

Proof First we show that XT is progressive. Let t > 0. The map φ : ([0, t] ×
Ω,B[0, t]×Ft) → ([0, t]×Ω,B[0, t]×Ft) defined by φ : (s, ω) → (T (ω)∧ s, ω) is
measurable and so is the composition (s, ω) 7→ X(φ(s, ω)) = XT (ω)∧s(ω), which
shows that XT is progressive. Fubini’s theorem then says that the section map
ω 7→ XT (ω)∧t(ω) is Ft-measurable. To show that Y is FT -measurable we have
to show that {Y ∈ B} ∩ {T ≤ t} = {XT∧t ∈ B} ∩ {T ≤ t} ∈ Ft. This has by
now become obvious. �

1.3 Exercises

1.1 Let X be a measurable process on [0,∞). Then the maps t 7→ Xt(ω) are
Borel-measurable. If E |Xt| < ∞ for all t, then also t 7→ EXt is measurable
and if

∫ T

0
E |Xt| dt <∞, then

∫ T

0
EXt dt = E

∫ T

0
Xt dt. Prove these statements.

Show also that the process
∫ ·
0
Xs ds is progressive if X is progressive.

1.2 Let X be a cadlag adapted process and A the event that X is continuous
on an interval [0, t). Then A ∈ Ft.

1.3 Let X be a measurable process and T a random time. Then XT 1T<∞ is a
random variable.

1.4 A random time T is an F+-stopping time iff for all t > 0 one has {T < t} ∈
Ft.

1.5 Prove Proposition 1.9.

1.6 Let S, T be stopping times bounded by a constant t0. Then σ(S) ⊂ Ft0 and
{S ≤ T} ∈ Ft0 .

1.7 Let T be a stopping time and S a random time such that S ≥ T . If S is
FT -measurable, then S is a stopping time too.

1.8 Let S and T be stopping times and Z an integrable random variable. Then
E [E [Z|FT ]|FS ] = E [Z|FS∧T ]. (Taking conditional expectation w.r.t. FT and
FS are commutative operations).
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1.9 Let X1, X2, X3 be iid random variables, defined on the same probability
space. Let G = σ{X1, X2}, H = σ{X2, X3} and X = X1 +X2 +X3. Show that
E[E[X|H]|G] = 1

2 (X1+X2) and E[E[X|G]|H] = 1
2 (X2+X3). (Taking conditional

expectation w.r.t. G and H does not commute).

1.10 Let S and T be stopping times such that S ≤ T and even S < T on the
set {S <∞}. Then FS+ ⊂ FT .

1.11 Show that a progressive process is adapted and measurable.

1.12 Show that F+ is a right-continuous filtration.

1.13 Show that FX is a left-continuous filtration if X is a left-continuous pro-
cess.

1.14 LetX be a process that is adapted to a filtration F. Let Y be a modification
of X. Show that also Y is adapted to F if F satisfies the usual conditions.

1.15 Show that Proposition 1.13 can be refined as follows. Under the stated
assumptions the process XT is even progressive w.r.t. the filtration Ft∧T .
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2 Martingales

In this section we review some properties of martingales and supermartingales.
Throughout the section we work with a fixed probability space (Ω,F ,P) and
a filtration F. Familiarity with the theory of martingales in discrete time is
assumed.

2.1 Generalities

We start with the definition of martingales, submartingales and supermartin-
gales in continuous time.

Definition 2.1. A real-valued process X is called a supermartingale, if it is
adapted, if all Xt are integrable and E [Xt|Fs] ≤ Xs a.s. for all t ≥ s. If −X is a
supermartingale, we call X a submartingale and X will be called a martingale
if it is both a submartingale and a supermartingale.

The number of upcrossings of a stochastic process X over an interval [a, b] when
time runs through a finite set F is denoted by U([a, b];F ). Then we define
the number of upcrossings over the interval [a, b] when time runs through an
interval [s, t] by sup{U([a, b];F ) : F ⊂ [s, t], F finite}. Fundamental properties
of (sub)martingales are collected in the following proposition.

Proposition 2.2 Let X be a submartingale with right-continuous paths. Then
(i) For all λ > 0 and 0 ≤ s ≤ t one has

λP( sup
s≤u≤t

Xu ≥ λ) ≤ EX+
t (2.1)

and

λP( inf
s≤u≤t

Xu ≤ −λ) ≤ EX+
t − EXs. (2.2)

(ii) If X is a nonnegative submartingale and p > 1, then

|| sup
s≤u≤t

Xu||p ≤
p

p− 1
||Xt||p, (2.3)

where for random variables ξ we put ||ξ||p = (E |ξ|p)1/p.
(iii) For the number of upcrossings U([a, b]; [s, t]) it holds that

EU([a, b]; [s, t]) ≤ EX+
t + |a|
b− a

.

(iv) Almost every path of X is bounded on compact intervals and has no dis-
continuities of the second kind. For almost each path the set of points at which
this path is discontinuous is at most countable.
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Proof The proofs of these results are essentially the same as in the discrete
time case. The basic argument to justify this claim is to consider X restricted
to a finite set F in the interval [s, t]. With X restricted to such a set, the above
inequalities in (i) and (ii) are valid as we know it from discrete time theory.
Take then a sequence of such F , whose union is a dense subset of [s, t], then
the inequalities keep on being valid. By right-continuity of X we can extend
the validity of the inequalities to the whole interval [s, t]. The same reasoning
applies to (iii).
For (iv) we argue as follows. Combining the inequalities in (i), we see that
P(sups≤u≤t |Xu| = ∞) = 0, hence almost all sample paths are bounded on
intervals [s, t]. We have to show that almost all paths of X admit left lim-
its everywhere. This follows as soon as we can show that for all n the set
{lim infs↑tXs < lim sups↑tXs, for some t ∈ [0, n]} has zero probability. This set
is contained in ∪a,b∈Q{U([a, b], [0, n]) = ∞}. But by (iii) this set has zero prob-
ability. It is a fact from analysis that the set of discontinuities of the first kind
of a function is at most countable, which yields the last assertion. �

The last assertion of this proposition describes a regularity property of the
sample paths of a right-continuous submartingale. The next theorem gives a
sufficient and necessary condition that justifies the fact that we mostly restrict
our attention to cadlag submartingales. This condition is trivially satisfied for
martingales. We state the theorem without proof.

Theorem 2.3 Let X be a submartingale and let the filtration F satisfy the usual
conditions. Suppose that the function t 7→ EXt is right-continuous on [0,∞).
Then there exists a modification Y of X that has cadlag paths and that is also
a submartingale w.r.t. F.

2.2 Limit theorems and optional sampling

The following two theorems are the fundamental convergence theorems.

Theorem 2.4 Let X be a right-continuous submartingale with supt≥0 EX+
t <

∞. Then there exists a F∞-measurable random variable X∞ with E |X∞| <∞
such that Xt

a.s.→ X∞. If moreover X is uniformly integrable, then we also have

Xt
L1

→ X∞ and E [X∞|Ft] ≥ Xt a.s. for all t ≥ 0.

Theorem 2.5 Let X be a right-continuous martingale. Then X is uniformly
integrable iff there exists an integrable random variable Z such that E [Z|Ft] =

Xt a.s. for all t ≥ 0. In this case we have Xt
a.s.→ X∞ and Xt

L1

→ X∞, where
X∞ = E [Z|F∞].

Proof The proofs of these theorems are like in the discrete time case. �

We will frequently use the optional sampling theorem (Theorem 2.7) for sub-
martingales and martingales. In the proof of this theorem we use the following
lemma.
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Lemma 2.6 Let (Gn) be a decreasing sequence of σ-algebras and let (Yn) be a
sequence of integrable random variables such that Yn is a Gn-measurable random
variable for all n and such that

E [Ym|Gn] ≥ Yn,∀n ≥ m. (2.4)

If the sequence of expectations EYn is bounded from below, then the collection
{Yn, n ≥ 1} is uniformly integrable.

Proof Consider the chain of (in)equalities (where n ≥ m)

E 1|Yn|>λ|Yn| = E 1Yn>λYn − E 1Yn<−λYn

= −EYn + E 1Yn>λYn + E 1Yn≥−λYn

≤ −EYn + E 1Yn>λYm + E 1Yn≥−λYm

≤ −EYn + EYm + E 1|Yn|>λ|Ym|. (2.5)

Since the sequence of expectations (EYn) has a limit and hence is Cauchy,
we choose for given ε > 0 the integer m such that for all n > m we have
−EYn + EYm < ε. By the conditional version of Jensen’s inequality we have
EY +

n ≤ EY +
1 . Since EYn ≥ l for some finite l, we can conclude that E |Yn| =

2EY +
n −EYn ≤ 2EY +

1 − l. This implies that P(|Yn| > λ) ≤ 2E Y +
1 −l
λ . Hence we

can make the expression in (2.5) arbitrarily small for all n big enough and we
can do this uniformly in n (fill in the details). �

Theorem 2.7 Let X be a right-continuous submartingale with a last element
X∞ (i.e. E [X∞|Ft] ≥ Xt, a.s. for every t ≥ 0) and let S and T be two stopping
times such that S ≤ T . Then XS ≤ E [XT |FS ] a.s.

Proof Let Tn = 2−n[2nT + 1] and Sn = 2−n[2nS + 1]. Then the Tn and Sn

are stopping times (Exercise 2.4) with Tn ≥ Sn, and they form two decreasing
sequences with limits T , respectively S. Notice that all Tn and Sn are at most
countably valued. We can apply the optional sampling theorem for discrete
time submartingales (see Theorem A.4) to get E [XTn

|FSn
] ≥ XSn

, from which
we obtain that for each A ∈ FS ⊂ FSn it holds that

E 1AXTn
≥ E 1AXSn

. (2.6)

It similarly follows, that E [XTn
|FTn+1 ] ≥ XTn+1 . Notice that the expectations

EXTn form a decreasing sequence with lower bound EX0. We can thus apply
Lemma 2.6 to conclude that the collection {XTn : n ≥ 1} is uniformly integrable.
Of course the same holds for {XSn

: n ≥ 1}. By right-continuity of X we
get limn→∞XTn

= XT a.s and limn→∞XSn
= XS a.s. Uniform integrability

implies that we also have L1-convergence, hence we have from equation (2.6)
that E 1AXT ≥ E 1AXS for all A ∈ FS , which is what we had to prove. �

Remark 2.8. The condition that X has a last element can be replaced by
restriction to bounded stopping times S and T .
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Corollary 2.9 Let X be a right-continuous submartingale and let S ≤ T be
stopping times. Then the stopped process XT is a submartingale as well and
E [XT∧t|FS ] ≥ XS∧t a.s. for every t ≥ 0.

Proof This is Exercise 2.3. �

2.3 Doob-Meyer decomposition

It is instructive to formulate the discrete time analogues of what will be de-
scribed below. This will be left as exercises.

Definition 2.10. (i) An adapted process A is called increasing if a.s. we have
A0 = 0, t → At(ω) is a nondecreasing right-continuous function and if EAt <
∞ for all t. An increasing process is called integrable if EA∞ < ∞, where
A∞ = limt→∞At.
(ii) An increasing process A is called natural if for every right-continuous and
bounded martingale M we have

E
∫

(0,t]

Ms dAs = E
∫

(0,t]

Ms− dAs,∀t ≥ 0. (2.7)

Remark 2.11. The integrals
∫
(0,t]

Ms dAs and
∫
(0,t]

Ms− dAs in equation (2.7)
are defined pathwise as Lebesgue-Stieltjes integrals for all t ≥ 0 and hence the
corresponding processes are progressive. Furthermore, if the increasing process
A is continuous, then it is natural. This follows from the fact the paths of M
have only countably many discontinuities (Proposition 2.2(iv)).

Definition 2.12. A right-continuous process is said to belong to class D if the
collection of XT , where T runs through the set of all finite stopping times, is
uniformly integrable. A right-continuous process X is said to belong to class DL
if for all a > 0 the collection XT , where T runs through the set of all stopping
times bounded by a, is uniformly integrable.

With these definitions we can state and prove the celebrated Doob-Meyer decom-
position (Theorem 2.15 below) of submartingales. In the proof of this theorem
we use the following two lemmas. The first one (the Dunford-Pettis criterion)
is a rather deep result in functional analysis, of which we give a partial proof in
the appendix. The second one will also be used elsewhere.

Lemma 2.13 The collection {Zn, n ≥ 1} of random variables defined on a
probability space (Ω,F ,P) is a uniformly integrable family, iff there exist an
increasing subsequence (nk) and a random variable Z such that for all bounded
random variables ζ one has limk→∞ EZnk

ζ = EZζ. Moreover, if G is a sub-σ-
algebra of F , then also limk→∞ E [E [Znk

|G]ζ] = E [E [Z|G]ζ].

Proof See Appendix C. �
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Lemma 2.14 Assume that the filtration satisfies the usual conditions. Let M
be a right-continuous martingale that can be written as the difference of two
natural increasing processes (which happens if M is continuous and has paths of
bounded variation). Then M is indistinguishable from a process that is constant
over time.

Proof Without loss of generality we suppose that M0 = 0 a.s. Write M =
A−A′, where the processes A and A′ are natural and increasing. Then we have
for any bounded right-continuous martingale ξ and for all t ≥ 0 the equality
(this is Exercise 2.5)

EAtξt = E
∫

(0,t]

ξs− dAs. (2.8)

If we replace A with A′ the above equality is then of course also true and
then continues to hold if we replace A with M . Take first ξ of the form ξ =∑

k ξ
k−11[tk−1,tk), with 0 = t0 ≤ · · · ≤ tn = t and ξk−1 Ftk−1-measurable. Then

ξ− = ξ01{0}+
∑

k ξ
k−11(tk−1,tk] and the right hand side of (2.8) with A replaced

with M becomes E
∑

k ξ
k−1(Mtk

−Mtk−1) = 0, since M is a martingale. If
ξ is a continuous time martingale we take a sequence of nested partitions of
[0, t] with points tk whose mesh converges to zero. By taking ξk = ξtk−1 , we
apply the previous result and the Dominated Convergence Theorem to obtain
E ξtMt = 0.
Let ζ be a bounded random variable and put ξt ≡ E [ζ|Ft], then ξ is a martingale.
We know from Theorem 2.3 that ξ admits a right continuous modification and
hence we get EMtζ = 0. Choosing ζ in an appropriate way (how?) we conclude
that Mt a.s. We can do this for any t ≥ 0 and then right-continuity yields that
M and the zero process are indistinguishable. �

Theorem 2.15 Let the filtration F satisfy the usual conditions and let X be a
right-continuous submartingale of class DL. Then X can be decomposed accord-
ing to

X = A+M, (2.9)

where M is a right-continuous martingale and A a natural increasing process.
The decomposition (2.9) is unique up to indistinguishability. Under the stronger
condition that X is of class D, M is uniformly integrable and A is integrable.

Proof We first show the uniqueness assertion. Suppose that we have next
to (2.9) another decomposition X = A′ + M ′ of the same type. Then B :=
A−A′ = M ′−M is a right-continuous martingale that satisfies the assumptions
of Lemma 2.14 with B0 = 0. Hence it is indistinguishable from the zero process.
We now establish the existence of the decomposition for t ∈ [0, a] for an arbitrary
a > 0. Let Y be the process defined by Yt := Xt − E [Xa|Ft]. Since X is a
submartingale Yt ≤ 0 for t ∈ [0, a]. Moreover the process Y is a submartingale
itself that has a right-continuous modification (Exercise 2.14), again denoted by
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Y . From now on we work with this modification. Consider the nested sequence
of dyadic partitions Πn of [0, a], Πn 3 tnj = j2−na, j = 0, . . . , 2n. With time
restricted to Πn, the process Y becomes a discrete time submartingale to which
we apply the Doob decomposition (Exercise 2.8), which results in Y = An+Mn,
with An

0 = 0. Since Ya = 0, we get

An
tn
j

= Ytn
j

+ E [An
a |Ftn

j
]. (2.10)

We now make the following claim.

The family {An
a : n ≥ 1} is uniformly integrable. (2.11)

Supposing that the claim holds true, we finish the proof as follows. In view
of Lemma 2.13 we can select from this family a subsequence, again denoted by
An

a , and we can find a random variable Aa such that E ζAn
a → EAaζ for every

bounded random variable ζ. We now define for t ∈ [0, a] the random variable
At as any version of

At = Yt + E [Aa|Ft]. (2.12)

The process A has a right-continuous modification on [0, a], again denoted by A.
We now show that A is increasing. Let s, t ∈

⋃
n Πn. Then there is n0 such that

for all n ≥ n0 we have s, t ∈ Πn. Using the second assertion of Lemma 2.13,
equations (2.10) and (2.12) we obtain E ζ(An

t − An
s ) → E ζ(At − As). Since for

each n the An is increasing we get that E ζ(At−As) ≥ 0 as soon as ζ ≥ 0. Take
now ζ = 1{As>At} to conclude that At ≥ As a.s. Since A is right-continuous,
we have that A is increasing on the whole interval [0, a]. It follows from the
construction that A0 = 0 a.s. (Exercise 2.10).
Next we show that A is natural. Let ξ be a bounded and right-continuous
martingale. The discrete time process An is predictable (and thus natural,
Exercise 2.9). Restricting time to Πn and using the fact that Y and A as well
as Y and An differ by a martingale (equations (2.10) and (2.12)), we get

E ξaAn
a = E

∑
j

ξtn
j−1

(An
tn
j
−An

tn
j−1

)

= E
∑

j

ξtn
j−1

(Ytn
j
− Ytn

j−1
)

= E
∑

j

ξtn
j−1

(Atn
j
−Atn

j−1
)

Let n→∞ to conclude that

E ξaAa = E
∫

(0,a]

ξs− dAs, (2.13)

by the definition of Aa and the dominated convergence theorem applied to the
right hand side of the above string of equalities. Next we replace in (2.13) ξ

11



with the, at the deterministic time t ≤ a, stopped process ξt. A computation
shows that we can conclude

E ξtAt = E
∫

(0,t]

ξs− dAs,∀t ≤ a. (2.14)

In view of Exercise 2.5 this shows that A is natural on [0, a]. The proof of the
first assertion of the theorem is finished by setting Mt = E [Xa−Aa|Ft]. Clearly
M is a martingale and Mt = Xt −At. Having shown that the decomposition is
valid on each interval [0, a], we invoke uniqueness to extend it to [0,∞).
If X belongs to class D, it has a last element and we can repeat the above proof
with a replaced by ∞. What is left however, is the proof of the claim (2.11).
This will be given now.
Let λ > 0 be fixed. Define Tn = inf{tnj−1 : An

tn
j
> λ, j = 1, . . . , 2n} ∧ a. One

checks that the Tn are stopping times, bounded by a, that {Tn < a} = {An
a >

λ} and that we have An
T n ≤ λ on this set. By the optional sampling theorem (in

discrete time) applied to (2.10) one has YT n = An
T n −E [An

a |FT n ]. Below we will
often use that Y ≤ 0. To show uniform integrability, one considers E 1{An

a >λ}A
n
a

and with the just mentioned facts one gets

E 1{An
a >λ}A

n
a = E 1{An

a >λ}A
n
T n − E 1{An

a >λ}YT n

≤ λP(Tn < a)− E 1{T n<a}YT n . (2.15)

Let Sn = inf{tnj−1 : An
tn
j
> 1

2λ, j = 1, . . . , 2n} ∧ a. Then the Sn are bounded
stopping times as well with Sn ≤ Tn and we have, like above, {Sn < a} =
{An

a > 1
2λ} and An

Sn ≤ 1
2λ on this set. Using YSn = An

Sn − E [An
a |FSn ] we

develop

−E 1{Sn<a}YSn = −E 1{Sn<a}A
n
Sn + E 1{Sn<a}A

n
a

= E 1{Sn<a}(An
a −An

Sn)
≥ E 1{T n<a}(An

a −An
Sn)

≥ 1
2
λP(Tn < a).

It follows that λP(Tn < a) ≤ −2E 1{Sn<a}YSn . Inserting this estimate into
inequality (2.15), we obtain

E 1{An
a >λ}A

n
a ≤ −2E 1{Sn<a}YSn − E 1{T n<a}YT n . (2.16)

The assumption that X belongs to class DL implies that both {YT n , n ≥ 1} and
{YSn , n ≥ 1} are uniformly integrable, since Y and X differ for t ∈ [0, a] by a
uniformly integrable martingale. Then we can find for all ε > 0 a δ > 0 such
that −E 1FYT n and −E 1FYSn are smaller than ε for any set F with P(F ) < δ
uniformly in n. Since Ya = 0, we have EAn

a = −EMn
a = −EMn

0 = −EY0.
Hence we get P(Tn < a) ≤ P(Sn < a) = P(An

a > λ/2) ≤ −2EY0/λ. Hence
for λ bigger than −2EY0/δ, we can make both probabilities P(Tn < a) and
P(Sn < a) of the sets in (2.16) less than δ, uniformly in n. This shows that the
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family {An
a : n ≥ 1} is uniformly integrable. �

The general statement of Theorem 2.15 only says that the processes A and M
can be chosen to be right-continuous. If the process X is continuous, one would
expect A and M to be continuous. This is true indeed, at least for nonnegative
processes. However a stronger result can be proven.

Theorem 2.16 Suppose that in addition to the conditions of Theorem 2.15 the
submartingale is such that limn→∞ EXT n = EXT for all bounded increasing se-
quences of stopping times Tn with limit T . Then the process A in equation (2.9)
is continuous.

Proof Let a > 0 be an upper bound for T and the Tn. According to The-
orem 2.15 we have X = A + M . Hence, according to the optional sampling
theorem we have EAT n = EXT n −EMT n = EXT n −EMa, which implies that

EAT n ↑ EAT . (2.17)

By the monotone convergence theorem we conclude that AT n(ω)(ω) ↑ AT (ω)(ω)
for all ω outside a set of probability zero, which however in principle depends
on the chosen sequence of stopping times.
We proceed as follows. Assume for the time being that A is a bounded process.
As in the proof of Theorem 2.15 we consider the dyadic partitions Πn of the
interval [0, a]. For every n and every j = 0, . . . , 2n − 1 we define ξn,j to be the
right-continuous modification of the martingale defined by E [Atn

j+1
|Ft]. Then

we define

ξn
t =

2n−1∑
j=0

ξn,j
t 1(tn

j ,tn
j+1]

(t).

The process ξn is on the whole interval [0, a] right-continuous, except possibly
at the points of the partition. Notice that we have ξn

t ≥ At a.s. for all t ∈ [0, a]
with equality at the points of the partition and ξn+1 ≤ ξn. Since A is a natural
increasing process, we have for every n and j that

E
∫

(tn
j ,tn

j+1]

ξn
s dAs = E

∫
(tn

j ,tn
j+1]

ξn
s− dAs.

Summing this equality over all relevant j we get

E
∫

(0,t]

ξn
s dAs = E

∫
(0,t]

ξn
s− dAs, for all t ∈ [0, a]. (2.18)

We introduce the right-continuous nonnegative processes ηn defined by ηn
t =

(ξn
t+ − At)1[0,a)(t). For fixed ε > 0 we define the bounded stopping times

(see Proposition 1.10) Tn = inf{t ∈ [0, a] : ηn
t > ε} ∧ a. Observe that also

Tn = inf{t ∈ [0, a] : ξn
t −At > ε} ∧ a in view of the relation between ηn and ξn

(Exercise 2.11). Since the ξn
t are decreasing in n, we have that the sequence Tn
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is increasing and thus has a limit, T say. Let φn(t) =
∑2n−1

j=0 tnj+11(tn
j ,tn

j+1]
(t) and

notice that for all n and t ∈ [0, a] one has a ≥ φn(t) ≥ φn+1(t) ≥ t. It follows
that limn→∞ φn(Tn) = T a.s. From the optional sampling theorem applied to
the martingales ξn,j it follows that

E ξn
T n = E

∑
j

E [Atn
j+1
|FT n ]1(tn

j ,tn
j+1]

(Tn)

= E
∑

j

E [Atn
j+1

1(tn
j ,tn

j+1]
(Tn)|FT n ]

= E
∑

j

E [Aφn(T n)1(tn
j ,tn

j+1]
(Tn)|FT n ]

= EAφn(T n).

And then

E (Aφn(T n) −AT n) = E (ξn
T n −AT n)

≥ E 1{T n<a}(ξn
T n −AT n)

≥ εP(Tn < a).

Thus

P(Tn < a) ≤ 1
ε

E (Aφn(T n) −AT n) → 0 for n→∞, (2.19)

by (2.17) and right-continuity and boundedness of A. But since {Tn < a} =
{supt∈[0,a] |ξn

t − At| > ε} and since (2.19) holds for every ε > 0, we can find
a subsequence (nk) along which supt∈[0,a] |ξn

t − At|
a.s.→ 0. Since both A and

ξ are bounded, it follows from the dominated convergence theorem applied to
equation (2.18) and the chosen subsequence that

E
∫

(0,t]

As dAs = E
∫

(0,t]

As− dAs, for all t ∈ [0, a],

from which we conclude by monotonicity that

E
∫

(0,t]

As dAs = E
∫

(0,t]

As− dAs, for all t ∈ [0,∞). (2.20)

Thus the nonnegative process A−A− must be zero dAt(ω)P(dω)-a.e. and there-
fore indistinguishable from zero.
The result has been proved under the assumption that A is bounded. If this
assumption doesn’t hold, we can introduce the stopping times Sm = inf{t ≥
0 : At > m} and replace everywhere above A with the stopped process ASm

which is bounded. The conclusion from the analogue of (2.20) will be that the
processes A1[0,Sm] and A−1[0,Sm] are indistinguishable for all m and the final
result follows by letting m→∞. �

We close this section with the following proposition.
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Proposition 2.17 Let X satisfy the conditions of Theorem 2.15 with Doob-
Meyer decomposition X = A+M and T a stopping time. Then also the stopped
process XT satisfies these conditions and its Doob-Meyer decomposition is given
by

XT = AT +MT .

Proof That XT also satisfies the conditions of Theorem 2.15 is straightforward.
Of course, by stopping, we have XT = AT +MT , so we only have to show that
this indeed gives us the Doob-Meyer decomposition. By the optional sampling
theorem and its Corollary 2.9, the stopped process MT is a martingale. That
the process AT is natural follows from the identity∫

(0,t]

ξs dA
T
s =

∫
(0,t]

ξT
s dAs − ξT (At −At∧T ),

a similar one for
∫
(0,t]

ξs− dA
T
s , valid for any bounded measurable process ξ and

the fact that A is natural. The uniqueness of the Doob-Meyer decomposition
then yields the result. �

2.4 Exercises

2.1 Let X be a supermartingale with constant expectation. Show that X is in
fact a martingale. Hint: consider expectations over the set {E [Xt|Fs] > Xs}.

2.2 Why is sups≤u≤tXu in formula (2.3) measurable?

2.3 Prove Corollary 2.9.

2.4 Show that the random variables Tn in the proof of Theorem 2.7 are stopping
times and that they form a non-increasing sequence with pointwise limit T .

2.5 Show that an increasing process A is natural iff for all bounded right-
continuous martingales one has E

∫
(0,t]

Ms− dAs = EMtAt for all t ≥ 0. Hint:

Consider first a partition 0 = t0 ≤ t1 ≤ · · · ≤ tn = t and take M constant on
the (tk−1, tk]. Then you approximate M with martingales of the above type.

2.6 Show that a uniformly integrable martingale is of class D.

2.7 Let X be a right-continuous submartingale. Show that X is of class DL if
X is nonnegative or if X = M + A, where A is an increasing process and M a
martingale.

2.8 Let X be a discrete time process on some (Ω,F ,P), and let F = {Fn}n≥0

be a filtration. Assume that X is adapted, X0 = 0 and that Xn is integrable
for all n. Define the process M by M0 = 0 and Mn = Mn−1 +Xn−E [Xn|Fn−1

for n ≥ 1. Show that M is a martingale. Define then A = X −M . Show that
An is Fn−1-measurable for all n ≥ 1 (one says that A is predictable) and that
A0 = 0. Show that A is increasing iff X is a submartingale.
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2.9 A discrete time process A is called increasing if it is adapted, A0 = 0 a.s.,
An−An−1 ≥ 0 a.s. and EAn <∞ for all n ≥ 1. An increasing process is natural
if for all bounded martingales M one has EAnMn = E

∑n
k=1Mk−1(Ak−Ak−1).

(i) Show that a process A is natural iff for all bounded martingales one has
E

∑n
k=1Ak(Mk −Mk−1) = 0.

(ii) Show that a predictable increasing process is natural.
(iii) Show that a natural process is a.s. predictable. Hint: you have to show
that An = Ãn a.s., where Ãn is a version of E [An|Fn−1] for each n, which you
do along the following steps. First you show that for all n one has EMnAn =
EMn−1An = EMnÃn. Fix n, take Mk = E [sgn(An − Ãn)|Fk] and finish the
proof.

2.10 Show that the A0 in the proof of the Doob-Meyer decomposition (Theo-
rem 2.15) is zero a.s.

2.11 Show that (in the proof of Theorem 2.16) Tn = inf{t ∈ [0, a] : ξn
t − At >

ε} ∧ a. Hint: use that ξn is right-continuous except possibly at the tnj .

2.12 A continuous nonnegative submartingale satisfies the conditions of Theo-
rem 2.16. Show this.

2.13 Show (in the proof of Theorem 2.16) the convergence φn(Tn) → T a.s.
and the convergence in (2.19).

2.14 Suppose that X is a submartingale with right-continuous paths. Show
that t 7→ EXt is right-continuous (use Lemma 2.6).

2.15 Let N = {Nt : t ≥ 0} be a Poisson process with parameter λ and let
Ft = σ(Ns, s ≤ t), t ≥ 0. Show that N is a submartingale and that its natural
increasing process process A as in Theorem 2.15 is given by At = λt. Give also
decomposition of N as N = B+M , where M is martingale and B is increasing,
but not natural. Let Xt = (Nt − λt)2. Show that X has the same natural
increasing process A.
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3 Square integrable martingales

In later sections we will use properties of (continuous) square integrable martin-
gales. Throughout this section we work with a fixed probability space (Ω,F ,P)
and a filtration F that satisfies the usual conditions.

3.1 Structural properties

Definition 3.1. A right-continuous martingale X is called square integrable if
EX2

t < ∞ for all t ≥ 0. By M2 we denote the class of all square integrable
martingales starting at zero and by M2

c its subclass of a.s continuous square
integrable martingales.

To study properties of M2 and M2
c we endow these spaces with a metric and

under additional assumptions with a norm.

Definition 3.2. Let X ∈M2. We define for each t ≥ 0

||X||t = (EX2
t )1/2, (3.1)

and ||X||∞ = sup ||X||t. X is called bounded in L2 if sup ||X||t < ∞. For all
X ∈M2 we also define

||X|| =
∞∑

n=1

2−n(||X||n ∧ 1) (3.2)

and for all X,Y ∈M2

d(X,Y ) = ||X − Y ||. (3.3)

Remark 3.3. If we identify processes that are indistinguishable, then (M2, d)
becomes a metric space and on the subclass of martingales bounded in L2 the
operator || · ||∞ becomes a norm (see Exercise 3.1).

Proposition 3.4 The metric space (M2, d) is complete and M2
c is a closed

(w.r.t. to the metric d) subspace of M2 and thus complete as well.

Proof Let (Xm) be a Cauchy sequence in (M2, d). Then for each fixed t the
sequence (Xm

t ) is Cauchy in the complete space L2(Ω,Ft,P) and thus has a
limit, Xt say (which is the L1-limit as well). We show that for s ≤ t one has
Xs = E [Xt|Fs]. Consider for any A ∈ Fs the expectations E 1AXs and E 1AXt.
The former is the limit of E 1AX

m
s and the latter the limit of E 1AX

m
t . But since

each Xm is a martingale, one has E 1AX
m
s = E1AX

m
t , which yields the desired

result. Choosing a right-continuous modification of the process X finishes the
proof of the first assertion.
The proof of the second assertion is as follows. Let (Xm) be a sequence in M2

c ,
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with limit X ∈M2 say. We have to show that X is (almost surely) continuous.
Using inequality (2.1), we have for every ε > 0 that

P(sup
t≤T

|Xm
t −Xt| > ε) ≤ 1

ε2
E (Xm

T −XT )2 → 0, m→∞.

Hence, for every k ∈ N there is mk such that P(supt≤T |X
mk
t −Xt| > ε) ≤ 2−k.

By the Borel-Cantelli lemma one has P(lim inf{supt≤T |X
mk
t − Xt| ≤ ε}) = 1.

Hence for all T > 0 and for almost all ω the functions t 7→ Xmk(t, ω) : [0, T ] → R
converge uniformly, which entails that limit functions t 7→ X(t, ω) are continuous
on each interval [0, T ]. A.s. unicity of the limit on all these intervals with integer
T yields a.s. continuity of X on [0,∞). �

3.2 Quadratic variation

Of a martingale X ∈ M2 we know that X2 is a nonnegative submartingale.
Therefore we can apply the Doob-Meyer decomposition, see Theorem 2.15 and
Exercise 2.7, to obtain

X2 = A+M, (3.4)

where A is a natural increasing process and M a martingale that starts in zero.
We also know from Theorem 2.16 that A and M are continuous if X ∈M2

c .

Definition 3.5. For a process X in M2 the process A in the decomposi-
tion (3.4) is called the quadratic variation process and it is denoted by 〈X〉.
So, 〈X〉 is the unique natural increasing process that makes X2 − 〈X〉 a mar-
tingale.

Proposition 3.6 Let X be a martingale in M2 and T a stopping time. Then
the processes 〈XT 〉 and 〈X〉T are indistinguishable.

Proof This is an immediate consequence of Proposition 2.17. �

The term quadratic variation process for the process 〈X〉 will be explained for
X ∈ M2

c in Proposition 3.8 below. We first introduce some notation. Let
Π = {t0, . . . , tn} be a partition of the interval [0, t] for some t > 0 with 0 = t0 <
· · · < tn = t. For a process X we define

Vt(X,Π) =
n∑

j=1

(Xtj
−Xtj−1)

2.

Notice that Vt(X,Π) is Ft-measurable if X is adapted. The mesh µ(Π) of the
partition is defined by µ(Π) = max{|tj − tj−1|, j = 1, . . . , n}.

For any process X we denote by mT (X, δ) the modulus of continuity:

mT (X, δ) = max{|Xt −Xs| : 0 ≤ s, t ≤ T, |s− t| < δ}.
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If X is an a.s. continuous process, then for all T > 0 it holds that mT (X, δ) → 0
a.s. for δ → 0.

The characterization of the quadratic variation process of Proposition 3.8 below
will be proved using the following lemma.

Lemma 3.7 Let M ∈M2 and t > 0. Then for all t ≥ s one has

E [(Mt −Ms)2|Fs] = E [M2
t −M2

s |Fs] (3.5)

and

E [(Mt −Ms)2 − 〈M〉t + 〈M〉s|Fs] = 0 (3.6)

For all t1 ≤ · · · ≤ tn it holds that

E [
n∑

j=i+1

(Mtj −Mtj−1)
2|Fti ] = E [M2

tn
−M2

ti
|Fti ]. (3.7)

If M is bounded by a constant K > 0, then

E [
n∑

j=i+1

(Mtj −Mtj−1)
2|Fti ] ≤ K2. (3.8)

Proof Equation (3.5) follows by a simple computation and the martingale prop-
erty of M . Then equation (3.7) follows simply by iteration and reconditioning.
Equation (3.6) follows from (3.5) and the definition of the quadratic variation
process. �

Proposition 3.8 Let X be in M2
c. Then Vt(X,Π) converges in probability

to 〈X〉t as µ(Π) → 0: for all ε > 0, η > 0 there exists a δ > 0 such that
P(|Vt(X,Π)− 〈X〉t| > η) < ε whenever µ(Π) < δ.

Proof Supposing that we had already proven the assertion for bounded contin-
uous martingales with bounded quadratic variation, we argue as follows. Let
X be an arbitrary element of M2

c and define for each n ∈ N the stopping times
Tn = inf{t ≥ 0 : |Xt| ≥ n or 〈X〉t ≥ n}. The Tn are stopping times in view
of Proposition 1.10. Then

{|Vt(X,Π)− 〈X〉t| > η} ⊂ {Tn ≤ t} ∪ {|Vt(X,Π)− 〈X〉t| > η, Tn > t}.

The probability on the first event on the right hand side obviously tends to zero
for n → ∞. The second event is contained in {|Vt(XTn ,Π) − 〈X〉T n

t | > η}.
In view of Proposition 3.6 we can rewrite it as {|Vt(XTn ,Π) − 〈XT n〉t| > η}
and its probability can be made arbitrarily small, since the processes XT n

and
〈X〉T n

= 〈XT n〉 are both bounded, by what we supposed at the beginning of
the proof.
We now show that the proposition holds for bounded continuous martingales
with bounded quadratic variation. Actually we will show that we even have L2-
convergence and so we consider E (Vt(X,Π)− 〈X〉t)2. In the second inequality
below we use (3.6) to get rid of the expectation of the cross terms after expanding
the square. We have
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E (Vt(X,Π)− 〈X〉t)2

= E
( ∑

k

(Xtk
−Xtk−1)

2 − (〈X〉tk
− 〈X〉tk−1)

)2

= E
∑

k

(
(Xtk

−Xtk−1)
2 − (〈X〉tk

− 〈X〉tk−1)
)2

≤ 2
∑

k

(
E (Xtk

−Xtk−1)
4 + E (〈X〉tk

− 〈X〉tk−1)
2
)

≤ 2
∑

k

E (Xtk
−Xtk−1)

4 + E
(
mt(〈X〉, µ(Π))〈X〉t

)
.

The second term in the last expression goes to zero in view of the bounded
convergence theorem and continuity of 〈X〉 when µ(Π) → 0. We henceforth
concentrate on the first term. First we bound the sum by

E
∑

k

(
(Xtk

−Xtk−1)
2mt(X,µ(Π))2

)
= E (Vt(X,Π)mt(X,µ(Π)))2),

which is by the Schwartz inequality less then
(
EVt(X,Π)2Emt(X,µ(Π))4

)1/2.
By application of the dominated convergence theorem the last expectation tends
to zero if µ(Π) → 0, so we have finished the proof as soon as we can show that
EVt(X,Π)2 stays bounded. Let K > 0 be an upper bound for X. Then, a two
fold application of (3.8) leads to the inequalities below,

E
( ∑

k

(Xtk
−Xtk−1)

2
)2

= E
∑

k

(Xtk
−Xtk−1)

4 + 2E
∑
i<j

E [(Xtj −Xtj−1)
2(Xti −Xti−1)

2|Fti ]

≤ 4K2E
∑

k

(Xtk
−Xtk−1)

2 + 2K2E
∑

i

(Xti −Xti−1)
2

≤ 6K4.

This finishes the proof. �

Having defined the quadratic variation (in Definition 3.5) of a square integrable
martingale, we can also define the quadratic covariation (also called cross-
variation) between two square integrable martingales X and Y . It is the process
〈X,Y 〉 defined through the polarization formula

〈X,Y 〉 =
1
4
(〈X + Y 〉 − 〈X − Y 〉). (3.9)

Notice that the quadratic covariation process is a process of a.s. bounded vari-
ation. Moreover
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Proposition 3.9 For all X,Y ∈ M2 the process 〈X,Y 〉 is the unique process
that can be written as the difference of two natural processes such that the dif-
ference of XY and such a process is a martingale. Moreover if X,Y ∈ M2

c the
process 〈X,Y 〉 is the unique continuous process of bounded variation such that
the difference of XY and such a process is a martingale.

Proof Exercise 3.4. �

3.3 Exercises

3.1 Let X be a martingale that is bounded in L2. Then X∞ exists as an a.s.
limit of Xt, for t → ∞. Show that ||X||∞ = (EX2

∞)1/2. Show also that
{X ∈ M2 : ||X||∞ < ∞} is a vector space and that || · ||∞ is a norm on this
space under the usual identification that two processes are ”the same”, if they
are indistinguishable.

3.2 Give an example of a martingale (not continuous of course), for which the
result of Proposition 3.8 doesn’t hold. Hint: embed a very simple discrete time
martingale in continuous time, by defining it constant on intervals of the type
[n, n+ 1).

3.3 Show the following statements.
(a) 〈X,Y 〉 = 1

2 (〈X + Y 〉 − 〈X〉 − 〈Y 〉).
(b) The quadratic covariation is a bilinear form.
(c) The Schwartz inequality 〈X,Y 〉2 ≤ 〈X〉〈Y 〉 holds. Hint: Show first that on
a set with probability one one has for all rational a and b 〈aM + bN〉t ≥ 0.
Write this as a sum of three terms and show that the above property extends
to real a and b. Use then that this defines a nonnegative quadratic form.
(d) If V (s, t] denotes the total variation of 〈X,Y 〉 over the interval (s, t], then
a.s. for all t ≥ s

V (s, t] ≤ 1
2
(〈X〉t + 〈Y 〉t − 〈X〉s − 〈Y 〉s). (3.10)

3.4 Prove Proposition 3.9

3.5 Let X ∈ M2
c and let T be a stopping time (not necessarily finite). If

〈X〉T = 0, then P(Xt∧T = 0,∀t ≥ 0) = 1.

3.6 If X is a martingale w.r.t. some filtration, it is also a martingale w.r.t. FX .
Let X and Y be independent processes on some (Ω,F ,P) and assume that both
are right-continuous martingales. Let F0

t = σ(Xs, Ys, s ≤ t) and let F be the
filtration of σ-algebras Ft =

⋂
s>t F0

s ∨N , where N is the collections of all P-null
sets of F . Show that X and Y are martingales w.r.t. F and that 〈X,Y 〉 = 0.

3.7 Let X be a nonnegative continuous process and A a continuous increasing
process such EXT ≤ EAT for all bounded stopping times T . Define the process
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X∗ by X∗
t = sup0≤s≤tXs. Let now T be any stopping time. Show that

P(X∗
T ≥ ε,AT < δ) ≤ 1

ε
E (δ ∧AT ).

Deduce that

P(X∗
T ≥ ε) ≤ 1

ε
E (δ ∧AT ) + P(AT ≥ δ).

Finally, let X = M2, where M ∈M2
c . What is a good candidate for the process

A in this case?

3.8 Formulate the analogue of Proposition 3.8 for the quadratic covariation
process of two martingales in M2

c . Prove it by using the assertion of this propo-
sition.

3.9 Let B be standard Brownian motion. Show that 〈B〉t = t. Let X be the
square integrable martingale defined by Xt = B2

t −t. Show (use Proposition 3.8)
that 〈X〉t = 4

∫ t

0
B2

s ds.

3.10 Let N be a Poisson process, with intensity λ. Let Mt = Nt−λt. Show that
〈M〉t = λt for all t ≥ 0. Show also that Vt(M,Π) → Nt a.s., when µ(Π) → 0.
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4 Local martingales

In proofs of results of previous sections we reduced a relatively difficult problem
by stopping at judiciously chosen stopping times to an easier problem. This is a
standard technique and it also opens the way to define wider classes of processes
than the ones we have used thusfar and that still share many properties of the
more restricted classes. In this section we assume that the underlying filtration
satisfies the usual conditions.

4.1 Localizing sequences and local martingales

Definition 4.1. A sequence of stopping times Tn is called a fundamental or a
localizing sequence if Tn ≥ Tn−1 for all n ≥ 1 and if limn→∞ Tn = ∞ a.s. If
C is a class of processes satisfying a certain property, then (usually) by Cloc we
denote the class of processes X for which there exists a fundamental sequence
of stopping times Tn such that all stopped processes XT n

belong to C.

In the sequel we will take for C various classes consisting of martingales with a
certain property. The first one is defined in

Definition 4.2. An adapted right-continuous process X is called a local mar-
tingale if there exists a localizing sequence of stopping times Tn such that for
every n the process XT n

1{T n>0} = {XT n∧t1{T n>0} : t ≥ 0} is a uniformly inte-
grable martingale. The class of local martingales X with X0 = 0 a.s. is denoted
by Mloc. The subclass of continuous local martingales X with X0 = 0 a.s. is
denoted by Mloc

c .

Proposition 4.3 Let X be an adapted right-continuous process such that X0 =
0 a.s. Then the following statements are equivalent.
(i) X is a local martingale.
(ii) There exists a localizing sequence (Tn) such that the processes XT n

are
uniformly integrable martingales.
(iii) There exists a localizing sequence (Tn) such that the processes XT n

are
martingales.

Proof Exercise 4.1. �

Remark 4.4. By the optional stopping theorem, every martingale is a local
martingale. This can be seen by choosing Tn = n for all n.

4.2 Continuous local martingales

In the sequel we will deal mainly with continuous processes. The main results
are as follows.

Proposition 4.5 If X is a continuous local martingale with X0 = 0 a.s., then
there exist a localizing sequence of stopping times Tn such that the processes
XT n

are bounded martingales.
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Proof Exercise 4.2. �

Recall that we called a (right-continuous) martingale square integrable, if EX2
t <

∞ for all t ≥ 0. Therefore we call a right-continuous adapted process X a locally
square integrable martingale if X0 = 0 and if there exists a localizing sequence
of stopping times Tn such that the process XT n

are all square integrable mar-
tingales. Obviously, one has that these processes are all local martingales. If we
confine ourselves to continuous processes the difference disappears.

Proposition 4.6 Let X be a continuous local martingale with X0 = 0 a.s.
Then it is also locally square integrable.

Proof This follows immediately from Proposition 4.5. �

Some properties of local martingales are given in

Proposition 4.7 (i) A local martingale of class DL is a martingale.
(ii) Any nonnegative local martingale is a supermartingale.

Proof Exercise 4.3. �

Although local martingales in general don’t have a finite second moment, it
is possible to define a quadratic variation process. We do this for continuous
local martingales only and the whole procedure is based on the fact that for a
localizing sequence (Tn) the processes XT n

have a quadratic variation process
in the sense of section 3.2.

Proposition 4.8 Let X ∈ Mloc
c . Then there exists a unique (up to indistin-

guishability) continuous process 〈X〉 with a.s. increasing paths such that X2 −
〈X〉 ∈ Mloc

c .

Proof Choose stopping times Tn such that the stopped processes XT n

are
bounded martingales. This is possible in view of Proposition 4.5. Then, for each
n there exists a unique natural (even continuous) increasing process An such that
(XT n

)2−An is a martingale. For n > m we have that (XT n

)T m

= XT m

. Hence,
by the uniqueness of the Doob-Meyer decomposition, one has (An)T m

= Am.
So we can unambiguously define 〈X〉 by setting 〈X〉t = An

t if t < Tn. Moreover,
we have

X2
t∧T n − 〈X〉t∧T n = (XT n

t )2 −An
t ,

which shows that for all n the process (X2)T n − 〈X〉T n

is a martingale, and
thus that X2 − 〈X〉 is a (continuous) local martingale. �

Corollary 4.9 If X and Y belong to Mloc
c , then there exists a unique (up to

indistinguishability) continuous process 〈X,Y 〉 with paths of bounded variation
a.s. such that XY − 〈X,Y 〉 ∈ Mloc

c .

Proof Exercise 4.4. �
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4.3 Exercises

4.1 Prove Proposition 4.3.

4.2 Prove Proposition 4.5.

4.3 Prove Proposition 4.7.

4.4 Prove Corollary 4.9.

4.5 Let M ∈ Mloc
c and let S be a stopping time. Put Xt = M2

t and define
X∞ = lim inft→∞Xt (and 〈M〉∞ = limt→∞〈M〉t). Show that EXS ≤ E 〈M〉S .

4.6 Let M ∈M2
c satisfy the property E 〈M〉∞ <∞. Deduce from Exercise 4.5

that {MS : S a finite stopping time} is uniformly integrable and hence that M∞
is well defined as a.s. limit of Mt. Show that EM2

∞ = E 〈M〉∞.

4.7 Let M ∈M2 have independent and stationary increments, the latter mean-
ing that Mt+h −Mt has the same distribution as Ms+h −Ms for all s, t, h > 0.
Show that 〈M〉t = tEM2

1 .

4.8 Let X be an adapted process and T a stopping time. Show that XT 1{T>0}
is a uniformly integrable martingale iff X01{T>0} is integrable and XT − X0

is a uniformly integrable martingale. (The latter property for a fundamental
sequence of stopping times is also used as definition of local martingale.)
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5 Spaces of progressive processes

Throughout this section we work with a fixed probability space (Ω,F ,P) that
is endowed with a filtration F that satisfies the usual conditions. All properties
below that are defined relative to a filtration (such as adaptedness) are assumed
to be defined in terms of this filtration.

5.1 Doléans measure

In this section we often work with (Lebesgue-Stieltjes) integrals w.r.t. a process
of finite variation A that satisfy A0 = 0. So, for an arbitrary process X with
the right measurability properties we will look at integrals of the form∫

[0,T ]

Xt(ω) dAt(ω), (5.1)

with t the integration variable and where this integral has to be evaluated ω-
wise. We follow the usual convention for random variables by omitting the
variable ω. But in many cases we also omit the integration variable t and hence
an expression like (5.1) will often be denoted by∫

[0,T ]

X dA.

We also use the notation
∫ T

0
instead of

∫
(0,T ]

if the process A has a.s. continuous
paths. Let M be a square integrable continuous martingale (M ∈ M2

c). Recall
that 〈M〉 is the unique continuous increasing process such that M2 − 〈M〉 is a
martingale.

Definition 5.1. The Doléans measure µM on ([0,∞) × Ω,B([0,∞)) × F) is
defined by

µM (A) =
∫

Ω

∫ ∞

0

1A(t, ω) d〈M〉t(ω)P(dω) = E
∫ ∞

0

1A d〈M〉. (5.2)

For a measurable, adapted process X we define for every T ∈ [0,∞)

||X||T = (E
∫ T

0

X2
t d〈M〉t)1/2 = (

∫
X21[0,T ]×Ω dµM )1/2 (5.3)

and

||X|| =
∞∑

n=1

2−n(1 ∧ ||X||n). (5.4)

We will also use

||X||∞ = (E
∫ ∞

0

X2
t d〈M〉t)1/2 = (

∫
X2 dµM )1/2 (5.5)
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Two measurable, adapted processes X and Y are called (M -)equivalent if ||X−
Y || = 0. By P we denote the class of progressive processes X for which ||X||T <
∞ for all T ∈ [0,∞).

Remark 5.2. Notice that, with time restricted to [0, T ], the function || · ||T
defines an L2-norm on the space of measurable, adapted processes if we identify
equivalent processes. Similarly, d(X,Y ) := ||X − Y || defines a metric. Notice
also that X and Y are equivalent iff

∫ T

0
(X−Y )2 d〈M〉 = 0 a.s. for all T ∈ [0,∞).

In addition to the class P introduced above we also need the classes PT for
T ∈ [0,∞]. These are defined in

Definition 5.3. For T < ∞ the class PT is the set of processes X in P for
which Xt = 0 if t > T . The class P∞ is the subclass of processes X ∈ P for
which E

∫∞
0
X2 d〈M〉 <∞.

Remark 5.4. A process X belongs to PT iff Xt = 0 for t > T and ||X||T <∞.

Remark 5.5. All the classes, norms and metrics above depend on the martin-
gale M . When other martingales than M play a role in a certain context, we
emphasize this dependence by e.g. writing PT (M), P(M), etc.

Proposition 5.6 For T ≤ ∞ the class PT is a Hilbert space with inner product
given by

(X,Y )T = E
∫ T

0

XY d〈M〉,

if we identify two processes X and Y that satisfy ||X − Y ||T = 0.

Proof Let T < ∞ and let (Xn) be a Cauchy sequence in PT . Since PT is
a subset of the Hilbert space L2([0, T ] × Ω,B([0, T ]) × FT , µM ), the sequence
(Xn) has a limit X in this space. We have to show that X ∈ PT , but it is
not clear that the limit process X is progressive (a priori we can only be sure
that X is B([0, T ]) × FT -measurable). We will replace X with an equivalent
process as follows. First we select a subsequence Xnk that converges to X
almost everywhere w.r.t. µM . We set Yt(ω) = lim supk→∞Xnk

t (ω). Then Y is
a progressive process, since the Xn are progressive and ||X − Y ||T = 0, so Y is
equivalent to X and ||Xn − Y ||T → 0. For T = ∞ the proof is similar. �

5.2 Local variants

In this subsection we enlarge the classes PT by dropping the requirement that
the expectations are finite and by relaxing the condition that M ∈ M2

c . We
have

Definition 5.7. Let M ∈ Mloc
c . The class P∗ is the equivalence class of pro-

gressive processes X such that
∫ T

0
X2 d〈M〉 <∞ a.s. for every T ∈ [0,∞).
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Remark 5.8. If M ∈ Mloc
c , there exist a fundamental sequence of stopping

times Rn such that MRn ∈M2
c . If we take X ∈ P∗, then the bounded stopping

times Sn = n ∧ inf{t ≥ 0 :
∫ t

0
X2 d〈M〉 ≥ n} also form a fundamental sequence.

Consider then the stopping times Tn = Rn ∧ Sn. These form a fundamental
sequence as well. Moreover, MT n ∈ M2

c and the processes Xn defined by
Xn

t = Xt1{t≤T n} belong to P(MT n

).

5.3 Simple processes

We start with a definition.

Definition 5.9. A process X is called simple if there exists a strictly increasing
sequence of real numbers tn with t0 = 0 and tn → ∞, a uniformly bounded
sequence of random variables ξn with the property that ξn is Ftn

-measurable
for each n, such that

Xt = ξ01{0}(t) +
∞∑

n=0

ξn1(tn,tn+1](t), t ≥ 0.

The class of simple processes is denoted by S.

Remark 5.10. Notice that simple processes are progressive and bounded. If
M ∈M2

c , then a simple process X belongs to P = P(M).

The following lemma is crucial for the construction of the stochastic integral.

Lemma 5.11 Let X be a bounded progressive process. Then there exists a
sequence of simple processes Xn such that for all T ∈ [0,∞) one has

lim
n→∞

E
∫ T

0

(Xn
t −Xt)2 dt = 0. (5.6)

Proof Suppose that we had found for each T ∈ [0,∞) a sequence of simple
processes Xn,T (depending on T ) such that (5.6) holds. Then for all integers n
there exist integers mn such that

E
∫ n

0

(Xmn,n
t −Xt)2 dt ≤

1
n
.

One verifies that the sequence with elements Xn = Xmn,n then has the asserted
property. Therefore, we will keep T fixed in the remainder of the proof and
construct a sequence of simple processes Xn for which (5.6) holds. This is
relatively easy if X is continuous. Consider the sequence of approximating
processes that we used in the proof of 1.7. This sequence has the desired property
in view of the bounded convergence theorem.
If X is merely progressive (but bounded), we proceed by first approximating it
with continuous processes to which we apply the preceding result. For t ≤ T we
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define the bounded continuous (‘primitive’) process F by Ft(ω) =
∫ t

0
Xs(ω) ds

for t ≥ 0 and Ft(ω) = 0 for t < 0 and for each integer m

Y m
t (ω) = m(Ft(ω)− Ft−1/m(ω)).

By the fundamental theorem of calculus, for each ω, the set of t for which Y m
t (ω)

does not converge to Xt(ω) for m→∞ has Lebesgue measure zero. Hence, by
dominated convergence, we also have E

∫ T

0
(Y m

t −Xt)2 dt→ 0. By the preceding
result we can approximate each of the continuous Y m by simple processes Y m,n

in the sense that E
∫ T

0
(Y m

t − Y m,n
t )2 dt → 0. But then we can also find a

sequence of simple processes Xm = Y m,nm for which E
∫ T

0
(Xm

t −Xt)2 dt→ 0.
�

The preceding lemma enables us to prove

Proposition 5.12 Let M be in M2
c and assume that there exists a progressive

nonnegative process f such that 〈M〉 is indistinguishable from
∫ ·
0
fs ds (the pro-

cess 〈M〉 is said to be a.s. absolutely continuous). Then the set S of simple
processes is dense in P with respect to the metric d defined in Remark 5.2.

Proof Let X ∈ P and assume that X is bounded. By Lemma 5.11 we can find
simple processes Xn such that for all T > 0 it holds that E

∫ T

0
(Xn−X)2 dt→ 0.

But then we can select a subsequence (Xnk) such that Xnk → X for dt × P-
almost all (t, ω). By the dominated convergence theorem we then also have for
all T > 0 that E

∫ T

0
(Xnk −X)2ft dt→ 0.

IfX is not bounded we truncate it and introduce the processesXn = X1{|X|≤n}.
Each of these can be approximated by simple processes in view of the previ-
ous case. The result then follows upon noticing that E

∫ T

0
(Xn − X)2 d〈M〉 =

E
∫ T

0
X21{|X|>n} d〈M〉 → 0. �

Remark 5.13. The approximation results can be strengthened. For instance,
in the previous lemma we didn’t use progressive measurability. The space S
is also dense in the set of measurable processes. Furthermore, if we drop the
requirement that the process 〈M〉 is a.s. absolutely continuous, the assertion
of Proposition 5.12 is still true, but the proof is much more complicated. For
most, if not all, of our purposes the present version is sufficient.

5.4 Exercises

5.1 Let X be a simple process given by Xt =
∑∞

k=1 ξk−11(tk−1,tk](t) and let M
be an element of M2

c . Consider the discrete time process V defined by Vn =∑n
k=1 ξk−1(Mtk

−Mtk−1). Show that V is a martingale w.r.t. an appropriate
filtration G = (Gn) in discrete time. Compute

∑n
k=1 E [(Vk − Vk−1)2|Gk−1].

Compute also
∫ tn

0
X2

t d〈M〉t.
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5.2 Let W be a Brownian motion and let for each n a partition Πn = {0 =
tn0 , . . . , t

n
n = T} of [0, T ] be given with µ(Πn) → 0 for n → ∞. Let hn : R → R

be defined by hn(x) = x1[−n,n](x) and put

Wn
t =

n∑
j=1

hn(Wtn
j−1

)1(tn
j−1,tn

j ](t).

Then Wn ∈ S for all n. Show that Wn →W in PT (W ).
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6 Stochastic Integral

In previous sections we have already encountered integrals where both the in-
tegrand and the integrator were stochastic processes, e.g. in the definition of a
natural process. In all these cases the integrator was an increasing process or,
more general, a process with paths of bounded variation over finite intervals. In
the present section we will consider integrals where the integrator is a contin-
uous martingale. Except for trivial exceptions, these have paths of unbounded
variation so that a pathwise definition of these integrals in the Lebesgue-Stieltjes
sense cannot be given. As a matter of fact, if one aims at a sensible pathwise
definition of such an integral, one finds himself in a (seemingly) hopeless posi-
tion in view of Proposition 6.1 below. For integrals, over the interval [0, 1] say,
defined in the Stieltjes sense we know that the sums

SΠh =
∑

h(tk)(g(tk+1)− g(tk)) (6.1)

converge for continuous h and g of bounded variation, if we sum over the ele-
ments of partitions Π = {0 = t0 < · · · < tn = 1} whose mesh µ(Π) tends to
zero.

Proposition 6.1 Suppose that the fixed function g is such that for all continu-
ous functions h one has that SΠh converges, if µ(Π) → 0. Then g is of bounded
variation.

Proof We view the SΠ as linear operators on the Banach space of continu-
ous functions on [0, 1] endowed with the sup-norm || · ||. Notice that |SΠh| ≤
||h||

∑
|g(tk+1)− g(tk)| = ||h||V 1(g; Π), where V 1(g; Π) denotes the variation of

g over the partition Π. Hence the operator norm ||SΠ|| is less then V 1(g; Π). For
any partition Π = {0 = t0 < · · · < tn = 1} we can find (by linear interpolation) a
continuous function hΠ (bounded by 1) such that hΠ(tk) = sgn(g(tk+1)−g(tk)).
Then we have SΠhΠ = V 1(g; Π). It follows that ||SΠ|| = V 1(g; Π). By assump-
tion, for any h we have that the sums SΠh converge if µ(Π) → 0, so that for any
h the set with elements |SΠh| (for such Π) is bounded. By the Banach-Steinhaus
theorem (Theorem B.5), also the ||SΠ|| form a bounded set. The result follows
since we had already observed that ||SΠ|| = V 1(g; Π). �

The function h in the above proof evaluated at points tk uses the value of g at a
‘future’ point tk+1. Excluding functions that use ‘future’ information, one also
says that such functions are anticipating, is one of the ingredients that allow
us to nevertheless finding a coherent notion of the (stochastic) integral with
martingales as integrator.

6.1 Construction

The basic formula for the construction of the stochastic integral is formula (6.2)
below. We consider a process X ∈ S as in Definition 5.9. The stochastic
integral of X w.r.t. M ∈ M2

c is a stochastic process denoted by I(X) (or by
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I, or I(X;M), in sections further down also by X ·M) that at each time t is
defined to be the random variable

It(X) =
∞∑

i=0

ξi(Mt∧ti+1 −Mt∧ti
). (6.2)

For each t ∈ [0,∞) there is a unique n = n(t) such that tn ≤ t < tn+1. Hence
equation (6.2) then takes the form

It(X) =
n−1∑
i=0

ξi(Mti+1 −Mti
) + ξn(Mt −Mtn

). (6.3)

As in classical Lebesgue integration theory one can show that the given ex-
pression for It(X) is independent of the chosen representation of X. Notice
that (6.3) expresses It(X) as a martingale transform. With this observation we
now present the first properties of the stochastic integral.

Lemma 6.2 Let X ∈ S, M ∈M2
c and 0 ≤ s ≤ t <∞. The following identities

are valid.

I0(X) = 0,
E [It(X)|Fs] = Is(X) a.s., (6.4)

E [(It(X)− Is(X))2]|Fs] = E [
∫ t

s

X2
u d〈M〉u|Fs] a.s. (6.5)

Proof The first identity is obvious. To prove equations (6.4) and (6.5) we
assume without loss of generality that t = tn and s = tm. Then It(X)−Is(X) =∑n−1

i=m ξi(Mti+1 −Mti
). Since E [ξi(Mti+1 −Mti

)|Fti
] = 0, equation (6.4) follows

by re-conditioning. Similarly, we have

E [(ξi(Mti+1 −Mti
))2|Fti

] = ξ2i E [(Mti+1 −Mti
)2|Fti

]
= ξ2i E [〈M〉ti+1 − 〈M〉ti

|Fti
]

= E [
∫ ti+1

ti

X2
u d〈M〉u|Fti

],

from which (6.5) follows. �

Proposition 6.3 For X ∈ S and M ∈ M2
c the process I(X) is a continuous

square integrable martingale with quadratic variation process

〈I(X)〉 =
∫ ·

0

X2
u d〈M〉u, (6.6)

and,

E It(X)2 = E
∫ t

0

X2
u d〈M〉u. (6.7)
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Thus, for each fixed t, we can view It(·) as a linear operator on the space of
simple processes that are annihilated after t with values in L2(Ω,Ft,P) It follows
that ||I(X)||t = ||X||t, where the first || · ||t is as in Definition 3.2 and the second
one as in Definition 5.1. Hence It is an isometry. With the pair of ‘norms’ || · ||
in the same definitions, we also have ||I(X)|| = ||X||.

Proof From (6.2) it follows that I(X) is a continuous process and from Lemma 6.2
we then obtain that I(X) ∈M2

c and the expression (6.6) for its quadratic vari-
ation process. Then we also have (6.7) and the equality ||I(X)||t = ||X||t
immediately follows, as well as ||I(X)|| = ||X||. Linearity of It can be proved
as in Lebesgue integration theory. �

Theorem 6.4 Let M ∈ M2
c. For all X ∈ P, there exists a unique (up to

indistinguishability) process I(X) ∈M2
c with the property ||I(Xn)− I(X)|| → 0

for every sequence (Xn) in S such that ||Xn−X|| → 0. Moreover, its quadratic
variation is given by (6.6). This process is called the stochastic integral of X
w.r.t. M .

Proof First we show existence. Let X ∈ P. From Proposition 5.12 and Re-
mark 5.13 we know that there is a sequence of Xn ∈ S such that ||X−Xn|| → 0.
By Proposition 6.3 we have for each t that E (I(Xm)t− I(Xn)t)2 = E

∫ t

0
(Xm

s −
Xn

s )2 d〈M〉s and hence ||I(Xm) − I(Xn)|| = ||Xm − Xn||. This shows that
the sequence I(Xn) is Cauchy in the complete space M2

c (Proposition 3.4) and
thus has a limit in this space. We call it I(X). The limit can be seen to be
independent of the particular sequence (Xn) by the following familiar trick. Let
(Y n) be another sequence in S converging to X. Mix the two sequences as
follows: X1, Y 1, X2, Y 2, . . .. Also this sequence converges to X. Consider the
sequence of corresponding stochastic integrals I(X1), I(Y 1), I(X2), I(Y 2), . . ..
This sequence has a unique limit in M2

c and hence its subsequences (I(Xn))
and (I(Y n)) must converge to the same limit, which then must be I(X). The
proof of (6.6) is left as Exercise 6.7. �

We will frequently need the following extension of Proposition 6.3.

Lemma 6.5 The mapping I : P → M2
c is linear and IT : (PT , || · ||) →

L2(Ω,FT ,P) an isometry.

Proof Exercise 6.8 �

Proposition 6.6 Let X ∈ P, M ∈M2
c and T a stopping time. Then

I(X;M)T = I(X;MT )

and

I(X;M)T = I(1[0,T ]X;M).
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Proof If X ∈ S, the result is trivial. For X ∈ P, we take Xn ∈ S such that
||Xn−X|| → 0. Using the assertion for processes in S and the linearity property
of Lemma 6.5 we can write

I(X;M)T − I(X;MT ) = I(X −Xn;M)T − I(X −Xn;MT ).

For any t > 0 we have E (I(X − Xn;M)T
t )2 = E

∫ t∧T

0
(Xu − Xn

u )2 d〈M〉u ≤
E

∫ t

0
(Xu − Xn

u )2 d〈M〉u → 0. Similarly, E I(X − Xn;MT )2t = E
∫ t

0
(Xu −

Xn
u )2 d〈MT 〉u = E

∫ t

0
(Xu −Xn

u )2 d〈M〉Tu ≤ E
∫ t

0
(Xu −Xn

u )2 d〈M〉u → 0. This
shows the first equality. To prove the second one we write

I(X;M)T
t − I(1[0,T ]X;M)t =

I(X − 1[0,T ]X;M)T
t − (I(1[0,T ]X;M)t − I(1[0,T ]X;M)t∧T ).

The first term here is equal to I(1(T,∞]X;M)T
t which has second moment

E
∫ t∧T

0
1(T,∞]X

2 d〈M〉 = 0. Therefore the first term vanishes for all t. The
term in parentheses has second moment E

∫ t

t∧T
1[0,T ]X

2 d〈M〉 (why?), which is
zero as well. �

Proposition 6.7 Let X,Y ∈ P, M ∈M2
c and S ≤ T be stopping times. Then

E [I(X)T∧t|FS ] = I(X)S∧t

and

E [(I(X)T∧t − I(X)S∧t)(I(Y )T∧t − I(Y )S∧t)|FS ] =

E [
∫ T∧t

S∧t

XuYu d〈M〉u|FS ].

Proof The first property follows from Corollary 2.9. The second property is
first proved for X = Y by applying Corollary 2.9 to the martingale I(X)2 −∫ ·
0
X2 d〈M〉 and then by polarization. �

6.2 Characterizations and further properties

One of the aims of this section is the computation of the quadratic covariation
between the martingales I(X;M) and I(Y ;N), where X ∈ P(M), Y ∈ P(N)
and M,N ∈M2

c . For X,Y ∈ S this is (relatively) straightforward (Exercise 6.6)
since the integrals become sums and the result is

〈I(X;M), I(Y ;N)〉 =
∫ ·

0

XY d〈M,N〉. (6.8)

The extension to more general X and Y will be established in a number of steps.
The first step is a result known as the Kunita-Watanabe inequality.
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Proposition 6.8 Let M,N ∈ M2
c, X ∈ P(M) and Y ∈ P(N). Let V be the

total variation process of the process 〈M,N〉. Then∫ t

0

|XY | dV ≤
( ∫ t

0

|X|2 d〈M〉
)1/2( ∫ t

0

|Y |2 d〈N〉
)1/2

a.s. (t ≥ 0). (6.9)

Proof Since 〈M,N〉 is absolutely continuous w.r.t. V , it is sufficient to prove
that |

∫ t

0
XY d〈M,N〉| is a.s. less than the right hand side of (6.9). Indeed, since

the density process d〈M,N〉/dV takes its values in {−1, 1}, we can apply the
latter result by noticing that

∫ t

0
|XY | dV =

∫ t

0
XY sgn(XY )d〈M,N〉

dV d〈M,N〉.
As a first result we have that (〈M,N〉t − 〈M,N〉s)2 ≤ (〈M〉t − 〈M〉s)(〈N〉t −
〈N〉s) a.s. (Exercise 6.4), which is used to obtain the second inequality in the
displayed formulas below. First we assume that X and Y are simple. The final
result then follows by taking limits. The process X we can represent on (0, t] as∑

k xk1(tk,tk+1] with the last tn = t. For Y we similarly have
∑

k yk1(tk,tk+1]. It
follows that

|
∫ t

0

XY d〈M,N〉|

≤
∑

|xk||yk||〈M,N〉tk+1 − 〈M,N〉tk
|

≤
∑

k

|xk||yk|
(
(〈M〉tk+1 − 〈M〉tk

)(〈N〉tk+1 − 〈N〉tk
)
)1/2

≤
( ∑

k

x2
k(〈M〉tk+1 − 〈M〉tk

)
)1/2( ∑

k

y2
k(〈N〉tk+1 − 〈N〉tk

)
)1/2

=
( ∫ t

0

|X|2 d〈M〉
)1/2( ∫ t

0

|Y |2 d〈N〉
)1/2

.

The rest of the proof is left as Exercise 6.14. �

Lemma 6.9 Let M,N ∈M2
c and X ∈ P(M). Then

〈I(X;M), N〉 =
∫ ·

0

X d〈M,N〉

or, in short hand notation,

d 〈I(X;M), N〉 = X d〈M,N〉.

Proof Choose Xn ∈ S such that ||Xn −X|| → 0. Then we can find for every
T > 0 a subsequence, again denoted by Xn, such that

∫ T

0
(Xn −X)2 d〈M〉 → 0

a.s. But then 〈I(Xn;M)− I(X;M), N〉2T ≤ 〈I(Xn;M)− I(X;M)〉T 〈N〉T → 0
a.s. But for the simple Xn we easily obtain 〈I(Xn;M), N〉T =

∫ T

0
Xn d〈M,N〉.

Application of the Kunita-Watanabe inequality to |
∫ T

0
(Xn−X) d〈M,N〉| yields

the result. �
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Proposition 6.10 Let M,N ∈ M2
c, X ∈ P(M) and Y ∈ P(N). Then equa-

tion (6.8) holds.

Proof We apply Lemma 6.9 twice and get

〈I(X;M), I(Y ;N)〉 =
∫ ·

0

Y d〈I(X;M), N〉 =
∫ ·

0

XY d〈M,N〉,

which is the desired equality. �

We are now in the position to state an important characterization of the stochas-
tic integral. In certain books it is taken as a definition.

Theorem 6.11 Let M ∈ M2
c and X ∈ P(M). Let I ∈ M2

c be such that
〈I,N〉 =

∫ ·
0
X d〈M,N〉 for all N ∈ M2

c. Then I is indistinguishable from
I(X;M).

Proof Since 〈I(X;M), N〉 =
∫ ·
0
X d〈M,N〉 we get 〈I − I(X;M), N〉 = 0 for all

N ∈M2
c by subtraction. In particular for N = I−I(X;M). The result follows.

�

The characterization is a useful tool in the proof of the following ‘chain rule’.

Proposition 6.12 Let M ∈ M2
c, X ∈ P(M) and Y ∈ P(I(X;M)). Then

XY ∈ P(M) and I(Y ; I(X;M)) = I(XY ;M) up to indistinguishability.

Proof Since 〈I(X;M)〉 =
∫ ·
0
X2 d〈M〉, it immediately follows thatXY ∈ P(M).

Furthermore, for any martingale N ∈M2
c we have

〈I(XY ;M), N〉 =
∫ ·

0

XY d〈M,N〉

=
∫ ·

0

Y d〈I(X;M), N〉

= 〈I(Y ; I(X;M)), N〉.

It follows from Theorem 6.11 that I(Y ; I(X;M)) = I(XY ;M). �

The construction of the stochastic integral that we have developed here is
founded on ‘L2-theory’. We have not defined the stochastic integral w.r.t. a
continuous martingale in a pathwise way. Nevertheless, there exists a ‘pathwise-
uniqueness result’.

Proposition 6.13 Let M1,M2 ∈ M2
c, X1 ∈ P(M1) and X2 ∈ P(M2). Let T

be a stopping time and suppose that MT
1 and MT

2 as well as XT
1 and XT

2 are
indistinguishable. Then the same holds for I(X1;M1)T and I(X2;M2)T .
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Proof For any N ∈M2
c we have that 〈M1 −M2, N〉T = 0. Hence,

〈I(X1;M1)T − I(X2;M2)T , N〉 =
∫ ·

0

X1 d〈MT
1 , N〉 −

∫ ·

0

X2 d〈MT
2 , N〉

=
∫ ·

0

(X1 −X2) d〈MT
1 , N〉

=
∫ ·

0

(X1 −X2) d〈M1, N〉T

=
∫ ·

0

(X1 −X2)1[0,T ] d〈M1, N〉

= 0.

The assertion follows by application of Theorem 6.11. �

6.3 Integration w.r.t. local martingales

In this section we extend the definition of stochastic integral into two directions.
In the first place we relax the condition that the integrator is a martingale (in
M2

c) and in the second place, we put less severe restrictions on the integrand.

In this section M will be a continuous local martingale. We have

Definition 6.14. For M ∈ Mloc
c the class P∗ = P∗(M) is defined as the

collection of progressive processes X with the property that
∫ T

0
X2 d〈M〉 < ∞

a.s. for all T ≥ 0.

Recall that for local martingales the quadratic (co-)variation processes exist.

Theorem 6.15 Let M ∈ Mloc
c and X ∈ P∗(M). Then there exists a unique

local martingale, denoted by I(X;M), such that for all N ∈Mloc
c it holds that

〈I(X;M), N〉 =
∫ ·

0

X d〈M,N〉. (6.10)

This local martingale is called the stochastic integral of X w.r.t. M . If further-
more Y ∈ P∗(N), then equality (6.8) is still valid.

Proof Define the stopping times Sn as a localizing sequence for M and Tn =
inf{t ≥ 0 : M2

t +
∫ t

0
X2 d〈M〉 ≥ n} ∧ Sn. Then the Tn also form a localizing

sequence, |MT n | ≤ n and XT n ∈ P(MT n

). Therefore the stochastic integrals
In := I(XT n

;MT n

) can be defined as before. It follows from e.g. Proposi-
tion 6.13 that In+1 and In coincide on [0, Tn]. Hence we can unambiguously
define I(X;M)t as In

t for any n such that Tn ≥ t. Since I(X;M)T n

= In is
a martingale, I(X;M) is a local martingale. Furthermore, for any N ∈ Mloc

c

we have 〈I(X;M), N〉T n

= 〈In;N〉 =
∫ ·
0
X d〈M,N〉T n

. By letting n → ∞ we
obtain (6.10). The uniqueness follows as in the proof of Theorem 6.11. �
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6.4 Exercises

6.1 Let (Xn) be a sequence in P that converges to X w.r.t. the metric of Defi-
nition 5.1. Show that the stochastic integrals I(Xn) converge to I(X;M) w.r.t.
the metric of Definition 3.2 and also that sups≤t |I(Xn)s − I(X)s|

P→ 0. (The
latter convergence is called uniform convergence on compacts in probability,
abbreviated by ucp-convergence).

6.2 Show, not referring to Proposition 6.6, that I(1[0,T ]X;M) = I(X;M)T for
any finite stopping time T , M ∈M2

c and X ∈ P(M).

6.3 Let S and T be stopping times such that S ≤ T and let ζ be a bounded FS-
measurable random variable. Show that the process X = ζ1(S,T ] is progressive.
Let M ∈M2

c . Show that I(ζ1(S,T ];M)t = ζ(MT∧t −MS∧t).

6.4 Show that (〈M,N〉t − 〈M,N〉s)2 ≤ (〈M〉t − 〈M〉s)(〈N〉t − 〈N〉s) a.s. for
M,N ∈M2. Hint: It holds on a set with probability one that for all rational a
and b one has 〈aM + bN〉t − 〈aM + bN〉s ≥ 0. Write this difference termwise
and show that we may also take a and b real and use then that this defines a
nonnegative quadratic form.

6.5 Prove the second assertion of Proposition 6.7.

6.6 Show the equality (6.8) for X and Y in S.

6.7 Finish the proof of Theorem 6.4. I.e. show that the quadratic variation of
I(X;M) is given by (6.6) if M ∈M2

c and X ∈ P(M).

6.8 Prove Lemma 6.5, so show that I(X + Y ;M) and I(X;M) + I(Y ;M) are
indistinguishable if M ∈M2

c and X,Y ∈ P(M).

6.9 Let W be standard Brownian motion. Find a sequence of piecewise constant
processes Wn such that E

∫ T

0
|Wn

t −Wt|2dt → 0. Compute
∫ T

0
Wn

t dWt and
show that it ‘converges’ (in what sense?) to 1

2 (W 2
T − T ), if we consider smaller

and smaller intervals of constancy. Deduce that
∫ T

0
Wt dWt = 1

2 (W 2
T − T ).

6.10 Let M ∈ Mloc
c , X,Y ∈ P∗(M) and a, b ∈ R . Show that I(aX + bY ;M)

and aI(X;M) + bI(Y ;M) are indistinguishable.

6.11 Let W be Brownian motion and T a stopping time with ET < ∞. Show
that EWT = 0 and EW 2

T = ET .

6.12 Define for M ∈M2
c and X ∈ P(M) for 0 ≤ s < t ≤ T the random variable∫ t

s
X dM as I(X;M)t − I(X;M)s. Show that

∫ t

s
X dM = I(1(s,t]X;M)T .

6.13 Let M,N ∈ M2
c and X ∈ P(M) ∩ P(N). Show that I(X;M) + I(X;N)

and I(X;M +N) are indistinguishable.

6.14 Finish the proof of Proposition 6.8 as follows. Show that we can deduce
from the given proof that inequality (6.9) holds for all bounded processes X ∈
P(M) and Y ∈ P(N) and then for all X ∈ P(M) and Y ∈ P(N).
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7 The Itô formula

As almost always we assume also in this section that the filtration F on the
underlying probability space (Ω,F ,P) satisfies the usual conditions.

7.1 Semimartingales

Definition 7.1. A process X is called a (continuous) semimartingale if it ad-
mits a decomposition

X = X0 +A+M, (7.1)

where M ∈Mloc
c and A is a continuous process with paths of bounded variation

(over finite intervals) and A0 = 0 a.s.

Remark 7.2. The decomposition (7.1) is unique up to indistinguishability.
This follows from the fact that continuous local martingales that are of bounded
variation are a.s. constant in time (Lemma 2.14).

Every continuous submartingale is a semimartingale and its semimartingale de-
composition of Definition 7.1 coincides with the Doob-Meyer decomposition.

Definition 7.3. If X and Y are semimartingales with semimartingale decom-
positions X = X0 + A + M and Y = Y0 + B + N where M and N are local
martingales and A and B processes of bounded variation, then we define their
quadratic covariation process 〈X,Y 〉 as 〈M,N〉.

Proposition 7.4 The given definition of 〈X,Y 〉 for semimartingales coincides
with our intuitive understanding of quadratic covariation. If (Πn) is a sequence
of partitions of [0, t] whose meshes µ(Πn) tend to zero, then for every T > 0 we
have

sup
t≤T

|Vt(X,Y ; Πn)− 〈X,Y 〉t|
P→ 0,

where Vt(X,Y ; Π) =
∑

(Xtk+1 −Xtk
)(Ytk+1 − Ytk

) with the summation over the
tk ∈ Π.

Proof It is sufficient to prove this for X = Y with X0 = 0. Let X =
A + M according to equation (7.1). Write Vt(X,X; Πn) = Vt(M,M ; Πn) +
2Vt(A,M ; Πn) + Vt(A,A; Πn). Since A has paths of bounded variation and A
and M have continuous paths, the last two terms tend to zero a.s. We con-
centrate henceforth on Vt(M,M ; Πn). Let (Tm) be a localizing sequence for M
such that MT m

is bounded by m as well as 〈MT m〉. For given ε, δ, T > 0, we
can choose Tm such that P(Tm ≤ T ) < δ. We thus have

P(sup
t≤T

|Vt(M,M ; Πn)− 〈M〉t| > ε) ≤

δ + P(sup
t≤T

|Vt(MT m

,MT m

; Πn)− 〈MT m

〉t| > ε, T < Tm). (7.2)
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Realizing that V (MT m

,MT m

; Πn)−〈MT m〉 is a bounded martingale, we apply
Doob’s inequality to show that the second term in (7.2) tends to zero when the
mesh µ(Πn) tends to zero. Actually, similar to the proof of Proposition 3.8, we
show L2-convergence. Then let m → ∞. (We thus obtain by almost the same
techniques an improvement of Proposition 3.8). �

Definition 7.5. A progressive process Y is called locally bounded if there exists
a localizing sequence (Tn) such that the stopped processes Y T n

are bounded.

Clearly, all continuous processes are locally bounded and locally bounded pro-
cesses belong to P∗(M) for any continuous local martingale M . Moreover, for
locally bounded processes Y and continuous processes A that are of bounded
variation, the pathwise Stieltjes integrals

∫ t

0
Ys(ω) dAs(ω) are (a.s.) defined for

every t > 0.

Definition 7.6. Let Y be a locally bounded process and X a semimartingale
with decomposition (7.1). Then the stochastic integral of Y w.r.t. X is defined
as I(Y ;M) +

∫ ·
0
Y dA. Here the first integral is the stochastic integral of The-

orem 6.15 and the second one is the Stieltjes integral that we just mentioned.
From now on we will use the notation

∫ ·
0
Y dX or Y ·X to denote the stochastic

integral of Y w.r.t. X.

Proposition 7.7 Let Y, U be locally bounded processes and X a semimartin-
gale. Then the product Y U is locally bounded as well, Y ·X is a semimartingale
and U · (Y ·X) = (Y U) ·X. If T is a stopping time, then (Y ·X)T = Y ·XT =
(1[0,T ]Y ) ·X.

Proof We only have to take care of the (local) martingale parts. But for these
we have propositions 6.6 and 6.12, that we combine with an appropriate stopping
argument. �

Proposition 7.8 Let X be a continuous semimartingale and (Y n) a sequence
of locally bounded progressive processes that converge to zero pointwise. If there
exists a locally bounded progressive process Y that dominates all the Y n, then
Y n · X converges to zero uniformly in probability on compact sets (also called
ucp convergence, notation: Y n ·X ucp→ 0), meaning that sups≤t |

∫ s

0
Y n dX| tends

to zero in probability for all t ≥ 0.

Proof Let X = A + M . Then sups≤t |
∫ s

0
Y n dA| tends to zero pointwise in

view of Lebesgue’s dominated convergence theorem. Therefore we prove the
proposition for X = M , a continuous local martingale. Choose stopping times
Tm such that each MT m

is a square integrable martingale and Y T m

bounded.
Then for all T > 0, E

∫ T

0
(Y n)2 d〈MT m〉 → 0 for n → ∞ and by the first

construction of the stochastic integral we also have for all T > 0 that E (Y n ·
MT m

)2T → 0 and consequently, see the proof of Proposition 7.4, we have Y n ·
MT m ucp→ 0 for n → ∞. The dependence on Tm can be removed in the same
way as in the proof of Proposition 7.4. �

40



Corollary 7.9 Let Y be a continuous adapted process and X a semimartingale.
Let Πn be a sequence of partitions {tn0 , . . . , tnkn} of [0, t] whose meshes tend to
zero. Let Y n =

∑
k Ytn

k
1(tn

k ,tn
k+1]

. Then Y n ·X ucp→ Y ·X.

Proof Since Y is locally bounded, we can find stopping times Tm such that
|Y T m | ≤ m and hence supt |(Y n)T m

t | ≤ m. We can therefore apply the preceding
proposition to the sequence ((Y n)T m

)n≥1 that converges pointwise to Y T m

and
with X replaced with XT m

. We thus obtain Y n · (XT m

)
ucp→ Y · (XT m

), which
is nothing else but supt≤T |

∫ t∧T m

0
Y n dX −

∫ t∧T m

0
Y dX| P→ 0 for all T > 0.

Finally, since for each t the probability P(t ≤ Tm) → 1, we can remove the
stopping time in the last ucp convergence. �

7.2 Integration by parts

The following (first) stochastic calculus rule is the foundation for the Itô formula
of the next section.

Proposition 7.10 Let X and Y be (continuous) semimartingales. Then

XtYt = X0Y0 +
∫ t

0

X dY +
∫ t

0

Y dX + 〈X,Y 〉t a.s. (t ≥ 0). (7.3)

A special case occurs when Y = X in which case (7.3) becomes

X2
t = X2

0 + 2
∫ t

0

X dX + 〈X〉t a.s. (t ≥ 0). (7.4)

Proof It is sufficient to prove (7.4), because then (7.3) follows by polarization.
Let then Π be a subdivision of [0, t]. Then, summing over the elements of the
subdivision, we have

X2
t −X2

0 = 2
∑

Xtk
(Xtk+1 −Xtk

) +
∑

(Xtk+1 −Xtk
)2 a.s.(t ≥ 0).

To the first term on the right we apply Corollary 7.9 and for the second term
we use Proposition 7.4. This yields the assertion. �

Notice that a consequence of Proposition 7.10 is that we can use equation (7.3)
to define the quadratic covariation between two semimartingales. Indeed, some
authors take as their point of view.

7.3 Itô’s formula

Theorem 7.11 below contains the celebrated Itô formula (7.5), perhaps the most
famous and a certainly not to be underestimated result in stochastic analysis.
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Theorem 7.11 Let X be a continuous semimartingale and f a twice continu-
ously differentiable function on R. Then f(X) is a continuous semimartingale
as well and it holds that

f(Xt) = f(X0) +
∫ t

0

f ′(X) dX +
1
2

∫ t

0

f ′′(X) d〈X〉, a.s. (t ≥ 0). (7.5)

Before giving the proof of Theorem 7.11, we comment on the integrals in equa-
tion (7.5). The first integral we have to understand as a sum as in Definition 7.6.
With M the local martingale part of X we therefore have to consider the inte-
gral f ′(X) ·M , which is well defined since f ′(X) is continuous and thus locally
bounded. Moreover it is a continuous local martingale. With A the finite varia-
tion part of X, the integral

∫ ·
0
f ′(X) dA has to be understood in the (pathwise)

Lebesgue-Stieltjes sense and thus it becomes a process of finite variation, as
is the case for the integral

∫ ·
0
f ′′(X) d〈X〉. Hence, f(X) is a continuous semi-

martingale and its local martingale part is f ′(X) ·M .

Proof The theorem is obviously true for affine functions and for f given by
f(x) = x2 equation (7.5) reduces to (7.4). We show by induction that (7.5)
is true for any monomial and hence, by linearity, for every polynomial. The
general case follows at the end.
Let f(x) = xn = xn−1x. We apply the integration by parts formula (7.3) with
Yt = Xn−1

t and assume that (7.5) is true for f(x) = xn−1. We obtain

Xn
t = Xn

0 +
∫ t

0

Xn−1 dX +
∫ t

0

X dXn−1 + 〈X,Xn−1〉t. (7.6)

By assumption we have

Xn−1
t = Xn−1

0 +
∫ t

0

(n− 1)Xn−2 dX +
1
2

∫ t

0

(n− 1)(n− 2)Xn−3 d〈X〉. (7.7)

We obtain from this equation that 〈Xn−1, X〉 (remember that the quadratic co-
variation between two semimartingales is determined by their (local) martingale
parts) is given by (n − 1)

∫ ·
0
Xn−2 d〈X〉. Inserting this result as well as (7.7)

into (7.6) and using Proposition 7.7 we get the result for f(x) = xn and hence
for f equal to an arbitrary polynomial.
Suppose now that f is twice continuously differentiable and that X is bounded,
with values in [−K,K], say. Then, since f ′′ is continuous, we can (by the
Weierstraß approximation theorem) view it on [−K,K] as the uniform limit
of a sequence of polynomials, p′′n say: for all ε > 0 there is n0 such that
sup[−K,K] |f ′′(x) − p′′n(x)| < ε, if n > n0. But then f ′ is the uniform limit
of p′n defined by p′n(x) = f ′(−K) +

∫ x

−K
p′′n(u) du and f as the uniform limit of

the polynomials pn defined by pn(x) = f(−K) +
∫ x

−K
p′n(u) du. For the polyno-

mials pn we already know that (7.5) holds true. Write R for the difference of
the left hand side of (7.5) minus its right hand side. Then

R = f(Xt)− pn(Xt)− (f(X0)− pn(X0))

−
∫ t

0

(f ′(X)− p′n(X)) dX − 1
2

∫ t

0

(f ′′(X)− p′′n(X)) d〈X〉.
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The first two differences in this equation can be made arbitrarily small by the
definition of the pn. To the first (stochastic) integral we apply Proposition 7.8
and the last integral has absolute value less than ε〈X〉t if n > n0.
Let now f be arbitrary and let TK = inf{t ≥ 0 : |Xt| > K}. Then, certainly
XT K

is bounded by K and we can apply the result of the previous step. We
have

f(XT K

t ) = f(X0) +
∫ t

0

f ′(XT K

) dXT K

+
1
2

∫ t

0

f ′′(XT K

) d〈X〉T
K

,

which can be rewritten as

f(Xt∧T K ) = f(X0) +
∫ t∧T K

0

f ′(X) dX +
1
2

∫ t∧T K

0

f ′′(X) d〈X〉.

We trivially have f(Xt∧T K ) → f(Xt) a.s. and the right hand side of the previous
equation is on {t < TK} (whose probability tends to 1) equal to the right hand
side of (7.5). The theorem has been proved. �

Remark 7.12. Formula (7.5) is often represented in differential notation, a
short hand way of writing the formula down without integrals. We write

df(Xt) = f ′(Xt) dXt +
1
2
f ′′(Xt) d〈X〉t,

or merely

df(X) = f ′(X) dX +
1
2
f ′′(X) d〈X〉.

With minor changes in the proof one can show that also the following multi-
variate extension of the Itô formula (7.5) holds true. If X = (X1, . . . , Xd) is a
d-dimensional vector of semimartingales and f : R d → R is twice continuously
differentiable in all its arguments, then

f(Xt) = f(X0) +

d∑
i=1

∫ t

0

∂f

∂xi
(X) dXi +

1

2

d∑
i,j=1

∫ t

0

∂2f

∂xi∂xj
(X) d〈Xi, Xj〉. (7.8)

Notice that in this expression we only need second order derivatives ∂2f
∂xi∂xj

,
if the corresponding components Xi and Xj of X both have a non-vanishing
martingale part.

Remark 7.13. The integration by parts formula (7.3) is a special case of (7.8).

7.4 Applications of Itô’s formula

Let X be a (continuous) semimartingale and define the process Z by Zt =
Z0 exp(Xt− 1

2 〈X〉t), where Z0 is an F0-measurable random variable. Application
of Itô’s formula gives

Zt = Z0 +
∫ t

0

Z dX. (7.9)

43



This is a linear (stochastic) integral equation, that doesn’t have the usual expo-
nential solution as in ordinary calculus (unless 〈X〉 = 0). The process Z with
Z0 = 1 is called the Doléans exponential of X and we have in this case the
special notation

Z = E(X). (7.10)

Notice that if X is a local martingale, Z is local martingale as well. Later on
we will give conditions on X that ensure that Z becomes a martingale.

An application of Itô’s formula we present in the proof of Lévy’s characterization
of Brownian motion, Proposition 7.14.

Proposition 7.14 Let M be a continuous local martingale (w.r.t. to the filtra-
tion F) with M0 = 0 and 〈M〉t ≡ t. Then M is a Brownian motion (w.r.t.
F).

Proof By splitting into real and imaginary part one can show that Itô’s formula
also holds for complex valued semimartingales (here, by definition both the real
and the imaginary part are semimartingales). Let u ∈ R be arbitrary and define
the process Y by Yt = exp(iuMt + 1

2u
2t). Applying Itô’s formula, we obtain

Yt = 1 + iu

∫ t

0

Ys dMs.

It follows that Y is a complex valued local martingale. We stop Y at the fixed
time point t0. Then, the stopped process Y t0 is bounded and thus a martingale
and since Y > 0 we get for all s < t < t0

E [
Yt

Ys
|Fs] = 1.

This identity in explicit form is equal to

E [exp(iu(Mt −Ms) +
1
2
u2(t− s))|Fs] = 1,

which is valid for all t > s, since t0 is arbitrary. Rewriting this as

E [exp(iu(Mt −Ms)|Fs] = exp(−1
2
u2(t− s)),

we conclude that Mt −Ms is independent of Fs and has a normal distribution
with zero mean and variance t − s. Since this is true for all t > s we conclude
that M is a Brownian motion w.r.t. F. �

7.5 Exercises

7.1 The Hermite polynomials hn are defined as

hn(x) = (−1)n exp(
1
2
x2)

dn

dxn
exp(−1

2
x2).
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Let Hn(x, y) = yn/2hn(x/
√
y). Show that ∂

∂xHn(x, y) = nHn−1(x, y), for which
you could first prove that∑

n≥0

un

n!
hn(x) = exp(ux− 1

2
u2).

Show also that ∂
∂yHn(x, y)+ 1

2
∂2

∂x2Hn(x, y) = 0. Show finally that for a Brownian

motion W it holds that Hn(Wt, t) = n
∫ t

0
Hn−1(Ws, s) dWs.

7.2 Let W be Brownian motion and X ∈ S. Let M = X ·W and Z = E(M).
Show that M and Z are martingales.

7.3 Let X and Y be (continuous) semimartingales. Show that E(X)E(Y ) =
E(X + Y + 〈X,Y 〉).

7.4 Let X be a strictly positive continuous semimartingale with X0 = 1 and
define the process Y by

Yt =
∫ t

0

1
X
dX − 1

2

∫ t

0

1
X2

d〈X〉.

Let the process Z be given by Zt = eYt . Compute dZt and show that Z = X.

7.5 Let W 1,W 2,W 3 be three independent Brownian motions. Let

Mt =
(
(W 1

t )2 + (W 2
t )2 + (W 3

t )2
)−1/2

.

Show that M is a local martingale with supt EMp
t <∞ if p < 3 and that M is

not a martingale.

7.6 Let f : R2 → R be twice continuously differentiable in the first variable and
continuously differentiable in the second variable. Let X be a continuous semi-
martingale and B a continuous process of finite variation over finite intervals.
Show that for t ≥ 0

f(Xt, Bt) = f(X0, B0) +
∫ t

0

fx(X,B) dX

+
∫ t

0

fy(X,B) dB +
1
2

∫ t

0

fxx(X,B) d〈X〉, a.s.
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8 Integral representations

We assume that the underlying filtration satisfies the usual conditions. However,
in section 8.2 we will encounter a complication and see how to repair this.

8.1 First representation

The representation result below explains a way how to view any continuous local
martingale as a stochastic integral w.r.t. a suitably defined process W that is a
Brownian motion.

Proposition 8.1 Let M be a continuous local martingale with M0 = 0 whose
quadratic variation process 〈M〉 is almost surely absolutely continuous. Then
there exists, possibly defined on an extended probability space (again denoted
by (Ω,F ,P)), an F-Brownian motion W and process X in P∗(W ) such that
M = X ·W (up to indistinguishability).

Proof Let Xn for n ∈ N be defined by Xn
t = n(〈M〉t − 〈M〉t−1/n) (with

〈M〉s = 0 for s < 0). Then all the Xn are progressive processes and thanks to
the fundamental theorem of calculus their limitX for n→∞ exists for Lebesgue
almost all t > 0 a.s. by assumption, and is progressive as well. Suppose that
Xt > 0 a.s. for all t > 0. Then we define ft = X

−1/2
t and W = f ·M and we

notice that f ∈ P∗(M). From the calculus rules for computing the quadratic
variation of a stochastic integral we see that 〈W 〉t ≡ t. Hence, by Lévy’s
characterization (Proposition 7.14), W (which is clearly adapted) is a Brownian
motion. By the chain rule for stochastic integrals (Proposition 6.12) we obtain
that X1/2 ·W is indistinguishable from M .
If Xt assumes for some t the value zero with positive probability, we cannot
define the process f as we did above. Let in this case (Ω′,F′,P′) be another
probability space that is rich enough to support a Brownian motion B. We
consider now the product space of (Ω,F ,P) with this space and define in the
obvious way M and B (as well as the other processes that we need below) on
this product space. Notice that everything defined on the original space now
becomes independent of B. We define in this case the process W by

W = 1{X>0}X
−1/2 ·M + 1{X=0} ·B.

The two (local) martingales that sum to W have zero quadratic covariation
(Exercise 3.6) and hence 〈W 〉t =

∫ t

0
1{X>0}X

−1 d〈M〉 +
∫ t

0
1{X=0}d〈B〉 = t.

Hence W is also a Brownian motion in this case. Finally, again by the chain
rule for stochastic integrals, X1/2·W = 1{X>0}·M+1{X=0}X

1/2·B = 1{X>0}·M
and M −X1/2 ·W = 1{X=0} ·M has quadratic variation identically zero and is
thus indistinguishable from the zero martingale. �
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8.2 Representation of Brownian local martingales

Suppose that on a given probability space (Ω,F ,P) we can define a Brownian
motion W . Let FW be the filtration generated by this process. Application
of the preceding theory to situations that involve this filtration is not always
justified since this filtration doesn’t satisfy the usual conditions (one can show
that it is not right-continuous, see Exercise 8.1). However, we have

Proposition 8.2 Let F be the filtration with σ-algebras Ft = FW
t ∨ N , where

N is the collection of sets that are contained in sets of FW
∞ with zero probability.

Then F satisfies the usual conditions and W is also a Brownian motion w.r.t.
this filtration.

Proof The proof of right-continuity involves arguments that use the Markovian
character of Brownian motion (the result can be extended to hold for more
general Markov processes) and will not be given here. Clearly, by adding null
sets to the original filtration the distributional properties of W don’t change. �

Remark 8.3. It is remarkable that the addition of the null sets to the σ-
algebras of the given filtration renders the filtration right-continuous.

Any process that is a martingale w.r.t. the filtration of Proposition 8.2 (it will
be referred to as the augmented Brownian filtration) is called a Brownian mar-
tingale. Below we sharpen the result of Proposition 8.1 in the sense that the
Brownian motion is now given and not constructed and that moreover the in-
tegrand process X is progressive w.r.t. the augmented Brownian filtration F.

Lemma 8.4 Let T > 0 and RT be the subset of L2(Ω,FT ,P) consisting of the
random variables (X ·W )T for X ∈ PT (W ) and let R be the class of stochastic
integrals X ·W , where X ranges through P(W ). Then RT is a closed subspace
of L2(Ω,FT ,P). Moreover, every martingale M in M2 can be uniquely (up to
indistinguishability) written as the sum M = N+Z, where N ∈ R and Z ∈M2

that is such that 〈Z,N ′〉 = 0 for every N ′ ∈ R.

Proof Let ((Xn ·W )T ) be a Cauchy sequence in RT . By the construction of the
stochastic integrals (the isometry property in particular), we have that (Xn) is
Cauchy in PT (W ). But this is a complete space (Proposition 5.6) and thus has
a limit X in this space. By the isometry property again, we have that (Xn ·W )T

converges to (X ·W )T in RT .
The uniqueness of the decomposition in the second assertion is established as
follows. Suppose that a given M ∈M2 can be decomposed as N1 +Z1 = N2 +
Z2. Then 0 = 〈Z1 − Z2, N2 −N1〉 = 〈Z1 − Z2〉, hence the uniqueness follows.
We now prove the existence of the decomposition on an arbitrary interval (but
fixed) [0, T ]. Invoking the already established uniqueness, one can extend the
existence to [0,∞). Since MT ∈ L2(Ω,FT ,P) and RT is closed, we have the
unique decomposition MT = NT +ZT , with NT ∈ RT and EZTN

′
T = 0 for any

N ′
T ∈ RT . Let Z be the right-continuous modification of the martingale defined

by E [ZT |Ft] and likewise we denote by N the right-continuous modification of
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E [NT |Ft]. Then M = N + Z on [0, T ]. We now show that 〈Z,N ′〉 = 0, where
N ′ is given by N ′

t = E [N ′
T |Ft], with N ′

T ∈ RT and t ≤ T . Equivalently, we show
that ZN ′ is a martingale on [0, T ]. Write N ′

T = (X ·W )T for some X ∈ PT (W ).
Let F ∈ Ft. Then the process Y given by Yu = 1F 1(t,T ](u)Xu is progressive
(check!) and in PT (W ). Moreover we have (Y ·W )T = 1F (N ′

T −N ′
t). It follows

that

E [1FZTN
′
T ] = E [1FZT (N ′

T −N ′
t)] + E [1FZtN

′
t ]

= E [ZT (Y ·W )T ] + E [1FZtN
′
t ].

Since ZT is orthogonal in the L2-sense to RT , the expectation E [ZT (Y ·W )T ] =
0 and hence ZN ′ is a martingale on [0, T ], since F is arbitrary. �

Remark 8.5. In the proof of the above lemma we have not exploited the fact
that we deal with Brownian motion, nor did we use the special structure of the
filtration (other than it satisfies the usual conditions). The lemma can therefore
be extended to other martingales than Brownian motion. However, the next
theorem shows that the process Z of Lemma 8.4 in the Brownian context is
actually zero. It is known as the (Brownian) martingale representation theorem.

Theorem 8.6 Let M be a square integrable Brownian martingale with M0 = 0.
Then there exists a process X ∈ P(W ) such that M = X ·W . The process X
is unique in the sense that for any other process X ′ with the same property one
has ||X −X ′|| = 0.

Proof As a starting point we take the decomposition M = N+Z of Lemma 8.4.
The first (and major) step in the process of proving that Z = 0 is to show that
for any n ∈ N and bounded Borel measurable functions fk (k = 1, . . . , n) we
have for 0 = s0 ≤ · · · ≤ sn ≤ t that

E
(
Zt

n∏
k=1

fk(Wsk
)
)

= 0. (8.1)

For n = 0 this is trivial since Z0 = 0. We use induction to show (8.1). Suppose
that (8.1) holds true for a given n and suppose w.l.o.g. that sn < t and let
s ∈ [sn, t]. By Pn we abbreviate the product

∏n
k=1 fk(Wsk

). Put for all θ ∈ R

φ(s, θ) = E
(
ZtPne

iθWs
)
.

We keep θ fixed for the time being. Observe that by the martingale property
of Z we have φ(s, θ) = EZsPne

iθWs and by the induction assumption we have
φ(sn, θ) = 0. Below we will need that

E [ZsPn

∫ s

sn

eiθWu dWu] = 0, (8.2)

which is by reconditioning a consequence of

E [Zs

∫ s

sn

eiθWu dWu|Fsn ] = 0. (8.3)
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Indeed,

E [ZsPn

∫ s

sn

eiθWu dWu] = E E [ZsPn

∫ s

sn

eiθWu dWu|Fsn ]

= E
(
PnE [Zs

∫ s

sn

eiθWu dWu|Fsn
]) = 0,

by Equation (8.3). To prove this equation, we compute

E [Zs

∫ s

sn

eiθWu dWu|Fsn
] = E [(Zs − Zsn

)
∫ s

sn

eiθWu dWu|Fsn
]

+ E [Zsn

∫ s

sn

eiθWu dWu|Fsn ]

= E [(Zs − Zs)
∫ s

sn

eiθWu dWu|Fsn
]

= E [〈Z,
∫ ·

0

eiθWu dWu〉s − 〈Z,
∫ ·

0

eiθWu dWu〉sn
|Fsn

]

= 0,

since Z is orthogonal to stochastic integrals that are in R (Lemma 8.4).
As in the proof of Proposition 7.14 we use Itô’s formula to get

eiθWs = eiθWsn + iθ

∫ s

sn

eiθWu dWu −
1
2
θ2

∫ s

sn

eiθWu du. (8.4)

Multiplication of equation (8.4) by ZsPn, taking expectations and using the just
shown fact (8.2), yields

E [ZsPne
iθWs ] = E [Zsn

Pne
iθWsn ]− 1

2
θ2E [ZsPn

∫ s

sn

eiθWu du].

Use the fact that we also have φ(s, θ) = E (ZsPne
iθWs), Fubini and recondition-

ing to obtain

φ(s, θ) = φ(sn, θ)−
1
2
θ2

∫ s

sn

E
(
Pne

iθWuE [Zs|Fu]
)
du,

which then becomes

φ(s, θ) = φ(sn, θ)−
1
2
θ2

∫ s

sn

φ(u, θ) du.

Since φ(sn, θ) = 0, the unique solution to this integral equation is the zero so-
lution. Hence φ(sn+1, θ) = 0 for all θ. Stated otherwise, the Fourier transform
of the signed measure µ on B(R) given by µ(B) = E

(
1B(Wsn+1)ZtPn

)
is iden-

tically zero. But then µ must be the zero measure and thus for any bounded
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measurable function fn+1 we have
∫
fn+1 dµ = 0. Hence we have (8.1) also for

n replaced with n+ 1 and thus for all n, which completes the proof of the first
step. By the monotone class theorem (Exercise 8.2) we conclude that EZtξ = 0
for all bounded FW

t -measurable functions ξ. But then also for all bounded ξ
that are Ft-measurable, because the two σ-algebras differ only by null sets. We
conclude that Zt = 0 a.s. Since this holds true for each t separately, we have
by right-continuity of Z that Z is indistinguishable from the zero process. The
uniqueness of the assertion is trivial. �

Corollary 8.7 Let M be a right-continuous local martingale adapted to the
augmented Brownian filtration F with M0 = 0. Then there exists a process
X ∈ P∗(W ) such that M = X ·W . In particular all such local martingales are
continuous.

Proof Let (Tn) be a localizing sequence for M such that the stopped processes
MT n

are bounded martingales. Then we have according to Theorem 8.6 the
existence of processes Xn such that MT n

= Xn · W . By the uniqueness of
the representation we have that Xn1[0,T n−1] = Xn−11[0,T n−1]. Hence we can
unambiguously define Xt = limnX

n
t and it follows that Mt = limnMt∧T n =

(X ·W )t.

8.3 Exercises

8.1 The filtration FW is not right-continuous. Let Ω = C[0,∞) and Wt(ω) =
ω(t) for t ≥ 0. Fix t > 0 and let F be the set of functions ω ∈ Ω that have a
local maximum at t. Show that F ∈ Ft+. Suppose that F ∈ Ft. Since any set
G in Ft is determined by the paths of functions ω up to time t, such a set is
unchanged if we have continuous continuations of such functions after time t. In
particular, if ω ∈ G, then also ω′ ∈ G, where ω′(s) = ω(s∧ t) + (s− t)+. Notice
that for any ω the function ω′ doesn’t have a local maximum at t. Conclude
that F /∈ Ft.

8.2 Complete the proof of Theorem 8.6 by writing down the Monotone Class
argument.

8.3 The result of Theorem 8.6 is not constructive, it is not told how to construct
the process X from the given Brownian martingale M . In the following cases
we can give an explicit expression for X. (If M0 6= 0, you have to adjust this
theorem slightly.)
(a) Mt = W 3

t − c
∫ t

0
Ws ds for a suitable constant c (which one?).

(b) For some fixed time T we have Mt = E[eWT |Ft].
(c) For some fixed time T we take Mt = E[

∫ T

0
Ws ds|Ft].

(d) If v is a solution of the backward heath equation

∂v

∂t
(t, x) +

1
2
∂2v

∂x2
(t, x) = 0,
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then Mt = v(t,Wt) is a martingale. Show this to be true under a to be specified
integrability condition. Conversely, if M is of the form Mt = v(t,Wt), where W
is a standard Brownian motion and v : R2 → R is continuously differentiable
in the first variable and twice continuously differentiable in the second variable.
Show that the process X is given by Xt = vx(t,Wt) and also that v satisfies
the backward heat equation. Give two examples of a martingale M that can be
written in this form.

8.4 Let M be as in Theorem 8.6. Show that 〈M,W 〉 is a.s. absolutely continu-
ous. Express X in terms of 〈M,W 〉.

8.5 Let ξ be a square integrable random variable that is FW
∞ -measurable, where

FW
∞ is the σ-algebra generated by a Brownian motion on [0,∞). Show that there

exists a unique process X ∈ P(W )∞ such that

ξ = E ξ +
∫ ∞

0

X dW.

8.6 The uniqueness result of Exercise 8.5 relies on X ∈ P(W )∞. For any T > 0
we define ST = inf{t > T : Wt = 0}. Then the ST are stopping times. Let
ξ = 0. Show that ξ =

∫∞
0

1[0,ST ] dW for any T .
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9 Absolutely continuous change of measure

In section 7.3 we have seen that the class of semimartingales is closed under
smooth transformations; if X is a semimartingale, so is f(X) if f is twice
continuously differentiable. In the present section we will see that the semi-
martingale property is preserved, when we change the underlying probability
measure in an absolutely continuous way. This result is absolutely not obvious.
Indeed, consider a semimartingale X with decomposition X = X0 + A + M
with all paths of A of bounded variation. Then this property of A evidently
still holds, if we change the probability measure P into any other one. But it
is less clear what happens to M . As a matter of fact, M (suppose it is a mar-
tingale under P) will in general loose the martingale property. We will see later
on that it becomes a semimartingale and, moreover, we will be able to give its
semimartingale decomposition under the new probability measure.

9.1 Absolute continuity

Let (Ω,F) be a measurable space. We consider two measures on this space, µ
and ν. One says that ν is absolutely continuous with respect to µ (the notation
is ν � µ) if ν(F ) = 0 for every F ∈ F for which µ(F ) = 0. It we have both
ν � µ and µ � ν we say that µ and ν are equivalent and we write µ ∼ ν. If
there exists a set Ω0 ∈ F for which ν(Ω0) = 0 and µ(Ωc

0) = 0, then µ and ν are
called mutually singular.

If Z is a nonnegative measurable function on Ω, then ν(F ) =
∫

F
Z dµ defines a

measure on F that is absolutely continuous w.r.t. µ. The content of the Radon-
Nikodym theorem (Theorem 9.1) is that this is, loosely speaking, the only case
of absolute continuity.

Theorem 9.1 Let µ be σ-finite measure on (Ω,F) and let ν be a finite measure
on (Ω,F). Then we can uniquely decompose ν as the sum of two measures νs

and ν0, where νs and µ are mutually singular and ν0 � µ. Moreover, there
exists a unique nonnegative Z ∈ L1(Ω,F , µ) such that ν0(F ) =

∫
F
Z dµ. This

function is called the Radon-Nikodym derivative of ν w.r.t. µ and is often written
as

Z =
dν

dµ
.

We will be interested in the case where µ and ν are probability measures, as
usual called P and Q , and will try to describe the function Z in certain cases.
Notice that for Q � P we have EP Z = 1, Q (Z = 0) = 0 and for Q ∼ P also
P(Z = 0) = 0. Expectations w.r.t. P and Q are often denoted by EP and EQ
respectively.

Lemma 9.2 Let P and Q be two probability measures on (Ω,F) and assume
that Q � P with Z = dQ

dP . Let G be a sub-σ-algebra of F . Let X be a random
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variable. Then EQ |X| <∞ iff EP |X|Z <∞ and in either case we have

EQ [X|G] =
EP [XZ|G]
EP [Z|G]

a.s. w.r.t. Q . (9.1)

Proof Let G ∈ G. We have, using the defining property of conditional expec-
tation both under Q and P

EP
[
EQ [X|G]EP [Z|G]1G

]
= EP

[
EQ [X|G]1GZ

]
= EQ

[
EQ [X|G]1G

]
= EQ [X1G]
= EP [X1GZ]
= EP

[
EP [XZ|G]1G

]
.

Since this holds for any G ∈ G, we conclude that EQ [X|G]EP [Z|G] = EP [XZ|G]
P- (and thus Q -)a.s. Because

Q (EP [Z|G] = 0) = EP Z1{EP [Z|G]=0} = EP EP [Z|G]1{EP [Z|G]=0} = 0,

the division in (9.1) is Q -a.s. justified.
�

9.2 Change of measure on filtered spaces

We consider a measurable space (Ω,F) together with a right-continuous filtra-
tion F = {Ft, t ≥ 0} and two probability measures P and Q defined on it. The
restrictions of P and Q to the Ft will be denoted by Pt and Q t respectively.
Similarly, for a stopping time T , we will denote by PT the restriction of P to FT .
Below we will always assume that P0 = Q 0. If Q � P on F , then necessarily
every restriction Q t of Q to Ft is absolutely continuous w.r.t. the restriction Pt

of P to Ft and thus we have a family of densities (Radon-Nikodym derivatives)
Zt, defined by

Zt =
dQ t

dPt
. (9.2)

The process Z = {Zt, t ≥ 0} is called the density process (of Q w.r.t. P). Here
is the first property.

Proposition 9.3 If Q � P (on F), then the density process Z is a nonnegative
uniformly integrable martingale w.r.t. the probability measure P and Z0 = 1.

Proof Exercise 9.1. �

However, we will encounter many interesting situations, where we only have
Q t � Pt for all t ≥ 0 and where Z is not uniformly integrable. One may also
envisage a reverse situation. One is given a nonnegative martingale Z, is it then
possible to find probability measures Q t (or Q ) such that Q t � Pt for all t (or
Q � P)? The answers are given in the next two propositions.
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Proposition 9.4 Let Z be a nonnegative uniformly integrable martingale un-
der the probability measure P with EP Zt = 1 (for all t). Then there exists a
probability measure Q on F∞ such that Q is absolutely continuous w.r.t. the
restriction of P to F∞. If we denote by Pt, respectively Q t, the restrictions of
P, respectively Q , to Ft, then dQ t

dPt
= Zt for all t.

Proof Notice that there exists a F∞-measurable random variable Z∞ such that
EP [Z∞|Ft] = Zt, for all t ≥ 0. Simply define Q on F∞ by Q (F ) = EP 1FZ∞.
Q is a probability measure since EP Z∞ = 1. If F is also in Ft, then we have
by the martingale property that Q t(F ) = Q (F ) = EP 1FZt. �

If we drop the uniform integrability requirement of Z in Proposition 9.4, then
the conclusion can not be drawn. There will be a family of probability measures
Q t on the Ft that is consistent in the sense that the restriction of Q t to Fs

coincides with Q s for all s < t, but there will in general not exist a probability
measure Q on F∞ that is absolutely continuous w.r.t. the restriction of P to the
σ-algebra F∞. The best possible general result in that direction is the following.

Proposition 9.5 Let Ω be the space of real continuous functions on [0,∞) and
let X be the coordinate process (Xt(ω) = ω(t)) on this space. Let F = FX and
let P be a given probability measure on FX

∞. Let Z be a nonnegative martingale
with EP Zt = 1. Then there exists a unique probability measure Q on (Ω,FX

∞)
such that the restrictions Q t of Q to Ft are absolutely continuous w.r.t. the
restrictions Pt of P to Ft and dQ t

dPt
= Zt.

Proof Let A be the algebra
⋃

t≥0 Ft. Observe that one can define a set function
Q on A unambiguously by Q (F ) = EP 1FZt if A ∈ Ft. The assertion of the
proposition follows from Caratheodory’s extension theorem as soon as one has
shown that Q is countably additive on A. We omit the proof. �

Remark 9.6. Notice that in Proposition 9.5 it is not claimed that Q � P on
FX
∞. In general this will not happen, see Exercise 9.3.

Proposition 9.7 Let P and Q be probability measures on (Ω,F) and Q t � Pt

for all t ≥ 0. Let Z be their density process and let X be any adapted cadlag
process. Then XZ is a martingale under P iff X is a martingale under Q . If
XZ is a local martingale under P then X is a local martingale under Q . In
the latter case equivalence holds under the extra condition that Pt � Q t for all
t ≥ 0.

Proof We prove the ‘martingale version’ only. Using Lemma 9.2, we have for
t > s that

EQ [Xt|Fs] =
EP [XtZt|Fs]

Zs
,

from which the assertion immediately follows. The ‘local martingale’ case is left
as Exercise 9.4. �
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9.3 The Girsanov theorem

In this section we will explicitly describe how the decomposition of semimartin-
gale changes under an absolutely continuous change of measure. This is the
content of what is known as Girsanov’s theorem, Theorem 9.8. The standing
assumption in this and the next section is that the density process Z is contin-
uous.

Theorem 9.8 Let X be a continuous semimartingale on (Ω,F ,P) w.r.t. a fil-
tration F with semimartingale decomposition X = X0+A+M . Let Q be another
probability measure on (Ω,F) such that Q t � Pt for all t ≥ 0 and with density
process Z. Then X is also a continuous semimartingale on (Ω,F ,Q ) and the
local martingale part MQ of X under Q is given by

MQ = M − Z−1 · 〈Z,M〉. (9.3)

Moreover, if X and Y are semimartingales (under P), then their quadratic co-
variation process 〈X,Y 〉 is the same under P and Q .

Proof To show that MQ is a local martingale under Q we use Proposition 9.7
and Itô’s formula for products. Let Tn = inf{t > 0 : Zt < 1/n}. On each [0, Tn],
the process Z−1 · 〈Z,M〉 is well defined. Since Tn → ∞ Q -a.s. (Exercise 9.6),
Z−1 · 〈Z,M〉 is well defined everywhere Q -a.s.
The product rule gives

(MQ Z)T n

t = M0Z0 +
∫ T n∧t

0

MQ dZ +
∫ T n∧t

0

Z dMQ + 〈MQ , Z〉T n∧t

= M0Z0 +
∫ T n∧t

0

MQ dZ +
∫ T n∧t

0

Z dM,

where in the last step we used that Z × 1
Z = 1 on [0, Tn]. This shows that

the stopped processes (MQ Z)T n

are local martingales under P. But then each
(MQ )T n

is a local martingale under Q (use Proposition 9.7) and hence MQ

is a local martingale under Q (Exercise 9.9), which is what we had to prove.
The statement concerning the quadratic variation process one can prove along
the same lines (you show that (MQ NQ − 〈M,N〉)Z is a local martingale un-
der P, where N and NQ are the local martingale parts of Y under P and Q
respectively), or by invoking Proposition 7.4 and by noticing that addition or
subtraction of a finite variation process has no influence on the quadratic vari-
ation. �

Girsanov’s theorem becomes simpler to prove if for all t the measures Pt and Q t

are equivalent, in which case the density process is also strictly positive P-a.s.
and can be written as a Doléans exponential.

Proposition 9.9 Let Z be a strictly positive continuous local martingale with
Z0 = 1. Then there exists a unique continuous local martingale µ such that
Z = E(µ).
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Proof Since Z > 0 we can define Y = logZ, a semimartingale whose semi-
martingale decomposition Y = µ + A satisfies µ0 = A0 = 0. We apply the Itô
formula to Y and obtain

dYt =
1
Zt

dZt −
1

2Z2
t

d〈Z〉t.

Hence

µt =
∫ t

0

1
Zs

dZs, (9.4)

and we observe that A = − 1
2 〈µ〉. Hence Z = exp(µ − 1

2 〈µ〉) = E(µ). Showing
the uniqueness is the content of Exercise 9.10. �

Proposition 9.10 Let µ be a continuous local martingale and let Z = E(µ).
Let T > 0 and assume that EP ZT = 1. Then Z is a martingale under P on
[0, T ]. If M is a continuous local martingale under P, then MQ := M − 〈M,µ〉
is a continuous local martingale under the measure Q T defined on (Ω,FT ) by
dQ T

dPT
= ZT with time restricted to [0, T ].

Proof That Z is a martingale follows from Proposition 4.7 (ii) and Exercise 2.1.
Then we apply Theorem 9.8 and use that 〈Z,M〉 =

∫ ·
0
Z d〈µ,M〉 to find the

representation for MQ . �

Remark 9.11. In the situation of Proposition 9.10 we have actually PT ∼ Q T

and the density dPT

dQ T
= Z−1

T , alternatively given by E(−µQ )T , with µQ = µ−〈µ〉,
in agreement with the notation of Proposition 9.10. Moreover, if MQ is a local
martingale under Q T over [0, T ], then MQ +〈MQ , µ〉 is a local martingale under
P over [0, T ].

Corollary 9.12 Let W be a Brownian motion on (Ω,F ,P). Assume that the
conditions of Proposition 9.10 are in force with µ = X ·W , where X ∈ P∗T (W ).
Then the process WQ = W −

∫ ·
0
Xs ds is a Brownian motion on [0, T ] under

Q T w.r.t. the filtration {Ft, t ∈ [0, T ]}.

Proof We know from Proposition 9.10 that WQ is a continuous local martin-
gale on [0, T ]. Since the quadratic variation of this process is the same under
Q as under P (Theorem 9.8), the process WQ must be a Brownian motion in
view of Lévy’s characterization (Proposition 7.14). �

This corollary only gives us a Brownian motion WQ under Q T on [0, T ]. Sup-
pose that this would be the case for every T , can we then say that WQ is a
Brownian motion on [0,∞)? For an affirmative answer we would have to ex-
tend the family of probability measures Q T defined on the FT to a probability
measure on F∞, and as we have mentioned before this is in general impossi-
ble. But if we content ourselves with a smaller filtration (much in the spirit of
Proposition 9.5), something is possible.
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Proposition 9.13 Let W be a Brownian motion on a probability space (Ω,F ,P).
Let FW be the filtration generated by W and let X be a process that is progres-
sively measurable w.r.t. FW such that

∫ T

0
X2

s ds < ∞ a.s. for all T > 0. Then
there exists a probability measure Q on FW

∞ such that WQ = W −
∫ ·
0
Xs ds is a

Brownian motion on (Ω,FW
∞ ,Q ).

Proof (sketchy) For all T , the probability measures Q T induce probability
measures Q ′

T on (R[0,T ],B(R[0,T ])), the laws of the Brownian motion WQ up to
the times T . Notice that for T ′ > T the restriction of Q ′

T ′ to B(R[0,T ]) coincides
with Q ′

T . It follows that the finite dimensional distributions of WQ form a
consistent family. In view of Kolmogorov’s theorem there exists a probability
measure Q ′ on (R[0,∞),B(R[0,∞))) such that the restriction of Q ′ to B(R[0,T ])
coincides with Q ′

T . A typical set F in FW
∞ has the form F = {ω : W·(ω) ∈ F ′},

for some F ′ ∈ B(R[0,∞)). So we define Q (F ) = Q ′(F ′) and one can show that
this definition is unambiguous. This results in a probability measure on FW

∞ .
If F ∈ FW

T , then we have Q (F ) = Q ′
T (F ′) = Q T (F ), so this Q is the one we

are after. Observe that WQ is adapted to FW and let 0 ≤ t1 < · · · < tn be a
given arbitrary n-tuple. Then for B ∈ B(Rn) we have Q ((WQ

t1 , . . . ,W
Q

tn
) ∈

B) = Q tn((WQ
t1 , . . . ,W

Q
tn) ∈ B). Since WQ is Brownian motion on [0, tn]

(Corollary 9.12) the result follows. �

Remark 9.14. Consider the probability measure Q of Proposition 9.13. Sup-
pose that all σ-algebras of the filtration F contains all the P-null sets of FW

∞
(which happens if F is the Brownian filtration). Let Q T be the probability
measure of Corollary 9.12. It is tempting to think that the restriction of Q to
the σ-algebra FT coincides with Q T . This is in general not true. One can find
sets F in FT for which P(F ) = 0 and hence Q T (F ) = 0, although Q (F ) > 0
(Exercise 9.8).

9.4 The Kazamaki and Novikov conditions

The results in the previous section were based on the fact that the density pro-
cess Z had the martingale property. In the present section we will see two suffi-
cient conditions in terms of properties of Z that guarantee this. The condition
in Proposition 9.15 below is called Kazamaki’s condition, the one in Proposi-
tion 9.17 is is known as Novikov’s condition.

Proposition 9.15 Let µ be a local martingale with µ0 = 0 and suppose that
exp( 1

2µ) is a uniformly integrable submartingale on an interval [0, T ] (T ≤ ∞),
then E(µ) is a uniformly integrable martingale on [0, T ].

Proof We give the proof for T = ∞. For other values of T only the notation
in the proof changes. Let a ∈ (0, 1), put Z(a) = exp(aµ/(1 + a)) and consider
E(aµ). Note that a

1+a < 1
2 and verify that E(aµ) = E(µ)a2

Z(a)1−a2
. For any

set F ∈ F we have by Hölder’s inequality for any finite stopping time τ

E 1FE(aµ)τ ≤ (E E(µ)τ )a2
(E 1FZ(a)τ )1−a2

.
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Since E(µ) is a nonnegative local martingale, it is a nonnegative supermartin-
gale (Proposition 4.7 (ii)). Hence E E(µ)τ ≤ 1. Together with the easy to prove
fact that {Z(a)τ : τ a stopping time} is uniformly integrable, we obtain that
E(aµ) is uniformly integrable too (Exercise 9.11). Moreover, this property com-
bined with E(aµ) being a local martingale yields that it is actually a martingale.
By uniform integrability, it has a limit E(aµ)∞ with expectation equal to one.
Using Hölder’s inequality again and noting that µ∞ exists as an a.s. limit, we
obtain

1 = E E(aµ)∞ ≤
(
E E(µ)∞

)a2(
EZ(a)∞

)1−a2

. (9.5)

Notice that by uniform integrability of exp( 1
2µ) the limit exp( 1

2µ∞) has finite
expectation. The trivial bound on Z(a)∞

Z(a)∞ ≤ 1{µ∞<0} + exp(
1
2
µ∞)1{µ∞≥0}.

yields

sup
a<1

(EZ(a)∞) < 1 + E exp(
1
2
µ∞) <∞,

and thus lim supa→1(EZ(a)∞)1−a2
= 1. But then we obtain from (9.5), that

E E(µ)∞ ≥ 1. Using the already know inequality E E(µ)∞ ≤ 1, we conclude
that E E(µ)∞ = 1, from which the assertion follows. �

In the proof of Proposition 9.17 we will use the following lemma.

Lemma 9.16 Let M be a uniformly integrable martingale with the additional
property that E exp(M∞) < ∞. Then exp(M) is a uniformly integrable sub-
martingale.

Proof Exercise 9.12. �

Proposition 9.17 Let µ be a continuous local martingale such that

E exp(
1
2
〈µ〉T ) <∞ for some T ∈ [0,∞]. (9.6)

Then E(µ) is a uniformly integrable martingale on [0, T ].

Proof Again we give the proof for T = ∞. First we show that µ is uniformly
integrable. It follows from the hypothesis and Jensen’s inequality that E 〈µ〉∞ <
∞. Let (Tn) be a fundamental sequence for µ such that the stopped processes
µT n

are square integrable. Then Eµ2
T n∧t ≤ E 〈µ〉∞ < ∞ for all t and Tn. It

follows that the collection {µT n∧t : n ∈ N, t ≥ 0} is uniformly integrable and
therefore also {µt : t ≥ 0}, moreover it is even a martingale. Consequently µ∞
exists as an a.s. and L1 limit. We apply the Cauchy-Schwartz inequality to

exp(
1
2
µ∞) =

(
E(µ)∞

)1/2 exp(
1
4
〈µ〉∞)
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to get

E exp(
1
2
µ∞) ≤

(
E E(µ)∞

)1/2(E exp(
1
2
〈µ〉∞)

)1/2 ≤
(
E exp(

1
2
〈µ〉∞)

)1/2
.

Hence E exp( 1
2µ∞) < ∞. It follows from Lemma 9.16 that E( 1

2µ) is a uni-
formly integrable submartingale and by Proposition 9.15 we conclude that E(µ)
is uniformly integrable on [0,∞]. �

9.5 Exercises

9.1 Prove Proposition 9.3.

9.2 LetX be a semimartingale on (Ω,F ,P). Let Y be a locally bounded process.
Show that Y ·X is invariant under an absolutely continuous change of measure.

9.3 Let (Ω,F ,P) be a measurable space on which is defined a Brownian motion
W . Let {Pθ : θ ∈ R } be a family of probability measures on FW

∞ such that for all
θ the processW θ defined byW θ

t = Wt−θt is a Brownian motion under Pθ. Show
that this family of measures can be defined, and how to construct it. Suppose
that we consider θ as an unknown parameter (value) and that we observe X
that under each Pθ has the semimartingale decomposition Xt = θt+W θ

t . Take
θt = Xt

t as estimator of θ when observations up to time t have been made.
Show that θt is consistent: θt → θ, Pθ-a.s. for all θ. Conclude that the Pθ are
mutually singular on FW

∞ .

9.4 Finish the proof of Proposition 9.7.

9.5 Let P and Q be measure on the space (Ω,F) with a filtration F and assume
that Q t � Pt for all t ≥ 0 with density process Z. Let T be a stopping time.
Let Ω′ = Ω ∩ {T < ∞} and F ′

T = {F ∩ {T < ∞} : F ∈ FT }. Show that with
P′T the restriction of PT to F ′

T (and likewise we have Q ′
T ) that Q ′

T � P′T and
dQ ′

T

dP′T
= ZT .

9.6 Let P and Q be probability measures on the space (Ω,F) and assume that
Q t � Pt for all t ≥ 0. Let Z be the density process. Let Tn = inf{t : Zt <

1
n}.

Show that Q (Tn < ∞) ≤ 1
n and deduce that Q (inf{Zt : t > 0} = 0) = 0 and

that Q (limn T
n = ∞) = 1.

9.7 Prove the claims made in Remark 9.11.

9.8 Consider the situation of Remark 9.14. Consider the density process Z =
E(W ). Let F = {limt→∞

Wt

t = 1}. Use this set to show that the probability
measures Q T and Q restricted to FT are different.

9.9 Let Tn be stopping times such that Tn →∞ and let M be a process such
that MT n

is a local martingale for all n. Show that M is a local martingale.

9.10 Show that uniqueness holds for the local martingale µ of Proposition 9.9.
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9.11 Show that the process Z(a) in the proof of Proposition 9.15 is uniformly
integrable and that consequently the same holds for E(aµ).

9.12 Prove Lemma 9.16.
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10 Stochastic differential equations

By a stochastic differential equation (sde) we mean an equation like

dXt = b(t,Xt) dt+ σ(t,Xt) dWt (10.1)

or

dXt = b(Xt) dt+ σ(Xt) dWt, (10.2)

which is sometimes abbreviated by

dX = b(X) dt+ σ(X) dW.

The meaning of (10.1) is nothing else but shorthand notation for the following
stochastic integral equation

Xt = X0 +
∫ t

0

b(s,Xs) ds+
∫ t

0

σ(s,Xs) dWs, (t ≥ 0). (10.3)

Here W is a Brownian motion and b and σ are Borel-measurable functions
on R2 with certain additional requirements to be specified later on. The first
integral in (10.3) is a pathwise Lebesgue-Stieltjes integral and the second one a
stochastic integral. Of course, both integrals should be well-defined. Examples
of stochastic differential equations have already been met in previous sections.
For instance, if X = E(W ), then

Xt = 1 +
∫ t

0

Xs dWs,

which is of the above type.

We give an infinitesimal interpretation of the functions b and σ. Suppose that
a process X can be represented as in (10.3) and that the stochastic integral
is a square integrable martingale. Then we have that E [Xt+h − Xt|Ft] =
E [

∫ t+h

t
b(s,Xs) ds|Ft]. For small h, this should ‘approximately’ be equal to

b(t,Xt)h. The conditional variance of Xt+h −Xt given Ft is

E [(
∫ t+h

t

σ(s,Xs) dWs)2|Ft] = E [
∫ t+h

t

σ2(s,Xs) ds|Ft],

which is approximated for small h by σ2(t,Xt)h. Hence the coefficient b in equa-
tion (10.1) tells us something about the direction in which Xt changes and σ
something about the variance of the displacement. We call b the drift coefficient
and σ the diffusion coefficient.

A process X should be called a solution with initial condition ξ, if it satisfies
equation (10.3) and if X0 = ξ. But this phrase is insufficient for a proper
definition of the concept of a solution. In this course we will treat two differ-
ent concepts, one being strong solution, the other one weak solution, with the
emphasis on the former.
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10.1 Strong solutions

In order that the Lebesgue-Stieltjes integral and the stochastic integral in (10.3)
exist, we have to impose (technical) regularity conditions on the process X that
is involved. Suppose that the process X is defined on some probability space
with a filtration. These conditions are (of course) that X is progressive (which
is the case if X is adapted and continuous) and that∫ t

0

(|b(s,Xs)|+ σ(s,Xs)2) ds <∞, a.s. ∀t ≥ 0. (10.4)

In all what follows below, we assume that a probability space (Ω,F ,P) is such
that it supports a Brownian motion W and a random variable ξ that is inde-
pendent of W . The filtration F = {Ft, t ≥ 0} that we will mainly work with in
the present section is the filtration generated by W and ξ and then augmented
with the null sets. More precisely. We set F0

t = FW
t ∨ σ(ξ), N the (P,F0

∞)-
null sets and Ft = F0

t ∨ N . By previous results we know that this filtration is
right-continuous and that W is also Brownian w.r.t. it.

Definition 10.1. Given a probability space (Ω,F ,P), a Brownian motion W
defined on it as well as a random variable ξ independent of W , a process X
defined on this space is called a strong solution of equation (10.1) with initial
condition ξ if X0 = ξ as. and X
(i) has continuous paths a.s.
(ii) is F adapted.
(iii) satisfies Condition (10.4)
(iv) satisfies (10.1) a.s.

The main result of this section concerns existence and uniqueness of a strong
solution of a stochastic differential equation.

Theorem 10.2 Assume that the coefficients b and σ are Lipschitz continuous
in the second variable, i.e. there exists a constant K > 0 such that

|b(t, x)− b(t, y)|+ |σ(t, x)− σ(t, y)| ≤ K|x− y|, ∀t ∈ [0,∞),∀x, y ∈ R,

and that b(·, 0) and σ(·, 0) are locally bounded functions. Then, for any initial
condition ξ with E ξ2 <∞ the equation (10.1) has a unique strong solution.

Proof For given processes X and Y that are such that (10.4) is satisfied for
both of them, we define

Ut(X) = ξ +
∫ t

0

b(s,Xs) ds+
∫ t

0

σ(s,Xs) dWs

and Ut(Y ) likewise. Note that equation (10.3) with X0 = ξ can now be written
as X = U(X) and a solution of this equation can be considered as a fixed point
of U . By Uk we denote the k-fold composition of U . We employ the following
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notation in the proof. For any process Z we write ||Z||T = sup{|Zt| : t ≤ T}.
We first prove that for every T > 0 there exists a constant C such that

E ||Uk(X)− Uk(Y )||2t ≤
Cktk

k!
E ||X − Y ||2t , t ≤ T. (10.5)

Fix T > 0. Since for any real numbers p, q it holds that (p + q)2 ≤ 2(p2 + q2),
we obtain for t ≤ T

|Ut(X)− Ut(Y )|2 ≤

2
( ∫ t

0

|b(s,Xs)− b(s, Ys)| ds
)2 + 2

( ∫ t

0

(σ(s,Xs)− σ(s, Ys)) dWs

)2
,

and thus

||U(X)− U(Y )||2t ≤

2
( ∫ t

0

|b(s,Xs)− b(s, Ys)| ds
)2 + 2 sup

u≤t

( ∫ u

0

(σ(s,Xs)− σ(s, Ys)) dWs

)2

Take expectations and use the Cauchy-Schwarz inequality as well as Doob’s
L2-inequality (Exercise 10.1), to obtain

E ||U(X)− U(Y )||2t ≤

2E
(
t

∫ t

0

|b(s,Xs)− b(s, Ys)|2 ds
)

+ 8E
( ∫ t

0

(σ(s,Xs)− σ(s, Ys))2 ds
)
.

Now use the Lipschitz condition to get

E ||U(X)− U(Y )||2t ≤ 2E
(
tK2

∫ t

0

(Xs − Ys)2 ds
)

+ 8E
(
K2

∫ t

0

(Xs − Ys)2 ds
)

= 2K2(t+ 4)
∫ t

0

E (Xs − Ys)2 ds

≤ 2K2(T + 4)
∫ t

0

E ||X − Y ||2s ds. (10.6)

Let C = 2K2(T +4). Then we have E ||U(X)−U(Y )||2t ≤ CtE ||X−Y ||2t , which
establishes (10.5) for k = 1. Suppose that we have proved (10.5) for some k.
Then we use induction to get from (10.6)

E ||Uk+1(X)− Uk+1(Y )||2t ≤ C

∫ t

0

E ||Uk(X)− Uk(Y )||2s ds

≤ C

∫ t

0

Cksk

k!
dsE ||X − Y ||2t

=
Ck+1tk+1

(k + 1)!
E ||X − Y ||2t .
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This proves (10.5). We continue the proof by using Picard iteration, i.e. we are
going to define recursively a sequence of processes Xn that will have a limit in
a suitable sense on any time interval [0, T ] and that limit will be the candidate
solution. We setX0 = ξ and defineXn = U(Xn−1) = Un(X0) for n ≥ 1. Notice
that by construction all the Xn have continuous paths and are F-adapted. It
follows from equation (10.5) that we have

E ||Xn+1 −Xn||2T ≤
CnTn

n!
E ||X1 −X0||2T (10.7)

From the conditions on b and σ we can conclude that B := E ||X1−X0||2T <∞
(Exercise 10.8). By Chebychev’s inequality we have that

P(||Xn+1 −Xn||T > 2−n) ≤ B
(4CT )n

n!
.

It follows from the Borel-Cantelli lemma that the set Ω′ = lim infn→∞{||Xn+1−
Xn||T ≤ 2−n} has probability one. On this set we can find for all ω an integer n
big enough such that for all m ∈ N one has ||Xn+m−Xn||T (ω) ≤ 2−n. In other
words, on Ω′ the sample paths of the processes Xn form a Cauchy sequence in
C[0, T ] w.r.t. the sup-norm, and thus all of them have continuous limits. We call
the limit process X (outside Ω′ we define it as zero) and show that this process
is the solution of (10.1) on [0, T ]. Since Xn+1

t = (U(Xn)t−U(X)t)+U(X)t for
each t ≥ 0 and certainly Xn+1

t → Xt in probability, it is sufficient to show that
for each t we have convergence in probability (or stronger) of U(Xn)t − U(X)t

to zero. We look at

U(Xn)t − U(X)t =
∫ t

0

(b(s,Xn
s )− b(s,Xs)) ds (10.8)

+
∫ t

0

(σ(s,Xn
s )− σ(s,Xs)) dWs. (10.9)

We first consider the integral of (10.8). Notice that on Ω′ we have that ||X −
Xn||2T (ω) → 0. One thus has (again ω-wise on Ω′)

|
∫ t

0

(b(s,Xn
s )− b(s,Xs)) ds| ≤ K

∫ T

0

|Xn
s −Xs| ds

≤ KT ||Xn −X||T → 0.

Hence we have a.s. convergence to zero of the integral in (10.8). Next we look
at the stochastic integral of (10.9). One has

E
( ∫ t

0

(σ(s,Xs)− σ(s,Xn
s )) dWs

)2 = E
∫ t

0

(σ(s,Xs)− σ(s,Xn
s ))2 ds

≤ K2

∫ t

0

E (Xs −Xn
s )2 ds

≤ K2TE ||X −Xn||2T
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and we therefore show that E ||X −Xn||2T → 0, which we do as follows. By the
triangle inequality we have ||Xn+m −Xn||T ≤

∑n+m−1
k=n ||Xk+1 −Xk||T . Since

x 7→ x2 is increasing for x ≥ 0, we also have ||Xn+m−Xn||2T ≤ (
∑n+m−1

k=n ||Xk+1−
Xk||T )2, and thus (E ||Xn+m−Xn||2T )1/2 ≤ (E (

∑n+m−1
k=n ||Xk+1−Xk||T )2)1/2.

Applying Minkovski’s inequality to the right hand side of the last inequality,
we obtain (E ||Xn+m − Xn||2T )1/2 ≤

∑n+m−1
k=n (E ||Xk+1 − Xk||2T )1/2. Then,

from (10.7) we obtain

E ||Xn+m −Xn||2T ≤
( ∞∑

k=n

(
(CT )k

k!
)1/2

)2E ||X1 −X0||2T . (10.10)

Combined with the already established a.s. convergence of Xn to X in the sup-
norm, we get by application of Fatou’s lemma from (10.10) that E ||X −Xn||2T
is also bounded from above by the right hand side of this equation and thus
converges to zero (it is the tail of a convergent series) for n→∞.

What is left is the proof of unicity on [0, T ]. Suppose that we have two solutions
X and Y . Then, using the same arguments as those that led us to (10.6), we
obtain

E (Xt − Yt)2 = E (Ut(X)− Ut(Y ))2

≤ C

∫ t

0

E (Xs − Ys)2 ds.

It now follows from Gronwall’s inequality, Exercise 10.7, that E(Xt − Yt)2 = 0,
for all t and hence, by continuity, X and Y are indistinguishable on [0, T ].
Extension of the solution X to [0,∞) is then established by the unicity of
solutions on any interval [0, T ]. �

Theorem 10.2 is a classical result obtained by Itô. Many refinements are possible
by relaxing the conditions on b and σ. One that is of particular interest concerns
the diffusion coefficient. Lipschitz continuity can be weakened to some variation
on Hölder continuity.

Proposition 10.3 Consider equation (10.1) and assume that b satisfies the
Lipschitz condition of Theorem 10.2, whereas for σ we assume that |σ(t, x) −
σ(t, y)| ≤ h(|x− y|), where h : [0,∞) → [0,∞) is a strictly increasing function
with h(0) = 0 and the property that∫ 1

0

1
h(u)2

du = ∞.

Then, given an initial condition ξ, equation (10.1) admits at most one strong
solution.

Proof Take an (n ≥ 1) such that∫ 1

an

1
h(u)2

du =
1
2
n(n+ 1).
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Then
∫ an−1

an

1
nh(u)2 du = 1. We can take a smooth disturbance of the integrand

in this integral, a nonnegative continuous function ρn with support in (an, an−1)
and bounded by 2

nh(·)2 such that
∫ an−1

an
ρn(u) du = 1. We consider even functions

ψn defined for all x > 0 by

ψn(x) = ψn(−x) =
∫ x

0

∫ y

0

ρn(u) du dy.

Then the sequence (ψn) is increasing, |ψ′(x)| ≤ 1 and limn ψn(x) = |x|, by
the definition of the ρn. Notice also that the ψn are in C2, since the ρn are
continuous.
Suppose that there are two strong solutions X and Y with X0 = Y0. Assume for
a while the properties E |Xt| < ∞, E

∫ t

0
σ(s,Xs)2 ds < ∞ for all t > 0 and the

analogous properties for Y . Consider the difference process V = X − Y . Apply
Itô’s rule to ψn(V ) and take expectations. Then the martingale term vanishes
and we are left with (use the above mentioned properties of the ψn)

Eψn(Vt) = E
∫ t

0

ψ′n(Vs)(b(s,Xs)− b(s, Ys)) ds

+
1
2

E
∫ t

0

ψ′′n(Vs)(σ(s,Xs)− σ(s, Ys))2 ds

≤ K

∫ t

0

E |Vs| ds+
1
2

E
∫ t

0

ψ′′n(Vs)h2(Vs) ds

≤ K

∫ t

0

E |Vs| ds+
t

n
.

Letting n → ∞, we obtain E |Vt| ≤ K
∫ t

0
E |Vs| ds and the result follows from

the Gronwall inequality and sample path continuity under the temporary inte-
grability assumptions on X and Y . As usual these assumptions can be removed
by a localization procedure. In this case one works with the stopping times

Tn = inf{t > 0 : |Xt|+ |Yt|+
∫ t

0

(σ(s,Xs)2 + σ(s, Ys)2) ds > n}.

�

A strong solution X by definition satisfies the property that for each t the
random variable Xt is Ft-measurable. Sets in Ft are typically determined by
certain realizations of ξ and the paths ofW up to time t. This suggests that there
is a causal relationship between X and (ξ and) W , that should formally take the
form that Xt = f(t, ξ,W[0,t]), where W[0,t] stands for the map that takes the ω’s
to the paths {Ws(ω), s ≤ t}. One would like the map f to have the appropriate
measurability properties. This can be accomplished when one is working with
the canonical set-up. By the canonical set-up we mean the following. We take
Ω = R × C[0,∞). Let ω = (u, f) ∈ Ω. We define wt(ω) = f(t) and ξ(ω) = u.
A filtration on Ω is obtained by setting F0

t = σ(ξ, ws, s ≤ t). Let µ be a
probability measure on R, PW be the Wiener measure on C[0,∞) (the unique

66



probability measure that makes the coordinate process a Brownian motion) and
P = PW × µ. Finally, we get the filtration F by augmenting the F0

t with the
P-null sets of F0

∞. Next to the filtration F we also consider the filtration H on
C[0,∞) that consists of the σ-algebras Ht = σ(hs, s ≤ t), where ht(f) = f(t).
We state the next two theorems without proof, but see also Exercise 10.11 for
a simpler version of these theorems.

Theorem 10.4 Let the canonical set-up be given. Assume that (10.1) has a
strong solution with initial condition ξ (so that in particular Condition (10.4) is
satisfied). Let µ be the law of ξ. Then there exists a functional Fµ : Ω → C[0,∞)
such that for all t ≥ 0

F−1
µ (Ht) ⊂ Ft (10.11)

and such that Fµ(ξ,W ) and X are P-indistinguishable. Moreover, if we work
on another probability space on which all the relevant processes are defined, a
strong solution of (10.1) with an initial condition ξ is again given by Fµ(ξ,W )
with the same functional Fµ as above.

If we put F (x, f) := Fδx(x, f) (where δx is the Dirac measure at x), we would
like to have X = F (ξ,W ). There is however in general a measurability problem
with the map (x, f) 7→ F (x, f). By putting restrictions on the coefficients this
problem disappears.

Theorem 10.5 Suppose that b and σ are as in Theorem 10.2. Then a strong
solution X may be represented as X = F (ξ,W ), where F satisfies the mea-
surability property of (10.11) and moreover, for each f ∈ C[0,∞), the map
x 7→ F (x, f) is continuous. Moreover, on any probability space that supports a
Brownian motion W and a random variable ξ, a strong solution X is obtained
as X = F (ξ,W ), with the same mapping F .

10.2 Weak solutions

Contrary to strong solutions, that have the interpretation of X as an output
process of a machine with inputs W and ξ, weak solutions are basically processes
defined on a suitable space that can be represented by a stochastic differential
equation. This is formalized in the next definition.

Definition 10.6. A weak solution of equation (10.1) by definition consists of
a probability space (Ω,F ,P), a filtration F and a pair of continuous adapted
processes (X,W ) such that W is Brownian motion relative to this filtration and
moreover
(i) Condition (10.4) is satisfied
(ii) equation (10.1) is satisfied a.s.

The law of X0, given a certain weak solution, is called the initial distribution.
Notice that it follows from this definition that X0 and W are independent.
Related to weak solutions there are different concepts of uniqueness. The most
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relevant one is uniqueness in law, which is defined as follows. Uniqueness in law
is said to hold if any two weak solutions ((Ω,F ,P), F, (X,W )) and ((Ω′,F ′,P′),
F′, (X ′,W ′)) with X0 and X ′

0 identically distributed are such that also the
processes X and X ′ have the same distribution.

The proposition below shows that one can guarantee the existence of weak
solutions under weaker conditions than those under which existence of strong
solutions can be proved, as should be the case. The main relaxation is that we
drop the Lipschitz condition on b.

Proposition 10.7 Consider the equation

dXt = b(t,Xt) dt+ dWt, t ∈ [0, T ].

Assume that b satisfies the growth condition |b(t, x)| ≤ K(1 + |x|), for all t ≥ 0,
x ∈ R. Then, for any initial law µ, this equation has a weak solution.

Proof We start out with a measurable space (Ω,F) and a family of probability
measures Px on it. Let X be a continuous process on this space such that under
each Px the process X − x is a standard Brownian motion w.r.t. some filtration
F. The Px can be chosen to be a Brownian family, which entail that the maps
x 7→ Px(F ) are Borel measurable for each F ∈ F . Take this for granted. Let
ZT = exp(

∫ T

0
b(s,Xs) dXs− 1

2

∫ T

0
b(s,Xs)2 ds). At the end of the proof we show

that E PxZT = 1 for all x. Assuming that this is the case, we can define a
probability measure Q x on FT by Q x(F ) = E PxZT 1F . Put

Wt = Xt −X0 −
∫ t

0

b(s,Xs) ds.

It follows from Girsanov’s theorem that under each of the measures Q x the
processW is a standard Brownian motion w.r.t. {Ft}t≤T . Define the probability
measure Q by Q (F ) =

∫
Q x(F )µ(dx). Then W is a Brownian motion under Q

as well (you check why!) and Q (X0 ∈ B) = µ(B). It follows that the probability
space (Ω,F ,Q ) together with the filtration {Ft}t≤T and the processes X and
W constitute a weak solution.
We now show that E PxZT = 1 and write simply EZT in the rest of the proof.
Our goal is to conclude by application of a variant of Novikov’s condition. The
ideas is to consider the process Z over a number of small time intervals, to
check that Novikov’s condition is satisfied on all of them and then to collect the
conclusions in the appropriate way.
Let δ > 0 (to be specified later on) and consider the processes bn given by
bnt = b(t,Xt)1[(n−1)δ,nδ)(t) as well as the associated processes Zn = E(bn · X).
Suppose these are all martingales. Then E [Zn

nδ|F(n−1)δ] = Zn
(n−1)δ, which is

equal to one. Since we have

ZNδ =
N∏

n=1

Zn
nδ,
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we obtain

EZNδ = E [
N−1∏
n=1

Zn
nδE [ZN

Nδ|F(N−1)δ]] = E
N−1∏
n=1

Zn
nδ = EZ(N−1)δ,

which can be seen to be equal to one by an induction argument. To show that
the Zn are martingales we use Novikov’s condition. This condition is

E exp
(1
2

∫ T

0

(bnt )2 dt
)

= E exp
(1
2

∫ nδ

(n−1)δ

b(t,Xt)2 dt
)
<∞.

By the assumption on b this follows as soon as we know that

E exp
(1
2
δK2(1 + ||X||T )2

)
<∞,

which would follow from

E exp
(
δK2||X||2T

)
<∞.

Consider the positive submartingale V given by Vt = exp(1
2δK

2X2
t ) and note

that ||V ||2T = exp
(
δK2||X||2T

)
. By Doob’s L2-inequality we know that E ||V ||2T ≤

4EV 2
T = 4E exp(δK2X2

T ). Since XT has a normal N(x, T ) distribution, the last
expectation is finite for δ < 1/2K2T . Choosing such a delta and an integer N
such that Nδ = T , we have finished the proof of EZT = 1. �

We now give an example of a stochastic differential equation that has a weak
solution that is unique in law, but that doesn’t admit a strong solution. This
equation is

Xt =
∫ t

0

sgn(Xs) dWs, (10.12)

where

sgn(x) =
{

1 if x ≥ 0
0 if x < 0.

First we show that a weak solution exists. Take a (Ω,F ,P) on which is defined
a Brownian motion X and define Wt =

∫ t

0
sgn(X) dX. It follows from Lévy’s

characterization that also W is a Brownian motion. Moreover, one easily sees
that (10.12) is satisfied. However, invoking Lévy’s characterization again, any
weak solution to this equation must be a Brownian motion. Hence we have
uniqueness in law. We proceed by showing that assuming existence of a strong
solution leads to an absurdity. The proper argument to be used for this involves
local time, a process that we don’t treat in this course. We hope to convince
the reader with a heuristic argumentation. First we change the definition of sgn
into sgn(x) = x

|x|1x6=0. (With this definition, for equation (10.12) uniqueness
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in distribution doesn’t hold anymore. Why?). The definition of the process W
can then be recast as

Wt =
1
2

∫ t

0

1Xs 6=0
1
|Xs|

d(X2
s − s).

All the processes involved in the right hand side of this equation are F|X|-adapted
and so must be W . But a strong solution satisfies FX

t ⊂ Ft, which would lead
to FX

t ⊂ F |X|
t , an inclusion which is absurd.

10.3 Markov solutions

First we define a real transition kernel. It is a function k : R × B(R) → [0, 1]
satisfying the properties

x 7→ k(x,A) is Borel-measurable for all A ∈ B(R)

and

A 7→ k(x,A) is a probability measure for all x ∈ R .

Definition 10.8. A process X is called Markov w.r.t. a filtration F if there
exists a family of transition kernels {Pt,s : t ≥ s ≥ 0} such that for all t ≥ s and
for all bounded continuous functions f it holds that

E [f(Xt)|Fs] =
∫
f(y)Pt,s(Xs, dy). (10.13)

A Markov process X is called homogeneous, if there is a family of transition
kernels {Pu : u ≥ 0} such that for all t ≥ s one has Pt,s = Pt−s. Such a process
is called strong Markov if for every a.s. finite stopping time T one has

E [f(XT+t)|FT ] =
∫
f(y)Pt(XT , dy). (10.14)

We are interested in Markov solutions to stochastic differential equations. Since
the Markov property (especially if the involved filtration is the one generated by
the process under consideration itself) is mainly a property of the distribution
of a process, it is natural to consider weak solutions to stochastic differential
equations. However, showing (under appropriate conditions) that a solution
to a stochastic differential equation enjoys the Markov property is much easier
for strong solutions, on which we put the emphasis, and therefore we confine
ourselves to this case. The canonical approach to show that weak solutions
enjoy the Markov property is via what is known as the Martingale problem. For
showing that strong solutions have the Markov property, we don’t need this
concept. The main result of this section is Theorem 10.10 below.

First some additional notation and definitions. If X is a (strong) solution to
(10.1), then we denote by Xs (not to be confused with similar notation for
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stopped processes) the process Xs+·, by bs the function b(s+ ·, ·) and by σs the
function σ(s+·, ·). Likewise we have the processW s defined byW s = Ws+t−Ws

and the σ-algebras Fs
t = Ft+s, constituting the filtration Fs. Notice that W s

is a Brownian motion w.r.t. Fs. It follows that the process Xs satisfies the
equation

Xs
t = Xs

0 +
∫ t

0

bs(u,Xs
u) du+

∫ t

0

σs(u,Xs
u) dW s

u . (10.15)

ByXs,x we denote the unique strong solution (assuming that it exists) to (10.15)
with Xs

0 = x. In what follows we will work with a bounded continuous func-
tion f : R → R and for such an f we define the function vf by vf (t, s, x) =
E f(Xs,x

t ).

Lemma 10.9 Assume that the conditions of Theorem 10.2 are satisfied. By
Xs,ξ we denote the strong solution to (10.15) with initial value Xs = ξ, where
the random variable ξ is independent of W s and satisfies E ξ2 <∞. Then vf is
continuous in x and E [f(Xs,ξ

t )|Fs] = vf (t, s, ξ).

Proof Let x be a fixed initial condition and considerXs,x. SinceXs,x is adapted
to the augmented filtration generated by Wu −Ws for u > s it is independent
of Fs. Hence E [f(Xs,x

t )|Fs] = E f(Xs,x
t ) = vf (t, s, x). If ξ assumes countably

many values ξj , we compute

E [f(Xs,ξ
t )|Fs] =

∑
j

1{ξ=ξj}E [f(Xs,ξj

t )|Fs]

=
∑

j

1{ξ=ξj}v
f (t, s, ξj)

= vf (t, s, ξ).

The general case follows by approximation. For arbitrary ξ we define for every n
the countably valued random variable ξn = 2−n[2nξ]. Then ξn ≤ ξ ≤ ξn + 2−n.
We compute, using Jensen’s inequality for conditional expectations,

E
(
E [f(Xs,ξn

t )|Fs]− E [f(Xs,ξ
t )|Fs]

)2

= E
(
E [f(Xs,ξn

t )− f(Xs,ξ
t )|Fs]

)2

≤ E E [(f(Xs,ξn

t )− f(Xs,ξ
t ))2|Fs]

= E (f(Xs,ξn

t )− f(Xs,ξ
t ))2. (10.16)

Now we apply Exercise 10.12, that tells us that E (Xs,ξn

t −Xs,ξ
t )2 → 0 for n→∞.

But then we also have the convergence in probability and since f is bounded
and continuous also the expression in (10.16) tends to zero. Hence we have
L2-convergence of E [f(Xs,ξn

t )|Fs] to E [f(Xs,ξ
t )|Fs]. Applying this result to a

deterministic ξ = x, we obtain continuity of the function vf (t, s, ·). From the
L2-convergence we obtain a.s. convergence along a suitably chosen subsequence.
Recall that we already proved that

vf (t, s, ξn) = E [f(Xs,ξn

t )|Fs].
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Apply now the continuity result to the left hand side of this equation and the
a.s. convergence (along some subsequence) to the right hand side to arrive at
the desired conclusion. �

Theorem 10.10 Let the coefficients b and σ satisfy the conditions of Theo-
rem 10.2. Then the solution process is Markov. Under the additional assump-
tion that the coefficients b and σ are functions of the space variable only, the
solution process is strong Markov.

Proof The previous Lemma 10.9 has as a corollary that E [f(Xt+s)|Fs] =
vf (t, s,Xs), for all bounded and continuous f . Applying this to functions f
of the form f(x) = exp(iλx), we see that the conditional characteristic function
of Xt+s given Fs is a measurable function of Xs, since vf was continuous in
x. It then follows that for t > s the conditional probabilities P(Xt ∈ A|Fs)
are of the form Pt,s(Xs, A), where the functions Pt,s(·, A) are Borel-measurable
and that then

∫
f(y)Pt,s(Xs, dy) = vf (t− s, s,Xt) = E [f(Xt)|Fs]. Hence X is

Markov.
To prove the strong Markov property for time homogeneous coefficients we fol-
low a similar procedure. First we observe that the functions bs and σs coincide
with b and σ. Hence, if T is an a.s. finite stopping time, we have instead of
equation (10.15)

XT+t = XT +
∫ t

0

b(XT+u) du+
∫ t

0

σ(XT+u) dWT
u ,

with WT
u := WT+u−WT . By the strong Markov property of Brownian motion,

the process WT is Brownian w.r.t. the filtration {FT+t, t ≥ 0}. It also follows
that the function vf introduced above doesn’t depend on the variable s and we
write vf (t, x) instead of vf (t, s, x). Hence we can copy the above analysis to
arrive at E [f(XT+t)|FT ] = vf (t,XT ), which is equivalent to the strong Markov
property. �

10.4 Exercises

10.1 Prove that for a right-continuous martingale M it holds that

E (sup
s≤t

|Ms|)2 ≤ 4EM2
t .

Hint: Work on λ2P(sups≤t |Ms| > λ) ≤ EM2
t 1{sups≤t |Ms|>λ}.

10.2 Let X0, ε1, ε2, . . . be a sequence of independent random variables. Suppose
that we generate a (discrete time) random process by the recursion

Xt = f(Xt−1, εt, t), (t ≥ 1),

where f is a measurable function. Show that the processX is Markov: P(Xt+1 ∈
B|FX

t ) = P(Xt+1 ∈ B|Xt). Show also the stronger statement: for any bounded
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and measurable function h we have

E [h(Xt+1)|Ft] =
∫
h(f(Xt, u, t+ 1))Ft+1(du),

where Ft+1 is the distribution function of εt+1.

10.3 Consider the stochastic differential equation

dXt = 3X1/3
t dt+ 3X2/3

t dWt,

with initial condition X0 = 0. Give two different strong solutions to this equa-
tion.

10.4 Consider the one-dimensional equation

dXt = −aXt dt+ σ dWt, X0,

where a and σ are real constants. Show that a strong solution is given by
Xt = e−atX0 + σe−at

∫ t

0
eas dWs. Let X0 have mean µ0 and variance σ2

0 < ∞.
Compute µt = EXt and σ2

t = VarXt. If X0 moreover has a normal distribution,
then all Xt have a normal distribution as well. X0 is said to have the invariant
distribution if all Xt have the same distribution as X0. Find this distribution
(for existence you also need a condition on a).

10.5 LetX be defined byXt = x0 exp
(
(b− 1

2σ
2)t+σWt

)
, whereW is a Brownian

motion and b and σ are constants. Write down a stochastic differential equation
that X satisfies. Having found this sde, you make in the sde the coefficients b
and σ depending on time. How does the solution of this equation look now?

10.6 Consider the equation

dXt = (θ − aXt) dt+ σ
√
Xt ∨ 0 dWt, X0 = x0 ≥ 0.

Assume that θ ≥ 0. Show that X is nonnegative.

10.7 Let g be a nonnegative Borel-measurable function, that is locally inte-
grable on [0,∞). Assume that g satisfies for all t ≥ 0 the inequality g(t) ≤
a+ b

∫ t

0
g(s) ds, where a, b ≥ 0. Show that g(t) ≤ aebt. Hint: Solve the inhomo-

geneous integral equation

g(t) = a+ b

∫ t

0

g(s)ds− p(t)

for a nonnegative function p.

10.8 Show that (cf. the proof of Theorem 10.2) E ||X1 −X0||2T <∞.

10.9 Let T > 0. Show that under the assumptions of Theorem 10.2 it holds
that for all T > 0 there is a constant C (depending on T ) such that EX2

t ≤
C(1 + E ξ2) exp(Ct), for all t ≤ T .
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10.10 Endow C[0,∞) with the metric d defined by

d(x, y) =
∞∑

n=1

2−n(1 ∧ max
t∈[0,n]

|x(t)− y(t)|).

Show that the Borel σ-algebra B(C[0,∞)) coincides with the smallest σ-algebra
that makes all finite dimensional projections measurable.

10.11 Let X be strong solution to (10.1) with initial value ξ. Show that for each
t > 0 there is map f : R×C[0, t] → R that is B(R)×B(C[0, t])/B(R)-measurable
such that Xt(ω) = f(ξ(ω),W[0,t](ω)) for almost all ω.

10.12 Let X and Y be strong solutions with possibly different initial values and
assume that the conditions of Theorem 10.2 are in force. Show that for all T
there is a constant D such that

E ||X − Y ||2t ≤ DE |X0 − Y0|2,∀t ≤ T.

Hint: Look at the first part of the proof of Theorem 10.2. First you use that
(a + b + c)2 ≤ 3(a2 + b2 + c2), mimic the proof and finally you use Gronwall’s
inequality.

10.13 Show that under the assumptions of Theorem 10.2 also equation (10.15)
admits a unique strong solution. What can you say about this when we replace
s with a finite stopping time T?

10.14 If X is a strong solution of (10.1) and the assumptions of Theorem 10.2
are in force, then the bivariate process {(Xt, t), t ≥ 0} is strong Markov. Show
this.

10.15 If X is a (weak or strong) solution to (10.1) with b and σ locally bounded
measurable functions, then for all f ∈ C2(R), the process Mf

t = f(Xt) −
f(X0)−

∫ t

0
Lsf(Xs) ds is a local martingale. Here the operators Ls are defined

by Lsf(x) = b(s, x)f ′(x) + 1
2σ

2(s, x)f ′′(x) for f ∈ C2(R). If we restrict f to be
a C∞

K -function, then the Mf become martingales. Show these statements.

10.16 Consider the equation

Xt = 1 +
∫ t

0

Xs dWs.

Apply the Picard-Lindelöf iteration scheme of the proof of Theorem 10.2 (so
X0

t ≡ 1, etc.). Show that

Xn
t =

n∑
k=0

1
k!
Hk(Wt, t),

where the functions Hk are those of Exercise 7.1. Conclude that Xn
t → E(W )t

a.s. for n→∞, for every t ≥ 0. Do we also have a.s. convergence, uniform over
compact time intervals?
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10.17 Let X be a Markov process with associated transition kernels Pt,s. Show
the validity of the Chapman-Kolmogorov equations

Pu,s(x,A) =
∫
Pu,t(y,A)Pt,s(x, dy),

valid for all Borel sets A and s ≤ t ≤ u.
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11 Partial differential equations

The simplest example of a partial differential equation whose solutions can be
expressed in terms of a diffusion process is the heat equation

ut −
1
2
uxx = 0. (11.1)

The fundamental solution of this equation for t > 0 and x ∈ R is the density of
the N(0, t) distribution,

p(t, x) =
1√
2πt

exp(−x
2

2t
).

This solution is clearly not unique, u(t, x) = t+ x2 is another one. For unique-
ness one needs e.g. an initial value, u(0, x) = f(x) say, with some prespecified
function f . Leaving technicalities aside for the moment, one may check by
scrupulously interchanging differentiation and integration that

u(t, x) =
∫

R
f(y)p(t, x− y) dy

satisfies equation (11.1) for t > 0. Moreover, we can write this function u as
u(t, x) = E f(x +Wt), where we extend the domain of the t-variable to t ≥ 0.
Notice that for t = 0 we get u(0, x) = f(x). Under appropriate conditions on
f one can show that this gives the unique solution to (11.1) with the initial
condition u(0, x) = f(x).

If we fix a terminal time T , we can define v(t, x) = u(T − t, x) for t ∈ [0, T ], with
u a solution of the heat equation. Then v satisfies the backward heat equation
equation

vt +
1
2
vxx = 0,

with terminal condition v(T, x) = f(x) if u(0, x) = f(x). It follows that we have
the representation v(t, x) = E f(x + WT−t) = E f(x + WT −Wt). Denote by
W t,x a process defined on [t,∞) that starts at t in x and whose increments have
the same distribution as those of Brownian motion. Then we can identify this
process as W t,x

s = x+Ws −Wt for s ≥ t. Hence we have v(t, x) = E f(W t,x
T ).

In this section we will look at partial differential equations that are more general
than the heat equation, with initial conditions replaced by a terminal condition.
The main result is that solutions to such equations can be represented as func-
tionals of solutions to stochastic differential equations.

11.1 Feynman-Kaç formula

Our starting point is the stochastic differential equation (10.1). Throughout
this section we assume that the coefficients b and σ are continuous and that the
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linear growth condition

|b(t, x)|+ |σ(t, x)| ≤ K(1 + |x|) (11.2)

is satisfied. Moreover we assume that (10.1) allows for each pair (t, x) a weak
solution involving a process (Xt,x

s )s≥t that is unique in law and satisfiesXt,x
t = x

a.s. We also need the family of operators {Lt, t > 0} (called generator in Markov
process language) acting on functions f ∈ C1,2([0,∞)× R) defined by

Ltf(t, x) = b(t, x)fx(t, x) +
1
2
σ2(t, x)fxx(t, x). (11.3)

Below, in the proof of Lemma 11.2, we use inequality (11.4), known as one of
the Burkholder-Davis-Gundy inequalities.

Lemma 11.1 Let p ≥ 2. There exists a constant Cp such that for all continuous
local martingales M with M0 = 0 and all finite stopping times T one has

E sup
t≤T

|Mt|p ≤ CpE 〈M〉p/2
T . (11.4)

Proof Assume first that M is bounded. The function x 7→ |x|p is in C2(R) so
we can apply Itô’s formula to get

|MT |p = p

∫ T

0

sgn(Mt)|Mt|p−1 dMt +
1
2
p(p− 1)

∫ T

0

|Mt|p−2 d〈M〉t.

Since M is bounded, it is a honest martingale and so is the first term in the
above equation. Taking expectations, we thus get with ||M ||T = supt≤T |Mt|
and Hölder’s inequality at the last step below

E |MT |p =
1
2
p(p− 1)E

∫ T

0

|Mt|p−2 d〈M〉t

≤ 1
2
p(p− 1)E

(
sup
t≤T

|Mt|p−2〈M〉T
)

≤ 1
2
p(p− 1)(E ||M ||pT )1−2/p(E 〈M〉p/2

T )2/p.

Doob’s inequality E ||M ||pT ≤
(

p
p−1

)pE |MT |p (see (2.3)) then gives

E ||MT ||p ≤ (
p

p− 1
)p 1

2
p(p− 1)(E ||M ||pT )1−2/p(E 〈M〉p/2

T )2/p,

from which we obtain

E ||MT ||p ≤ (
p

p− 1
)p2/2(

1
2
p(p− 1))p/2E 〈M〉p/2

T ,

which proves the assertion for bounded M . If M is not bounded we apply
the above result to MT n

, where the stopping times Tn are such that MT n

are
martingales bounded by n:

E ||MT n

||pT ≤ CpE 〈MT n

〉p/2
T = CpE 〈M〉p/2

T∧T n .

77



In this inequality the right hand side is less than or equal to CpE 〈M〉p/2
T . The

result is then obtained by applying Fatou’s lemma to the left hand side. �

Lemma 11.2 Let X be (part of) a weak solution of (10.1). Then for any finite
time T and p ≥ 2 there is a constant C such that

E sup
t≤T

|Xt|p ≤ CeCT (1 + E |X0|p).

Proof Exercise 11.3. �

We now consider the Cauchy problem. Let T > 0 and let functions f : R → R,
g, k : [0, T ] × R → R be given. Find a (unique) solution v : [0, T ] × R that
belongs to C1,2([0, T )× R) and that is continuous on [0, T ]× R such that

vt + Ltv = kv − g, (11.5)

and

v(T, ·) = f. (11.6)

The following assumptions are imposed on f, g and k. They are all continuous
on their domain, k is nonnegative and f, g satisfy the following growth condition.
There exist constants L > 0 and λ ≥ 1 such that

|f(x)|+ sup
0≤t≤T

|g(t, x)| ≤ L(1 + |x|2λ) (11.7)

Theorem 11.3 Let under the stated assumptions the equation (11.5) with ter-
minal Condition (11.6) have a solution v satisfying the growth condition

sup
0≤t≤T

|v(t, x)| ≤M(1 + |x|2µ), (11.8)

for some M > 0 and µ ≥ 1. Let Xt,x be the weak solution to (10.1) starting
at t in x that is unique in law. Then v admits the stochastic representation
(Feynman-Kaç formula)

v(t, x) = E [f(Xx,t
T ) exp(−

∫ T

t

k(u,Xt,x
u ) du)]

+ E [
∫ T

t

g(r,Xt,x
r ) exp(−

∫ r

t

k(u,Xt,x
u ) du) dr]. (11.9)

on [0, T ]× R and is thus unique.

Proof In the proof we simply write X instead of Xt,x. Let

Ys = v(s,Xs) exp(−
∫ s

t

k(u,Xu) du) for s ≥ t.
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An application of Itô’s formula combined with the fact that v solves (11.5) yields

Ys − Yt =
∫ s

t

vx(r,Xr)σ(r,Xr) exp(−
∫ r

t

k(u,Xu) du) dWr

−
∫ s

t

g(r,Xr) exp(−
∫ r

t

k(u,Xu) du) dr. (11.10)

Notice that Yt = v(t, x) and that YT = f(XT ) exp(−
∫ T

t
k(u,Xu) du). If the

stochastic integral in (11.10) would be a martingale, then taking expectations
for s = T would yield the desired result. Since this property is not directly
guaranteed under the prevailing assumptions, we will reach our goal by stopping.
Let Tn = inf{s ≥ t : |Xs| ≥ n}. Consider the stochastic integral in (11.10) at
s = T ∧ Tn. It can be written as∫ T

t

1{r≤T n}vx(r,XT n

r )σ(r,XT n

) exp(−
∫ r

t

k(u,XT n

u ) du) dWr.

Since vx and σ are bounded on compact sets, |XT n | is bounded by n and k ≥ 0,
the integrand in the above stochastic integral is bounded and therefore the
stochastic integral has zero expectation. Therefore, if we evaluate (11.10) and
take expectations we obtain

EYT∧T n − v(t, x) = −E
∫ T∧T n

t

g(r,Xr) exp(−
∫ r

t

k(u,Xu) du) dr. (11.11)

Consider first the left hand side of (11.11). It can be written as the sum of

E
(
f(XT ) exp(−

∫ T

t

k(u,Xu) du)1{T≤T n}
)

(11.12)

and

E
(
v(Tn, XT n) exp(−

∫ T n

t

k(u,Xu) du)1{T>T n}
)
. (11.13)

The expression (11.12) is bounded in absolute value by LE (1 + |XT |2λ)in view
of (11.7). Since E |XT |2λ ≤ CeC(T−t)(1+ |x|2λ) <∞ in view of Lemma 11.2, we
can apply the dominated convergence theorem to show that the limit of (11.12)
for n → ∞ is equal to E f(XT ) exp(−

∫ T

t
k(u,Xu) du). The absolute value

of (11.13) is bounded from above by

M(1 + n2µ)P(Tn ≤ T ). (11.14)

Now,

P(Tn ≤ T ) = P(sup
t≤T

|Xt| ≥ n) ≤ n−2pE sup
t≤T

|Xt|2p.

The expectation here is in view of Lemma 11.2 less than or equal to C(1 +
|x|2p)eC(T−t). Hence we can bound (11.14) from above by M(1+n2µ)n−2pC(1+
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|x|2p)eC(T−t). By choosing p > µ, we see that the contribution of (11.13)
vanishes for n→∞. Summing up,

EYT∧T n → E f(XT ) exp(−
∫ T

t

k(u,Xu) du).

Next we turn to the right hand side of (11.11). Write it as

−E
∫ T

t

1{r≤T n}g(r,Xr) exp(−
∫ r

t

k(u,Xu) du) dr.

The absolute value of the integrand we can bound by L(1 + |Xr|2λ), whose ex-
pectation is finite by another application of Lemma 11.2. Hence the dominated
convergence theorem yields the result. �

Remark 11.4. The nonnegative function k that appears in the Cauchy prob-
lem is connected with exponential killing. Suppose that we have a process Xt,x

starting at time t in x and that there is an independent random variable Y with
a standard exponential distribution. Let ∂ /∈ R be a so-called coffin or cemetery
state. Then we define the process X∂,t,x by

X∂,t,x
s =

{
Xt,x

s if
∫ s

t
k(u,Xt,x

u ) du < Y
∂ if

∫ s

t
k(u,Xt,x

u ) du ≥ Y

Functions f defined on R will be extended to R ∪ {∂} by setting f(∂) = 0. If
Xt,x is a Markov process (solving equation (10.1) for instance), then X∂,t,x is a
Markov process as well. If, in the terminology of the theory of Markov processes,
Xt,x has generator L, then X∂,t,x has generator Lk defined by Lk

t f(t, x) =
Ltf(t, x)− k(t, x)f(t, x). Furthermore we have

E f(X∂,t,x
s ) = E f(Xt,x

s ) exp(−
∫ u

t

k(u,Xt,x
u ) du. (11.15)

The above considerations enable one to connect the theory of solving the Cauchy
problem with k = 0 to solving the problem with arbitrary k by jumping in the
representation from the process Xt,x to X∂,t,x.

11.2 Exercises

11.1 Show that the growth conditions on f and g are not needed in order to
prove Theorem 11.3, if we assume instead that next to k also f and g are
nonnegative.

11.2 Consider equation (11.5) with k = 0 and g = 0. The equation is then called
Kolmogorov’s backward equation. Let f be continuous with compact support.
Show that vr,f (t, x) = E f(Xt,x

r ) satisfies Kolmogorov’s backward equation for
all r > t. Suppose that there exists a function p of four variables t, x, r, y such
that for all f that are continuous with compact support one has vr,f (t, x) =
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∫
R f(y)p(t, x, r, y) dy and limt↑r v

r,f (t, x) = f(x). Show that for fixed r, y the
function (t, x) → p(t, x, r, y) satisfies Kolmogorov’s backward equation. What
is the interpretation of the function p?

11.3 Prove Lemma 11.2. Hint: Proceed as in Exercise 10.12 and use the Doob
and Burkholder-Davis-Gundy inequalities.

11.4 The Black-Scholes partial differential equation is

vt(t, x) +
1
2
σ2x2vxx(t, x) + rxvx(t, x) = rv(t, x),

with constants r, σ > 0. Let X be the price process of some financial asset and
T > 0 a finite time horizon. A simple contingent claim is a measurable function
of XT , f(XT ) say, representing the value at time T of some derived financial
product. The pricing problem is to find the right price at any time t prior to T
that should be charged to trade this claim. Clearly, at time t = T , this price
should be equal to f(XT ). The theory of Mathematical Finance dictates that
(under the appropriate assumptions) this price is equal to v(t,Xt), with v a
solution to the Black-Scholes equation. Give an explicit solution for the case of
a European call option, i.e. f(x) = max{x−K, 0}, where K > 0 is some positive
constant.

11.5 Here we consider the Cauchy problem with an initial condition. We have
the partial differential equation

ut + ku = Ltu+ g,

with the initial condition u(0, ·) = f . Formulate sufficient conditions such that
this problem has a unique solution which is given by

u(t, x) = E f(Xx
t ) exp(−

∫ t

0

k(u,Xx
u) du)

+ E
∫ t

0

g(s,Xx
s ) exp(−

∫ s

0

k(u,Xx
u) du) ds,

where Xx is a solution to (10.1) with X0 = x.

11.6 Consider equation (11.5) with g = 0,

vt + Ltv = kv.

A fundamental solution to this equation is a function (t, x, s, y) 7→ p(t, x; s, y)
such that for all s > t and continuous f with compact support the function
(t, x) 7→ v(t, x; s) =

∫
R f(y)p(t, x; s, y) dy satisfies this equation and such that

limt↑s v(t, x; s) = f(x). Assume that a fundamental solution exists. Show that
the solution to the Cauchy problem (11.5), (11.6) takes the form

v(t, x) =
∫

R
p(t, x;T, y)f(y) dy +

∫ T

t

∫
R
p(t, x; s, y)g(s, y) dy ds.
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A Optional sampling in discrete time

Let F be a filtration in discrete time, an increasing sequence of σ-algebras Fn

(n = 0, 1, . . .). Recall the definition of a stopping time T , a map T : Ω → [0,∞]
such that {T ≤ n} ∈ Fn for every n. Of course T is a stopping time iff
{T = n} ∈ Fn for every n.

For a stopping time T we define the σ-algebra

FT := {F ⊂ Ω : F ∩ {T ≤ n} ∈ Fn for every n}.

If S and T are stopping times with S ≤ T , then FS ⊂ FT . If X is a process
with index set N, we define XT =

∑∞
n=0Xn1{T=n} and so XT = XT 1{T<∞}. If

also X∞ is defined, we include n = ∞ in the last summation. In both cases XT

is a well-defined random variable and even FT -measurable (check!).
NB: All (sub)martingales and stopping times below are defined with respect

to a given filtration F.

Lemma A.1 Let X be a submartingale and T a bounded stopping time, T ≤ N
say for some N ∈ N. Then E |XT | <∞ and

XT ≥ E [XN |FT ] a.s. (A.16)

Proof Integrability of XT follows from |XT | ≤
∑N

n=0 |Xn|. Let F ∈ FT . Then,
because F ∩ {T = n} ∈ Fn and the fact that X is a submartingale, we have

E [XN1F ] =
N∑

n=0

E [XN1F 1{T=n}]

≥
N∑

n=0

E [Xn1F 1{T=n}]

=
N∑

n=0

E [XT 1F 1{T=n}]

= E [XT 1F ],

which is what we wanted to prove. �

Theorem A.2 Let X be a uniformly integrable martingale with a last element
X∞, so Xn = E [X∞|Fn] a.s. for every n. Let T and S be stopping times with
S ≤ T . Then XT and XS are integrable and
(i) XT = E [X∞|FT ] a.s.
(ii) XS = E [XT |FS ] a.s.

Proof First we show that XT is integrable. Notice that E |XT |1{T=∞} =
E |X∞|1{T=∞} ≤ E |X∞| < ∞. Next, because |X| is a submartingale with
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last element |X∞|,

E |XT |1{T<∞} =
∞∑

n=0

E |Xn|1{T=n}

≤
∞∑

n=0

E |X∞|1{T=n}

= E |X∞|1{T<∞} <∞.

We proceed with the proof of (i). Notice that T ∧n is a bounded stopping time
for every n. But then by Lemma A.1 it holds a.s. that

E [X∞|FT∧n] = E [E [X∞|Fn]|FT∧n]
= E [Xn|FT∧n]
= XT∧n.

Let now F ∈ FT , then F ∩ {T ≤ n} ∈ FT∧n and by the above display, we have

E [X∞1F∩{T≤n}] = E [XT∧n1F∩{T≤n} = E [XT 1F∩{T≤n}].

Let n→∞ and apply the Dominated convergence theorem to get

E [X∞1F 1{T<∞}] = E [XT 1F 1{T<∞}].

Together with the trivial identity E [X∞1F 1{T=∞}] = E [XT 1F 1{T=∞}] this
yields E [X∞1F ] = E [XT 1F ] and (i) is proved.

For the proof of (ii) we use (i) two times and obtain

E [XT |FS ] = E [E [X∞|FT ]|FS ] = E [X∞|FS ] = XS .

�

Theorem A.3 Let X be a submartingale such that Xn ≤ 0 for all n = 0, 1, . . ..
Let T and S be stopping times with S ≤ T . Then XT and XS are integrable
and XS ≤ E [XT |FS ] a.s.

Proof Because of Lemma A.1 we have E [−XT∧n] ≤ E [−X0] for every n ≥ 0,
which implies by virtue of Fatou’s lemma 0 ≤ E [−XT 1{T<∞}] <∞.

Let E ∈ FS , then E ∩ {S ≤ n} ∈ FS∧n. Application of Lemma A.1 and
non-positivity of X yields

E [XS∧n1E1{S≤n}] ≤ E [XT∧n1E1{S≤n}] ≤ E [XT∧n1E1{T≤n}]

and hence

E [XS1E1{S≤n}] ≤ E [XT 1E1{T≤n}].

The Monotone convergence theorem yields E [XS1E ] ≤ E [XT 1E ]. �
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Theorem A.4 Let X be a submartingale with a last element X∞, so Xn ≤
E [X∞|Fn] a.s. for every n. Let T and S be stopping times with S ≤ T . Then
XT and XS are integrable and
(i) XT ≤ E [X∞|FT ] a.s.
(ii) XS ≤ E [XT |FS ] a.s.

Proof Let Mn = E [X∞|Fn]. By Theorem A.2, we get MS = E [MT |FS ].
Put then Yn = Xn − Mn. Then Y is a submartingale with Yn ≤ 0. From
Theorem A.3 we get YS ≤ E [YT |FS ]. Since XT = MT +YT and XS = MS +YS ,
the result follows. �

B Banach-Steinhaus theorem

Let S be a topological space. Recall that a subset of S is called nowhere dense
(in S), if its closure has an empty interior. If E ⊂ S, then Ē denotes its closure
and intE its interior.

Definition B.1. A subset of S is said to be of the first category (in S), if it is
a countable union of nowhere dense sets. If a set is not of the first category, it
is said to be of the second category.

The following theorem is known as Baire’s category theorem.

Theorem B.2 If S is a complete metric space, then the intersection of any
countable collection of dense open sets is dense.

Proof Let E1, E2, . . . be dense open sets and D =
⋂∞

n=1En. Let B0 be an
arbitrary open set. We will show that D∩B0 6= ∅. Select recursively open balls
Bn with radius at most 1

n such that B̄n ⊂ En ∩ Bn−1. This can be done since
the En are dense subsets. Let cn be the center of Bn. Since Bn ⊂ Bn−1 and
the radii converge to zero, the sequence (cn) is Cauchy. By completeness the
sequence has a limit c and then c ∈

⋂∞
n=1 B̄n ⊂ D. Since trivially c ∈ B0, we

have D ∩B0 6= ∅. �

Remark B.3. Baire’s theorem also holds true for a topological space S that is
locally compact. The proof is almost the same.

Corollary B.4 A metric space S is of the second category (in itself).

Proof Let E1, E2, . . . be open nowhere dense subsets. Let On = Ēn, an open
set. Then Ōn ⊃ SintĒn = S, hence On is dense. It follows from Theorem B.2
that

⋂
nOn 6= ∅, so

⋃
nO

c
n 6= S. But then

⋂
nEn can’t be equal to S either. �

Let X and Y be Banach spaces and L a bounded linear operator from X into
Y . Recall that boundedness is equivalent to continuity. The operator norm of
L is defined by

||L|| = sup{||Lx|| : x ∈ X and ||x|| = 1}.
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Note that we use the same symbol || · || for different norms. The following
theorem is known as the principle of uniform boundedness, or as the Banach-
Steinhaus theorem. Other, equivalent, formulations can also be found in the
literature.

Theorem B.5 Let X and Y be Banach spaces and L be a family of bounded
linear operators from X into Y . Suppose that for all x ∈ X the set {||Lx|| : L ∈
L} is bounded. Then the set {||L|| : L ∈ L} is bounded as well.

Proof Let ε > 0 be given and let Xn = {x ∈ X : sup{||Lx|| : L ∈ L} ≤ nε}.
Since every L is continuous as well as || · ||, the set Xn is closed. In view
of the assumption, we have X =

⋃
nXn. Since X is of the second category

(Corollary B.4), it follows that some Xn0 must have nonempty interior. Hence
there is x0 ∈ Xn0 and some δ > 0 such that the closure of the ball B = B(x0, δ)
belongs to Xn0 . For every x ∈ B, we then have ||Lx|| ≤ n0ε for every L ∈ L.
Let B′ = B − x0. Then B′ is a neighbourhood of zero and every y ∈ B′ can be
written as y = x− x0 for some x ∈ B. This yields ||Ly|| ≤ 2n0ε, valid for every
L ∈ L. Let now v ∈ X be an arbitrary vector with norm one. Then we apply
the above to y := δv and obtain from this

||Lv|| ≤ 2n0ε

δ
,

valid for all L ∈ L and v with ||v|| = 1. But then supL∈L supv:||v||=1 ||Lv|| <∞,
which is what we wanted to show. �

C Dunford-Pettis uniform integrability criterion

In this section we present a proof of one of the two implications in the Dunford-
Pettis characterization of uniform integrability, Lemma 2.13. Indeed, it concerns
the implication that was needed in the proof of the Doob-Meyer decomposition.
We formulate it as Proposition C.2 below. First some additional terminology.

Suppose that X is a Banach space. By X∗ we denote the space of all
continuous linear functionals on X, it is called the dual space of X. On says
that a sequence (xn) ⊂ X converges weakly to x ∈ X if Txn → Tx, as n→∞,
for all T ∈ X∗. The corresponding topology on X is called the weak topology,
and one speaks of weakly open, weakly closed and weakly compact sets etc.
This topology is defined by neighbourhoods of 0 ∈ X of the form {x ∈ X :
|Tix| < ε, i = 1, . . . , n}, with the Ti ∈ X∗, ε > 0 and n ∈ N .

It is known that ifX = Lp(S,Σ, µ), thenX∗ can be identified with Lq(S,Σ, µ)
(and we simply write X∗ = Lq(S,Σ, µ)), where q = p/(p− 1) for p ≥ 1. In par-
ticular we have X∗ = X, when X = L2(S,Σ, µ), which is the Riesz-Fréchet
theorem. First we present a lemma, which is a special case of Alaoglu’s theo-
rem.

Lemma C.1 The weak closure of the unit ball B = {x ∈ X : ||x||2 < 1} in
X = L2(S,Σ, µ) is weakly compact.
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Proof The set B can be considered as a subset of [−1,+1]X , since every x ∈ X
can be seen as a linear functional on X. Moreover, we can view the weak
topology on X as induced by the product topology on [−1,+1]X , if [−1,+1]
is endowed with the ordinary topology. By Tychonov’s theorem, [−1,+1]X is
compact in the product topology, and so is the weak closure of B as a closed
subset of [−1,+1]X . �

We now switch to a probability space (Ω,F ,P). From the definition of weak
topology on L1(Ω,F ,P) we deduce that a set U ⊂ L1(Ω,F ,P) is weakly se-
quentially compact, if every sequence in it has a subsequence with weak limit in
U . Stated otherwise, U is weakly sequentially compact in L1(Ω,F ,P), if every
sequence (Xn) ⊂ U has a subsequence (Xnk

) such that there exists X ∈ U with
EXnk

Y → EXY , for all bounded random variables Y . This follows since for
X = L1 its dual space X∗ = L∞(Ω,F ,P).

Proposition C.2 Let (Xn) be a uniformly integrable sequence of random vari-
ables on (Ω,F ,P). Then (Xn) is weakly sequentially compact.

Proof Let k > 0 be an integer and put Xk
n = Xn1{|Xn|≤k}. Then for fixed

k the sequence (Xk
n) is bounded and thus also bounded in L2(Ω,F ,P). By

Lemma C.1, it has a subsequence (Xk
nk

j
) that converges weakly in L2 to a limit

Xk. We can even say more, there exists a sequence (nj) ⊂ N such that for
all k the sequence (Xk

nj
) converges weakly to Xk. To see this, we argue as in

the proof of Helly’s theorem and utilize a diagonalization argument. Let k = 1
and find the convergent subsequence (X1

n1
j
). Consider then (X2

n1
j
) and find the

convergent subsequence (X2
n2

j
). Note that also (X1

n2
j
) is convergent. Continue

with (X3
n2

j
) etc. Finally, the subsequence in N that does the job for all k is (nj

j),

for which we write (nj).
Observe that (Xk

nj
− X l

nj
) has Xk − X l as its weak limit in L2, but then

this is also the weak limit in L1, since every bounded random variable Y is
square integrable. Hence we have E (Xk

nj
−X l

nj
)Y → E (Xk −X l)Y for every

bounded Y . Take Y = sgn(Xk − X l). Since with this choice for Y we have
E (Xk

nj
−X l

nj
)Y ≤ E |Xk

nj
−X l

nj
|, we obtain lim infj E |Xk

nj
−X l

nj
| ≥ E |Xk−X l|.

Write E |Xk
nj
−X l

nj
| = E |Xnj (1{|Xnj

|>l}−1{|Xnj
|>k})|. By uniform integra-

bility this tends to zero for k, l →∞, uniformly in the nj . It then follows that
E |Xk −X l| → 0 as k, l → ∞, in other words, (Xk) is Cauchy in L1 and thus
has a limit X. We will now show that this X is the one we are after.

We have to show that E (Xnj −X)Y → 0 for arbitrary bounded Y . Write

E (Xnj
−X)Y = EXnj

1{|Xnj
|>k}Y + E (Xk

nj
−Xk)Y + E (Xk −X)Y.

The first of the three terms can be made arbitrary small by choosing k big
enough, uniformly in the nj , by uniform integrability. The second term tends
to zero for nj →∞ by the weak convergence in L1 of theXk

nj
toXk, whereas the

third term can be made arbitrary small for large enough k by the L1-convergence
of Xk to X. �
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