
The Radon-Nikodym theorem
for absolutely continuous probability measures

Suppose that one has a random variable Z ∈ L1(Ω,F ,P) such that P(Z ≥ 0) = 1
and EZ = 1. Define then for F ∈ F

Q(F ) = E1FZ.

One sees that Q is a measure on (Ω,F) and that P(Ω) = 1, hence Q is a
probability measure on (Ω,F). If F is any event such that P(F ) = 0, then also
Q(F ) = 0 as 1F = 0 P-a.s. One says that Q is absolutely continuous w.r.t. P
and this is denoted Q � P. Theorem 2 below states that the above procedure
is the only way to get absolutely continuous probability measures.

As a preparation for its proof we recall the Riesz-Frechét theorem. If H is
a Hilbert space and T a continuous linear functional on it, then there exists a
unique y ∈ H such that Tx = 〈x, y〉. We consider a special case of this theorem.
The setting is that of a probability space (Ω,F ,P) and H = L2(Ω,F ,P), where
the inner product is given by 〈X,Y 〉 = EXY . Strictly speaking, this H is
not a normed space as EX2 = 0 only implies X = 0 a.s. Likewise we have
completeness in the sense that a Cauchy sequence (Xn) ⊂ L2(Ω,F ,P) has a
limit which is unique almost surely only. The Riesz-Frechét theorem takes the
following form

Lemma 1 Let T : L2(Ω,F ,P) → R be a continuous linear functional. Then
there exists an a.s. unique Y ∈ L2(Ω,F ,P) such that TX = EXY .

Theorem 2 (Radon-Nikodym) Consider a measurable space (Ω,F) on which
are defined two probability measures Q and P. Assume Q � P. Then there
exists a P-a.s. unique random variable Z with P(Z ≥ 0) = 1 and EZ = 1 such
that for all F ∈ F one has

Q(F ) = E1FZ. (1)

Proof Let P̂ = 1
2 (P + Q) and consider T : L2(Ω,F , P̂) → R defined by TX =

EQ X. Then

|TX| ≤ EQ |X|
≤ 2EP̂ |X|
≤ 2(EP̂ X

2)1/2.

Hence T is a continuous linear functional on L2(Ω,F , P̂), and by the Riesz-

Fréchet theorem there exist Y ∈ L2(Ω,F , P̂) such that EQ X = 2EP̂ XY =
EQ XY + EXY . Hence we have

EQ X(1− Y ) = EXY, (2)
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for all X ∈ L2(Ω,F , P̂). To find a convenient property of Y , we make two
judicious choices for X in (2).

First we take X = 1{Y≥1}. We then get

0 ≥ EQ 1{Y≥1}(1− Y ) = E1{Y≥1}Y ≥ P(Y ≥ 1),

and hence P(Y ≥ 1) = 0. By absolute continuity also Q(Y ≥ 1) = 0.
Second, we choose X = 1{Y <0} and get, note that X(1− Y ) ≥ 0,

0 ≤ EQ 1{Y <0}(1− Y ) = E1{Y <0}Y ≤ 0,

and hence P(Y < 0) = 0 and Q(Y < 0) = 0. We conclude that Q(Y ∈ [0, 1)) =
P(Y ∈ [0, 1)) = 1.

We now claim that the random variable Z in the assertion of the theorem is
given by

Z =
Y

1− Y
1[0,1)(Y ).

Note that Z takes its values in [0,∞). Write Z = limn Zn with Zn = Y Sn,

where Sn = 1[0,1)(Y )
∑n−1

k=0 Y
k and note that 0 ≤ Sn, Zn ≤ n. Let F ∈ F . We

apply (2) with X = 1FSn to obtain, using (1− Y )Sn = 1[0,1)(Y )(1− Y n),

EQ 1F1[0,1)(Y )(1− Y n) = E1FZn.

Monotone convergence gives

EQ 1F1[0,1)(Y ) = E1FZ. (3)

As Q(Y ∈ [0, 1)) = 1 one has Q(F ) = Q(F ∩ {Y ∈ [0, 1)}) = EQ 1F1[0,1)(Y ),
and (1) follows from (3). Moreover, as Q is a probability measure, we get with
F = Ω that EZ = 1.

The final issue to address is the P-a.s. uniqueness of Z. Suppose Z ′ is another
random variable satisfying the assertion of the theorem. Then (1) is also valid
for any F ∈ F with Z replaced with Z ′. Take F = {Z > Z ′}. By subtraction
one obtains E1{Z>Z′}(Z −Z ′) = 0 and hence P(Z ≤ Z ′) = 1. By swapping the
roles of Z and Z ′, one concludes P(Z = Z ′) = 1, which finishes the proof. �

We conclude with some notation. The random variable Z in the theorem is
often denoted dQ

dP and called the Radon-Nikodym derivative of Q w.r.t. P. With
this notation Equation (1) gets an appealing form when using integrals,∫

1F dQ =

∫
1F

dQ
dP

dP.
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