The Radon-Nikodym theorem for absolutely continuous probability measures

Suppose that one has a random variable $Z \in \mathcal{L}^1(\Omega, \mathcal{F}, \mathbb{P})$ such that $\mathbb{P}(Z \ge 0) = 1$ and $\mathbb{E} Z = 1$. Define then for $F \in \mathcal{F}$

$$\mathbb{Q}(F) = \mathbb{E} \mathbf{1}_F Z.$$

One sees that \mathbb{Q} is a measure on (Ω, \mathcal{F}) and that $\mathbb{P}(\Omega) = 1$, hence \mathbb{Q} is a probability measure on (Ω, \mathcal{F}) . If F is any event such that $\mathbb{P}(F) = 0$, then also $\mathbb{Q}(F) = 0$ as $\mathbf{1}_F = 0$ \mathbb{P} -a.s. One says that \mathbb{Q} is *absolutely continuous w.r.t.* \mathbb{P} and this is denoted $\mathbb{Q} \ll \mathbb{P}$. Theorem 2 below states that the above procedure is the only way to get absolutely continuous probability measures.

As a preparation for its proof we recall the Riesz-Frechét theorem. If \mathcal{H} is a Hilbert space and T a continuous linear functional on it, then there exists a unique $y \in \mathcal{H}$ such that $Tx = \langle x, y \rangle$. We consider a special case of this theorem. The setting is that of a probability space $(\Omega, \mathcal{F}, \mathbb{P})$ and $\mathcal{H} = \mathcal{L}^2(\Omega, \mathcal{F}, \mathbb{P})$, where the inner product is given by $\langle X, Y \rangle = \mathbb{E} XY$. Strictly speaking, this \mathcal{H} is not a normed space as $\mathbb{E} X^2 = 0$ only implies X = 0 a.s. Likewise we have completeness in the sense that a Cauchy sequence $(X_n) \subset \mathcal{L}^2(\Omega, \mathcal{F}, \mathbb{P})$ has a limit which is unique almost surely only. The Riesz-Frechét theorem takes the following form

Lemma 1 Let $T : \mathcal{L}^2(\Omega, \mathcal{F}, \mathbb{P}) \to \mathbb{R}$ be a continuous linear functional. Then there exists an a.s. unique $Y \in \mathcal{L}^2(\Omega, \mathcal{F}, \mathbb{P})$ such that $TX = \mathbb{E}XY$.

Theorem 2 (Radon-Nikodym) Consider a measurable space (Ω, \mathcal{F}) on which are defined two probability measures \mathbb{Q} and \mathbb{P} . Assume $\mathbb{Q} \ll \mathbb{P}$. Then there exists a \mathbb{P} -a.s. unique random variable Z with $\mathbb{P}(Z \ge 0) = 1$ and $\mathbb{E}Z = 1$ such that for all $F \in \mathcal{F}$ one has

$$\mathbb{Q}(F) = \mathbb{E} \mathbf{1}_F Z. \tag{1}$$

Proof Let $\hat{\mathbb{P}} = \frac{1}{2}(\mathbb{P} + \mathbb{Q})$ and consider $T : \mathcal{L}^2(\Omega, \mathcal{F}, \hat{\mathbb{P}}) \to \mathbb{R}$ defined by $TX = \mathbb{E}_{\mathbb{Q}} X$. Then

$$\begin{aligned} |TX| &\leq \mathbb{E}_{\mathbb{Q}} |X| \\ &\leq 2\mathbb{E}_{\hat{\mathbb{P}}} |X| \\ &\leq 2(\mathbb{E}_{\hat{\mathbb{P}}} X^2)^{1/2}. \end{aligned}$$

Hence T is a continuous linear functional on $\mathcal{L}^2(\Omega, \mathcal{F}, \hat{\mathbb{P}})$, and by the *Riesz-Fréchet theorem* there exist $Y \in \mathcal{L}^2(\Omega, \mathcal{F}, \hat{\mathbb{P}})$ such that $\mathbb{E}_{\mathbb{Q}} X = 2\mathbb{E}_{\hat{\mathbb{P}}} XY = \mathbb{E}_{\mathbb{Q}} XY + \mathbb{E} XY$. Hence we have

$$\mathbb{E}_{\mathbb{Q}}X(1-Y) = \mathbb{E}XY,\tag{2}$$

for all $X \in \mathcal{L}^2(\Omega, \mathcal{F}, \hat{\mathbb{P}})$. To find a convenient property of Y, we make two judicious choices for X in (2).

First we take $X = \mathbf{1}_{\{Y > 1\}}$. We then get

$$0 \ge \mathbb{E}_{\mathbb{Q}} \mathbf{1}_{\{Y \ge 1\}} (1 - Y) = \mathbb{E} \mathbf{1}_{\{Y \ge 1\}} Y \ge \mathbb{P}(Y \ge 1),$$

and hence $\mathbb{P}(Y \ge 1) = 0$. By absolute continuity also $\mathbb{Q}(Y \ge 1) = 0$. Second, we choose $X = \mathbf{1}_{\{Y \le 0\}}$ and get, note that $X(1 - Y) \ge 0$,

$$0 \le \mathbb{E}_{\mathbb{Q}} \mathbf{1}_{\{Y < 0\}} (1 - Y) = \mathbb{E} \mathbf{1}_{\{Y < 0\}} Y \le 0,$$

and hence $\mathbb{P}(Y < 0) = 0$ and $\mathbb{Q}(Y < 0) = 0$. We conclude that $\mathbb{Q}(Y \in [0, 1)) = \mathbb{P}(Y \in [0, 1)) = 1$.

We now claim that the random variable Z in the assertion of the theorem is given by

$$Z = \frac{Y}{1 - Y} \mathbf{1}_{[0,1)}(Y).$$

Note that Z takes its values in $[0, \infty)$. Write $Z = \lim_{n \to \infty} Z_n$ with $Z_n = YS_n$, where $S_n = \mathbf{1}_{[0,1)}(Y) \sum_{k=0}^{n-1} Y^k$ and note that $0 \leq S_n, Z_n \leq n$. Let $F \in \mathcal{F}$. We apply (2) with $X = \mathbf{1}_F S_n$ to obtain, using $(1 - Y)S_n = \mathbf{1}_{[0,1)}(Y)(1 - Y^n)$,

 $\mathbb{E}_{\mathbb{Q}} \mathbf{1}_F \mathbf{1}_{[0,1)}(Y)(1-Y^n) = \mathbb{E} \mathbf{1}_F Z_n.$

Monotone convergence gives

$$\mathbb{E}_{\mathbb{O}} \mathbf{1}_F \mathbf{1}_{[0,1)}(Y) = \mathbb{E} \mathbf{1}_F Z.$$
(3)

As $\mathbb{Q}(Y \in [0,1)) = 1$ one has $\mathbb{Q}(F) = \mathbb{Q}(F \cap \{Y \in [0,1)\}) = \mathbb{E}_{\mathbb{Q}} \mathbf{1}_F \mathbf{1}_{[0,1)}(Y)$, and (1) follows from (3). Moreover, as \mathbb{Q} is a probability measure, we get with $F = \Omega$ that $\mathbb{E}Z = 1$.

The final issue to address is the \mathbb{P} -a.s. uniqueness of Z. Suppose Z' is another random variable satisfying the assertion of the theorem. Then (1) is also valid for any $F \in \mathcal{F}$ with Z replaced with Z'. Take $F = \{Z > Z'\}$. By subtraction one obtains $\mathbb{E} \mathbf{1}_{\{Z > Z'\}}(Z - Z') = 0$ and hence $\mathbb{P}(Z \leq Z') = 1$. By swapping the roles of Z and Z', one concludes $\mathbb{P}(Z = Z') = 1$, which finishes the proof. \Box

We conclude with some notation. The random variable Z in the theorem is often denoted $\frac{d\mathbb{Q}}{d\mathbb{P}}$ and called the *Radon-Nikodym derivative of* \mathbb{Q} *w.r.t.* \mathbb{P} . With this notation Equation (1) gets an appealing form when using integrals,

$$\int \mathbf{1}_F \, \mathrm{d}\mathbb{Q} = \int \mathbf{1}_F \frac{\mathrm{d}\mathbb{Q}}{\mathrm{d}\mathbb{P}} \, \mathrm{d}\mathbb{P}.$$