The Radon-Nikodym theorem
for absolutely continuous probability measures

Suppose that one has a random variable Z € £ (2, F,P) such that P(Z > 0) = 1
and E Z = 1. Define then for F' € F

Q(F)=E1pZ.

One sees that Q is a measure on (Q,F) and that P(Q2) = 1, hence Q is a
probability measure on (2, F). If F' is any event such that P(F") = 0, then also
Q(F) =0 as 1p = 0 P-a.s. One says that Q is absolutely continuous w.r.t. P
and this is denoted Q < P. Theorem [2| below states that the above procedure
is the only way to get absolutely continuous probability measures.

As a preparation for its proof we recall the Riesz-Frechét theorem. If H is
a Hilbert space and T a continuous linear functional on it, then there exists a
unique y € H such that Ta = (z,y). We consider a special case of this theorem.
The setting is that of a probability space (2, F,P) and H = £2(Q, F,P), where
the inner product is given by (X,Y) = EXY. Strictly speaking, this H is
not a normed space as £ X? = 0 only implies X = 0 a.s. Likewise we have
completeness in the sense that a Cauchy sequence (X,,) C £3(Q, F,P) has a
limit which is unique almost surely only. The Riesz-Frechét theorem takes the
following form

Lemma 1 Let T : £?(Q2,F,P) — R be a continuous linear functional. Then
there exists an a.s. unique Y € L2(Q, F,P) such that TX = EXY.

Theorem 2 (Radon-Nikodym) Consider a measurable space (2, F) on which
are defined two probability measures Q and P. Assume Q <« P. Then there
exists a P-a.s. unique random variable Z with P(Z > 0) = 1 and EZ = 1 such
that for all F' € F one has

Q(F) =E1rZ. (1)

Proof Let P = #(P+ Q) and consider T : £L2(2, F, P) — R defined by TX =
Eg X. Then
TX] <Eq|X]|
< 2E]§, X|
< 2(E; X2)V/2,

Hence T is a continuous linear functional on £2(£2,F, I@’), and by the Riesz-
Fréchet theorem there exist Y € L£*(Q,F,P) such that Eg X = 2E; XY =
Eq@ XY + E XY. Hence we have

Eg X(1-Y)=EXY, (2)



for all X € £2(Q, F,P). To find a convenient property of Y, we make two
judicious choices for X in .
First we take X = 17y >1;. We then get

0>Eqlyy>y(1-Y)=Elp>nY 2P(Y > 1),

and hence P(Y > 1) = 0. By absolute continuity also Q(Y > 1) = 0.
Second, we choose X = 1y o) and get, note that X (1 —-Y) >0,

0<Eqliy<oy(1-Y)=ElycqV <0,

and hence P(Y < 0) =0 and Q(Y < 0) = 0. We conclude that Q(Y € [0,1)) =
P(Y €[0,1)) =1.

We now claim that the random variable Z in the assertion of the theorem is
given by

Y
Z - ﬁl[o,l) (Y)

Note that Z takes its values in [0,00). Write Z = lim, Z,, with Z,, = Y'S,,
where S, = 19 1)(Y) ZZ;S Y* and note that 0 < S,,, Z, < n. Let F € F. We
apply (2) with X = 1£S,, to obtain, using (1 —Y)S,, = 191)(Y)(1 =Y™),

Eqlrplyy(Y)(1-Y")=E1rZ,.
Monotone convergence gives

As Q(Y € [0,1)) = 1 one has Q(F) = Q(FN{Y € [0,1)}) = Eq1rl,1)(Y),
and follows from . Moreover, as Q is a probability measure, we get with
F=Qthat EZ = 1.

The final issue to address is the P-a.s. uniqueness of Z. Suppose Z' is another
random variable satisfying the assertion of the theorem. Then is also valid
for any F' € F with Z replaced with Z’. Take F = {Z > Z'}. By subtraction
one obtains E1¢z+ 71 (Z — Z') = 0 and hence P(Z < Z’) = 1. By swapping the
roles of Z and Z’, one concludes P(Z = Z') = 1, which finishes the proof. O

We conclude with some notation. The random variable Z in the theorem is
often denoted % and called the Radon-Nikodym derivative of Q w.r.t. P. With
this notation Equation gets an appealing form when using integrals,

1rd0= 1,99
Jrrae= frrge



