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Preface

In these notes we explain the measure theoretic foundations of modern proba-
bility. The notes are used during a course that had as one of its principal aims a
swift introduction to measure theory as far as it is needed in modern probability,
e.g. to define concepts as conditional expectation and to prove limit theorems
for martingales.

Everyone with a basic notion of mathematics and probability would under-
stand what is meant by f(x) and P(A). In the former case we have the value of
some function f evaluated at its argument. In the second case, one recognizes
the probability of an event A. Look at the notations, they are quite similar
and this suggests that also P is a function, defined on some domain to which A
belongs. This is indeed the point of view that we follow. We will see that P is a
function -a special case of a measure- on a collection of sets, that satisfies certain
properties, a σ-algebra. In general, a σ-algebra Σ will be defined as a suitable
collection of subsets of a given set S. A measure µ will then be a map on Σ,
satisfying some defining properties. This gives rise to considering a triple, to be
called a measure space, (S,Σ, µ). We will develop probability theory in the con-
text of measure spaces and because of tradition and some distinguished features,
we will write (Ω,F ,P) for a probability space instead of (S,Σ, µ). Given a mea-
sure space we will develop in a rather abstract sense integrals of functions defined
on S. In a probabilistic context, these integrals have the meaning of expecta-
tions. The general setup provides us with two big advantages. In computing
expectations, we don’t have to distinguish anymore between random variables
having a discrete distribution and those who have what is called a density. In
the first case, expectations are usually computed as sums, whereas in the latter
case, Riemann integrals are the tools. We will see that these are special cases
of the more general notion of Lebesgue integral. Another advantage is the avail-
ability of convergence theorems. In analytic terms, we will see that integrals of
functions converge to the integral of a limiting function, given appropriate con-
ditions and an appropriate concept of convergence. In a probabilistic context,
this translates to convergence of expectations of random variables. We will see
many instances, where the foundations of the theory can be fruitfully applied
to fundamental issues in probability theory. These lecture notes are the result
of teaching the course Measure Theoretic Probability for a number of years. To
a large extent this course was initially based on the book Probability with Mar-
tingales by David Williams, but also other texts have been used. In particular
we consulted Convergence of Stochastic Processes by David Pollard, Real and
Complex Analysis by Walter Rudin and Foundations of Modern Probability by
Olav Kallenberg.

These lecture notes have first been used in Fall 2008. Among the students
who then took the course was Ferdinand Rolwes, who corrected (too) many
typos and other annoying errors.





1 σ-algebras and measures

In this chapter we lay down the measure theoretic foundations for probability
theory. We start with some general notions and show how these are instrumental
in a probabilistic environment.

1.1 σ-algebras

Definition 1.1 Let S be a non-empty set. A collection Σ0 ⊂ 2S is called an
algebra (on S) if
(i) S ∈ Σ0

(ii) E ∈ Σ0 ⇒ Ec ∈ Σ0

(iii) E,F ∈ Σ0 ⇒ E ∪ F ∈ Σ0.

Notice that always ∅ belongs to an algebra, since ∅ = Sc. Of course property
(iii) extends to finite unions by induction. Moreover, in an algebra we also
have E,F ∈ Σ0 ⇒ E ∩ F ∈ Σ0, since E ∩ F = (Ec ∪ F c)c. Furthermore
E \ F = E ∩ F c ∈ Σ.

Definition 1.2 Let S be a non-empty set. A collection Σ ⊂ 2S is called a
σ-algebra (on S) if it is an algebra and

⋃∞
n=1En ∈ Σ as soon as En ∈ Σ

(n = 1, 2 . . .).

If Σ is a σ-algebra on S, then (S,Σ) is called a measurable space and the elements
of Σ are called measurable sets. We shall ‘measure’ them in the next section.

If C is any collection of subsets of S, then by σ(C) we denote the smallest σ-
algebra containing C. This means that σ(C) is the intersection of all σ-algebras
that contain C (see Exercise 1.1). If Σ = σ(C), we say that C generates Σ. The
union of two σ-algebras Σ1 and Σ2 on a set S is usually not a σ-algebra. We
write Σ1 ∨ Σ2 for σ(Σ1 ∪ Σ2).

One of the most relevant σ-algebras of this course is B = B(R), the Borel sets
of R. Let O be the collection of all open subsets of R with respect to the usual
topology (in which all intervals (a, b) are open). Then B := σ(O). Of course,
one similarly defines the Borel sets of Rd, and in general, for a topological space
(S,O), one defines the Borel-sets as σ(O). Borel sets can in principle be rather
‘wild’, but it helps to understand them a little better, once we know that they
are generated by simple sets.

Proposition 1.3 Let I = {(−∞, x] : x ∈ R}. Then σ(I) = B.

Proof We prove the two obvious inclusions, starting with σ(I) ⊂ B. Since
(−∞, x] = ∩n(−∞, x + 1

n ) ∈ B, we have I ⊂ B and then also σ(I) ⊂ B, since
σ(I) is the smallest σ-algebra that contains I. (Below we will use this kind of
arguments repeatedly).
For the proof of the reverse inclusion we proceed in three steps. First we observe
that (−∞, x) = ∪n(−∞, x− 1

n ] ∈ σ(I). Knowing this, we conclude that (a, b) =
(−∞, b) \ (−∞, a] ∈ σ(I). Let then G be an arbitrary open set. Since G is
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open, for every x ∈ G, there is ε(x) such that (x − ε(x), x + ε(x)) ⊂ G. Hence
G = ∪x∈G(x− ε(x), x+ ε(x)). Since Q is dense in R, we can replace this union
by restricting the x to G ∩Q, which gives a countable union open intervals, of
which we just proved that they are elements of σ(I). Thus O ⊂ σ(I), but then
also B ⊂ σ(I). �

An obvious question to ask is whether every subset of R belongs to B = B(R).
The answer is no, as we will show that the cardinality of B(R) is the same as
the cardinality of R, from which the negative answer follows.

Let E be a countable collection of subsets of some set S that contains ∅. We
show that necessarily the cardinality of σ(E) is at most 2ℵ0 . To that end we
define collections Eα, for any ordinal number α less than ω, the first uncountable
ordinal number. To start, we put E0 = E . Let 0 < α < ω (< denotes the usual
ordering of the ordinal numbers) and assume that the collections Eβ are defined
for all β < α. Put E0

α = ∪β<αEβ . We define Eα as the collection of sets that can
be written as a countable union ∪∞n=1En, with En ∈ E0

α or Ecn ∈ E0
α. Finally, we

define Eω := ∪α<ωEα.
The first thing we will prove is that Eω ⊂ σ(E). Trivially, E0 ⊂ σ(E).

Suppose now that Eβ ⊂ σ(E) for all β < α. Then also E0
α ⊂ σ(E), and if

E = ∪∞n=1En ∈ Eα, it follows that E ∈ σ(E). Hence Eα ⊂ σ(E) and we conclude
that Eω ⊂ σ(E). Note that this also yields σ(Eω) = σ(E). We will now show
that Eω is a σ-algebra, from which it then follows that Eω = σ(E).

It is obvious that ∅ ∈ Eω. Let E ∈ Eω, then there is some α < ω for which
E ∈ Eα. But Ec = ∪∞n=1En with En = Ec, so that Ec ∈ Eβ for all β > α, and
thus Ec ∈ Eω. Similarly, we look at unions. Let En ∈ Eω (n ∈ N), so there are
an < ω such that En ∈ Eαn . Properties of ordinal numbers yield the existence
of β < ω such that αn ≤ β for all n. It follows that ∪∞n=1 ∈ Eβ ⊂ Eω. We
conclude that Eω is a σ-algebra.

The next thing to show is that the cardinality of Eω is at most 2ℵ0 . The
construction of E1 from E0 = E implies that the cardinality of E1 is at most
ℵℵ0

0 , which is equal to 2ℵ0 . Let α < ω and assume that the cardinality of Eβ is
less than or equal to 2ℵ0 for all 1 ≤ β < α, a property which then also holds
for E0

α. The construction of Eα from E0
α yields, by the same argument as used

above for E1, that also Eα has cardinality less than or equal to 2ℵ0 . This shows
that the set I(ω) := {α < ω : Eα has cardinality less than or equal to 2ℵ0} is
what is called an inductive set. Since the ordinal numbers with the ordering <
is well-ordered, I(ω) = {α : α < ω}. It follows that also the cardinality of Eω is
at most equal to 2ℵ0 .

Turning back to the initial question on the cardinality of B(R), we apply
the above result. We can take E as the set of intervals (a, b) with a, b ∈ Q,
augmented with the empty set. We conclude that B(R) has cardinality at most
equal to 2ℵ0 .
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1.2 Measures

Let Σ0 be an algebra on a set S, and Σ be a σ-algebra on S. We consider
mappings µ0 : Σ0 → [0,∞] and µ : Σ → [0,∞]. Note that ∞ is allowed as a
possible value.

We call µ0 additive if µ(∅) = 0 and if µ0(E ∪ F ) = µ0(E) + µ0(F ) for every
pair of disjoint sets E and F in Σ0. Of course this addition rule then extends
to arbitrary finite unions of disjoint sets. The mapping µ0 is called σ-additive
or countably additive, if µ(∅) = 0 and if µ0(∪nEn) =

∑
n µ0(En) for every

sequence (En) of disjoint sets of Σ0 whose union is also in Σ0. σ-additivity is
defined similarly for µ, but then we don’t have to require that ∪nEn ∈ Σ. This
is true by definition.

Definition 1.4 Let (S,Σ) be a measurable space. A countably additive map-
ping µ : Σ→ [0,∞] is called a measure. The triple (S,Σ, µ) is called a measure
space.

Some extra terminology follows. A measure is called finite if µ(S) < ∞. It
is called σ-finite, if we can write S = ∪nSn, where the Sn are measurable sets
and µ(Sn) <∞. If µ(S) = 1, then µ is called a probability measure.

Measures are used to ‘measure’ (measurable) sets in one way or another.
Here is a simple example. Let S = N and Σ = 2N (we often take the power set
as the σ-algebra on a countable set). Let τ (we write τ instead of µ for this
special case) be the counting measure: τ(E) = |E|, the cardinality of E. One
easily verifies that τ is a measure, and it is σ-finite, because N = ∪n{1, . . . , n}.

A very simple measure is the Dirac measure. Consider a measurable space
(S,Σ) and single out a specific x0 ∈ S. Define δ(E) = 1E(x0), for E ∈ Σ (1E is
the indicator function of the set E, 1E(x) = 1 if x ∈ E and 1E(x) = 0 if x /∈ E).
Check that δ is a measure on Σ.

Another example is Lebesgue measure, whose existence is formulated below.
It is the most natural candidate for a measure on the Borel sets on the real line.

Theorem 1.5 There exists a unique measure λ on (R,B) with the property that
for every interval I = (a, b] with a < b it holds that λ(I) = b− a.

The proof of this theorem is deferred to later, see Theorem 2.6. For the time
being, we take this existence result for granted. One remark is in order. One can
show that B is not the largest σ-algebra for which the measure λ can coherently
be defined. On the other hand, on the power set of R it is impossible to define
a measure that coincides with λ on the intervals. We’ll come back to this later.

Here are the first elementary properties of a measure.

Proposition 1.6 Let (S,Σ, µ) be a measure space. Then the following hold
true (all the sets below belong to Σ).
(i) If E ⊂ F , then µ(E) ≤ µ(F ).
(ii) µ(E ∪ F ) ≤ µ(E) + µ(F ).
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(iii) µ(∪nk=1Ek) ≤
∑n
k=1 µ(Ek)

If µ is finite, we also have
(iv) If E ⊂ F , then µ(F \ E) = µ(F )− µ(E).
(v) µ(E ∪ F ) = µ(E) + µ(F )− µ(E ∩ F ).

Proof The set F can be written as the disjoint union F = E ∪ (F \E). Hence
µ(F ) = µ(E) + µ(F \E). Property (i) now follows and (iv) as well, provided µ
is finite. To prove (ii), we note that E∪F = E∪ (F \ (E∩F )), a disjoint union,
and that E ∩ F ⊂ F . The result follows from (i). Moreover, (v) also follows, if
we apply (iv). Finally, (iii) follows from (ii) by induction. �

Measures have certain continuity properties.

Proposition 1.7 Let (En) be a sequence in Σ.
(i) If the sequence is increasing, with limit E = ∪nEn, then µ(En) ↑ µ(E) as
n→∞.
(ii) If the sequence is decreasing, with limit E = ∩nEn and if µ(En) <∞ from
a certain index on, then µ(En) ↓ µ(E) as n→∞.

Proof (i) Define D1 = E1 and Dn = En \ ∪n−1
k=1Ek for n ≥ 2. Then the

Dn are disjoint, En = ∪nk=1Dk for n ≥ 1 and E = ∪∞k=1Dk. It follows that
µ(En) =

∑n
k=1 µ(Dk) ↑

∑∞
k=1 µ(Dk) = µ(E). To prove (ii) we assume without

loss of generality that µ(E1) < ∞. Define Fn = E1 \ En. Then (Fn) is an
increasing sequence with limit F = E1 \ E. So (i) applies, yielding µ(E1) −
µ(En) ↑ µ(E1)− µ(E). The result follows. �

Corollary 1.8 Let (S,Σ, µ) be a measure space. For an arbitrary sequence (En)
of sets in Σ, we have µ(∪∞n=1En) ≤

∑∞
n=1 µ(En).

Proof Exercise 1.2. �

Remark 1.9 The finiteness condition in the second assertion of Proposition 1.7
is essential. Consider N with the counting measure τ . Let Fn = {n, n+ 1, . . .},
then ∩nFn = ∅ and so it has measure zero. But τ(Fn) =∞ for all n.

1.3 Null sets

Consider a measure space (S,Σ, µ) and let E ∈ Σ be such that µ(E) = 0. If N
is a subset of E, then it is fair to suppose that also µ(N) = 0. But this can only
be guaranteed if N ∈ Σ. Therefore we introduce some new terminology. A set
N ∈ S is called a null set or µ-null set, if there exists E ∈ Σ with E ⊃ N and
µ(E) = 0. The collection of null sets is denoted by N , or Nµ since it depends
on µ. In Exercise 1.5 you will be asked to show that N is a σ-algebra and to
extend µ to Σ̄ = Σ∨N . If the extension is called µ̄, then we have a new measure
space (S, Σ̄, µ̄), which is complete, all µ̄-null sets belong to the σ-algebra Σ̄.
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1.4 π- and d-systems

In general it is hard to grab what the elements of a σ-algebra Σ are, but often
collections C such that σ(C) = Σ are easier to understand. In ‘good situations’
properties of Σ can easily be deduced from properties of C. This is often the
case when C is a π-system, to be defined next.

Definition 1.10 A collection I of subsets of S is called a π-system, if I1, I2 ∈ I
implies I1 ∩ I2 ∈ I.

It follows that a π-system is closed under finite intersections. In a σ-algebra,
all familiar set operations are allowed, at most countably many. We will see that
it is possible to disentangle the defining properties of a σ-algebra into taking
finite intersections and the defining properties of a d-system. This is the content
of Proposition 1.12 below.

Definition 1.11 A collection D of subsets of S is called a d-system, if the
following hold.
(i) S ∈ D
(ii) If E,F ∈ D such that E ⊂ F , then F \ E ∈ D.
(iii) If En ∈ D for n ∈ N, and En ⊂ En+1 for all n, then ∪nEn ∈ D.

Proposition 1.12 Σ is a σ-algebra iff it is a π-system and a d-system.

Proof Let Σ be a π-system and a d-system. We check the defining conditions
of a Σ-algebra. (i) Since Σ is a d-system, S ∈ Σ. (ii) Complements of sets
in Σ are in Σ as well, again because Σ is a d-system. (iii) If E,F ∈ Σ, then
E ∪F = (Ec ∩F c)c ∈ Σ, because we have just shown that complements remain
in Σ and because Σ is a π-system. Then Σ is also closed under finite unions.
Let E1, E2, . . . be a sequence in Σ. We have just showed that the sets Fn =
∪ni=1Ei ∈ Σ. But since the Fn form an increasing sequence, also their union
is in Σ, because Σ is a d-system. But ∪nFn = ∪nEn. This proves that Σ is a
σ-algebra. Of course the other implication is trivial. �

If C is a collection of subsets of S, then by d(C) we denote the smallest d-system
that contains C. Note that it always holds that d(C) ⊂ σ(C). In one important
case we have equality. This is known as Dynkin’s lemma.

Lemma 1.13 Let I be a π-system. Then d(I) = σ(I).

Proof Suppose that we would know that d(I) is a π-system as well. Then
Proposition 1.12 yields that d(I) is a σ-algebra, and so it contains σ(I). Since
the reverse inclusion is always true, we have equality. Therefore we will prove
that indeed d(I) is a π-system.

Step 1. Put D1 = {B ∈ d(I) : B ∩ C ∈ d(I),∀C ∈ I}. We claim that
D1 is a d-system. Given that this holds and because, obviously, I ⊂ D1, also
d(I) ⊂ D1. Since D1 is defined as a subset of d(I), we conclude that these
two collections are the same. We now show that the claim holds. Evidently
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S ∈ D1. Let B1, B2 ∈ D1 with B1 ⊂ B2 and C ∈ I. Write (B2 \ B1) ∩ C as
(B2 ∩ C) \ (B1 ∩ C). The last two intersections belong to d(I) by definition of
D1 and so does their difference, since d(I) is a d-system. For Bn ↑ B, Bn ∈ D1

and C ∈ I we have (Bn ∩C) ∈ d(I) which then converges to B ∩C ∈ d(I). So
B ∈ D1.

Step 2. Put D2 = {C ∈ d(I) : B ∩ C ∈ d(I),∀B ∈ d(I)}. We claim, again,
(and you check) that D2 is a d-system. The key observation is that I ⊂ D2.
Indeed, take C ∈ I and B ∈ d(I). The latter collection is nothing else but D1,
according to step 1. But then B ∩C ∈ d(I), which means that C ∈ D2. It now
follows that d(I) ⊂ D2, but then we must have equality, because D2 is defined
as a subset of d(I). But, by construction, D2 is a π-system. So we conclude
that d(I) is a π-system, as desired. �

Sometimes another version of Lemma 1.13 is useful.

Corollary 1.14 The assertion of Proposition 1.12 is equivalent to the following
statement. Let I be a π-system and D be a d-system. If I ⊂ D, then σ(I) ⊂ D.

Proof Suppose that I ⊂ D. Then d(I) ⊂ D. But d(I) = σ(I), according
to Proposition 1.12. Conversely, let I be a π-system. Then I ⊂ d(I). By
hypothesis, one also has σ(I) ⊂ d(I), and the latter is always a subset of σ(I).

�

All these efforts lead to the following very useful theorem. It states that any
finite measure on Σ is characterized by its action on a rich enough π-system.
We will meet many occasions where this theorem is used.

Theorem 1.15 Let I be a π-system and Σ = σ(I). Let µ1 and µ2 be finite
measures on Σ with the properties that µ1(S) = µ2(S) and that µ1 and µ2

coincide on I. Then µ1 = µ2 (on Σ).

Proof The whole idea behind the proof is to find a good d-system that contains
I. The following set is a reasonable candidate. Put D = {E ∈ Σ : µ1(E) =
µ2(E)}. The inclusions I ⊂ D ⊂ Σ are obvious. If we can show that D is a
d-system, then Corollary 1.14 gives the result. The fact that D is a d-system is
straightforward to check, we present only one verification. Let E,F ∈ D such
that E ⊂ F . Then (use Proposition 1.6 (iv)) µ1(F \ E) = µ1(F ) − µ1(E) =
µ2(F )− µ2(E) = µ2(F \ E) and so F \ E ∈ D. �

Remark 1.16 In the above proof we have used the fact that µ1 and µ2 are
finite. If this condition is violated, then the assertion of the theorem is not
valid in general. Here is a counterexample. Take N with the counting measure
µ1 = τ and let µ2 = 2τ . A π-system that generates 2N is given by the sets
Gn = {n, n+ 1, . . .} (n ∈ N).
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1.5 Probability language

In Probability Theory, one usually writes (Ω,F ,P) instead of (S,Σ, µ). On one
hand this is merely change of notation. We still have that Ω is a set, F a
σ-algebra on it, and P a measure, but in this case, P is a probability measure,
P(Ω) = 1. In probabilistic language, Ω is often called the set of outcomes and
elements of F are called events. So by definition, an event is a measurable subset
of the set of all outcomes.

A probability space (Ω,F ,P) can be seen as a mathematical model of a random
experiment. Consider for example the experiment consisting of tossing two
coins. Each coin has individual outcomes 0 and 1. The set Ω can then be
written as {00, 01, 10, 11}, where the notation should be obvious. In this case,
we take F = 2Ω and a choice of P could be such that P assigns probability 1

4
to all singletons. Of course, from a purely mathematical point of view, other
possibilities for P are conceivable as well.

A more interesting example is obtained by considering an infinite sequence
of coin tosses. In this case one should take Ω = {0, 1}N and an element ω ∈ Ω
is then an infinite sequence (ω1, ω2, . . .) with ωn ∈ {0, 1}. It turns out that one
cannot take the power set of Ω as a σ-algebra, if one wants to have a nontrivial
probability measure defined on it. As a matter of fact, this holds for the same
reason that one cannot take the power set on (0, 1] to have a consistent notion
of Lebesgue measure. This has everything to do with the fact that one can set
up a bijective correspondence between (0, 1) and {0, 1}N. Nevertheless, there
is a good candidate for a σ-algebra F on Ω. One would like to have that sets
like ‘the 12-th outcome is 1’ are events. Let C be the collection of all such sets,
C = {{ω ∈ Ω : ωn = s}, n ∈ N, s ∈ {0, 1}}. We take F = σ(C) and all sets
{ω ∈ Ω : ωn = s} are then events. One can show that there indeed exists a
probability measure P on this F with the nice property that for instance the set
{ω ∈ Ω : ω1 = ω2 = 1} (in the previous example it would have been denoted by
{11}) has probability 1

4 .

Having the interpretation of F as a collection of events, we now introduce two
special events. Consider a sequence of events E1, E2, . . . and define

lim supEn :=
∞⋂
m=1

∞⋃
n=m

En

lim inf En :=
∞⋃
m=1

∞⋂
n=m

En.

Note that the sets Fm = ∩n≥mEn form an increasing sequence and the sets
Dm = ∪n≥mEn form a decreasing sequence. Clearly, F is closed under taking
limsup and liminf. The terminology is explained by (i) of Exercise 1.4. In prob-
abilistic terms, lim supEn is described as the event that the En occur infinitely
often, abbreviated by En i.o. Likewise, lim inf En is the event that the En occur
eventually. The former interpretation follows by observing that ω ∈ lim supEn
iff for all m, there exists n ≥ m such that ω ∈ En. In other words, a particular
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outcome ω belongs to lim supEn iff it belongs to some (infinite) subsequence of
(En).

The terminology to call
⋃∞
m=1

⋂∞
n=mEn the lim inf of the sequence is justified

in Exercise 1.4. In this exercise, indicator functions of events are used, which
are defined as follows. If E is an event, then the function 1E is defined by
1E(ω) = 1 if ω ∈ E and 1E(ω) = 0 if ω /∈ E.

1.6 Exercises

1.1 Prove the following statements.

(a) The intersection of an arbitrary family of d-systems is again a d-system.

(b) The intersection of an arbitrary family of σ-algebras is again a σ-algebra.

(c) If C1 and C2 are collections of subsets of Ω with C1 ⊂ C2, then d(C1) ⊂ d(C2).

1.2 Prove Corollary 1.8.

1.3 Prove the claim that D2 in the proof of Lemma 1.13 forms a d-system.

1.4 Consider a measure space (S,Σ, µ). Let (En) be a sequence in Σ.

(a) Show that 1lim inf En = lim inf 1En .

(b) Show that µ(lim inf En) ≤ lim inf µ(En). (Use Proposition 1.7.)

(c) Show also that µ(lim supEn) ≥ lim supµ(En), provided that µ is finite.

1.5 Let (S,Σ, µ) be a measure space. Call a subset N of S a (µ,Σ)-null set
if there exists a set N ′ ∈ Σ with N ⊂ N ′ and µ(N ′) = 0. Denote by N the
collection of all (µ,Σ)-null sets. Let Σ∗ be the collection of subsets E of S for
which there exist F,G ∈ Σ such that F ⊂ E ⊂ G and µ(G\F ) = 0. For E ∈ Σ∗

and F,G as above we define µ∗(E) = µ(F ).

(a) Show that Σ∗ is a σ-algebra and that Σ∗ = Σ ∨N (= σ(N ∪ Σ)).

(b) Show that µ∗ restricted to Σ coincides with µ and that µ∗(E) doesn’t
depend on the specific choice of F in its definition.

(c) Show that the collection of (µ∗,Σ∗)-null sets is N .

1.6 Let G and H be two σ-algebras on Ω. Let C = {G ∩H : G ∈ G, H ∈ H}.
Show that C is a π-system and that σ(C) = σ(G ∪ H).

1.7 Let Ω be a countable set. Let F = 2Ω and let p : Ω → [0, 1] satisfy∑
ω∈Ω p(ω) = 1. Put P(A) =

∑
ω∈A p(ω) forA ∈ F . Show that P is a probability

measure.

1.8 Let Ω be a countable set. Let A be the collection of A ⊂ Ω such that A
or its complement has finite cardinality. Show that A is an algebra. What is
d(A)?
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1.9 Show that a finitely additive map µ : Σ0 → [0,∞] is countably additive if
µ(Hn) → 0 for every decreasing sequence of sets Hn ∈ Σ0 with

⋂
nHn = ∅. If

µ is countably additive, do we necessarily have µ(Hn)→ 0 for every decreasing
sequence of sets Hn ∈ Σ0 with

⋂
nHn = ∅?

1.10 Consider the collection Σ0 of subsets of R that can be written as a finite
union of disjoint intervals of type (a, b] with −∞ ≤ a ≤ b <∞ or (a,∞). Show
that Σ0 is an algebra and that σ(Σ0) = B(R).
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2 Existence of Lebesgue measure

In this chapter we construct the Lebesgue measure on the Borel sets of R. To
that end we need the concept of outer measure. Somewhat hidden in the proof of
the construction is the extension of a countably additive function on an algebra
to a measure on a σ-algebra. There are different versions of extension theorems,
originally developed by Carathéodory. Although of crucial importance in mea-
sure theory, we will confine our treatment of extension theorems mainly aimed
at the construction of Lebesgue measure on (R,B). However, see also the end
of this section.

2.1 Outer measure and construction

Definition 2.1 Let S be a set. An outer measure on S is a mapping µ∗ : 2S →
[0,∞] that satisfies
(i) µ∗(∅) = 0,
(ii) µ∗ is monotone, i.e. µ∗(E) ≤ µ∗(F ) if E ⊂ F ,
(iii) µ∗ is subadditive, i.e. µ∗(

⋃∞
n=1En) ≤

∑∞
n=1 µ

∗(En), valid for any sequence
of sets En.

Definition 2.2 Let µ∗ be an outer measure on a set S. A set E ⊂ S is called
µ-measurable if

µ∗(F ) = µ∗(E ∩ F ) + µ∗(Ec ∩ F ),∀F ⊂ S.

The class of µ-measurable sets is denoted by Σµ.

Theorem 2.3 Let µ∗ be an outer measure on a set S. Then Σµ is a σ-algebra
and the restricted mapping µ : Σµ → [0,∞] of µ∗ is a measure on Σµ.

Proof It is obvious that ∅ ∈ Σµ and that Ec ∈ Σµ as soon as E ∈ Σµ. Let
E1, E2 ∈ Σµ and F ⊂ S. The trivial identity

F ∩ (E1 ∩ E2)c = (F ∩ Ec1) ∪ (F ∩ (E ∩ Ec2))

yields with the subadditivity of µ∗

µ∗(F ∩ (E1 ∩ E2)c) ≤ µ∗(F ∩ Ec1) + µ∗(F ∩ (E1 ∩ Ec2)).

Add to both sides µ∗(F ∩ (E1 ∩ E2)) and use that E1, E2 ∈ Σµ to obtain

µ∗(F ∩ (E1 ∩ E2)) + µ∗(F ∩ (E1 ∩ E2)c) ≤ µ∗(F ).

From subadditivity the reversed version of this equality immediately follows as
well, which shows that E1 ∩ E2 ∈ Σµ. We conclude that Σµ is an algebra.
Pick disjoint E1, E2 ∈ Σµ, then (E1∪E2)∩Ec1 = E2. If F ⊂ S, then by E1 ∈ Σµ

µ∗(F ∩ (E1 ∪ E2)) = µ∗(F ∩ (E1 ∪ E2) ∩ E1) + µ∗(F ∩ (E1 ∪ E2) ∩ Ec1)
= µ∗(F ∩ E1) + µ∗(F ∩ E2).
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By induction we obtain that for every sequence of disjoint set Ei in Σµ it holds
that for every F ⊂ S

µ∗(F ∩
n⋃
i=1

E) =
n∑
i=1

µ∗(F ∩ Ei). (2.1)

If E =
⋃∞
i=1Ei, it follows from (2.1) and the monotonicity of µ∗ that

µ∗(F ∩ E) ≥
∞∑
i=1

µ∗(F ∩ Ei).

Since subadditivity of µ∗ immediately yields the reverse inequality, we obtain

µ∗(F ∩ E) =
∞∑
i=1

µ∗(F ∩ Ei). (2.2)

Let Un =
⋃n
i=1Ei and note that Un ∈ Σµ. We obtain from (2.1) and (2.2) and

monotonicity

µ∗(F ) = µ∗(F ∩ Un) + µ∗(F ∩ U cn)

≥
n∑
i=1

µ∗(F ∩ Ei) + µ∗(F ∩ Ec)

→
∞∑
i=1

µ∗(F ∩ Ei) + µ∗(F ∩ Ec)

= µ∗(F ∩ E) + µ∗(F ∩ Ec).

Combined with µ∗(F ) ≤ µ∗(F ∩ E) + µ∗(F ∩ Ec), which again is the result of
subadditivity, we see that E ∈ Σµ. If follows that Σµ is a σ-algebra. Take then
F = S in (2.2) to see that µ∗ restricted to Σµ is a measure. �

We will use Theorem 2.3 to show the existence of Lebesgue measure on (R,B).
Let E be a subset of R. By I(E) we denote a cover of E consisting of at
most countably many open intervals. For any interval I, we denote by λ0(I)
its ordinary length. We now define a function λ∗ defined on 2R by putting for
every E ⊂ R

λ∗(E) = inf
I(E)

∑
Ik∈I(E)

λ0(Ik). (2.3)

Lemma 2.4 The function λ∗ defined by (2.3) is an outer measure on R and
satisfies λ∗(I) = λ0(I).

Proof Properties (i) and (ii) of Definition 2.1 are obviously true. We prove
subadditivity. Let E1, E2, . . . be arbitrary subsets of R and ε > 0. By definition
of λ∗, there exist covers I(En) of the En such that for all n

λ∗(En) ≥
∑

I∈I(En)

λ0(I)− ε2−n. (2.4)
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Because ∪nI(En) is a countable open cover of ∪nEn,

λ∗(∪nEn) ≤
∑
n

∑
I∈I(En)

λ0(I)

≤
∑
n

λ∗(En) + ε,

in view of (2.4). Subadditivity follows upon letting ε→ 0.
Turning to the next assertion, we observe that λ∗(I) ≤ λ0(I) is almost immedi-
ate (I an arbitrary interval). The reversed inequality is a little harder to prove.
Without loss of generality, we may assume that I is compact. Let I(I) be a
cover of I. We aim at proving

λ0(I) ≤
∑

Ik∈I(I)

λ0(Ik), for every interval I. (2.5)

If this holds, then by taking the infimum on the right hand of (2.5), it follows
that λ0(I) ≤ λ∗(I). To prove (2.5) we proceed as follows. The covering intervals
are open. By compactness of I, there exists a finite subcover of I, {I1, . . . , In}
say. So, it is sufficient to show (2.5), which we do by induction. If n = 1, this
is trivial. Assume it is true for covers with at most n − 1 elements. Assume
that I = [a, b]. Then b is an element of some Ik = (ak, bk). Note that the
interval I \ Ik (possibly empty) is covered by the remaining intervals, and by
hypothesis we have λ0(I \ Ik) ≤

∑
j 6=k λ0(Ij). But then we deduce λ0(I) =

(b− ak) + (ak − a) ≤ (bk − ak) + (ak − a) ≤ λ0(Ik) + λ0(I \ Ik) ≤
∑
j λ0(Ij). �

Lemma 2.5 Any interval Ia = (−∞, a] (a ∈ R) is λ-measurable, Ia ∈ Σλ.
Hence B ⊂ Σλ.

Proof Let E ⊂ R. Since λ∗ is subadditive, it is sufficient to show that λ∗(E) ≥
λ∗(E ∩ Ia) + λ∗(E ∩ Ica). Let ε > 0 and choose a cover I(I) such that λ∗(E) ≤∑
I∈I(E) λ

∗(I)−ε, which is possible by the definition of λ∗ and Lemma 2.4. This
lemma also yields λ∗(I) = λ∗(I ∩ Ia) + λ∗(I ∩ Ica). But then we have λ∗(E) ≥∑
I∈I(E) λ

∗(I∩Ia)+λ∗(I∩Ica)−ε, which is bigger than λ∗(E∩Ia)+λ∗(E∩Ica)−ε.
Let ε ↓ 0. �

Putting the previous results together, we obtain existence of the Lebesgue mea-
sure on B.

Theorem 2.6 The (restricted) function λ : B → [0,∞] is the unique measure
on B that satisfies λ(I) = λ0(I).

Proof By Theorem 2.3 and Lemma 2.4 λ is a measure on Σλ and by Lemma 2.5
its restriction to B is a measure as well. Moreover, Lemma 2.4 states that λ(I) =
λ0(I). The only thing that remains to be shown is that λ is the unique measure
with the latter property. Suppose that also a measure µ enjoys this property.
Then, for any a ∈ R we have and n ∈ N, we have that (−∞, a] ∩ [−n,+n] is an
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interval, hence λ(−∞, a] ∩ [−n,+n] = µ(−∞, a] ∩ [−n,+n]. Since the intervals
(−∞, a] form a π-system that generates B, we also have

λ(B ∩ [−n,+n]) = µ(N ∩B ∩ [−n,+n]),

for any B ∈ B and n ∈ N. Since λ and µ are measures, we obtain for n → ∞
that λ(B) = µ(B),∀B ∈ B. �

The sets in Σλ are also called Lebesgue-measurable sets. A function f : R→ R
is called Lebesgue-measurable if the sets {f ≤ c} are in Σλ for all c ∈ R.
The question arises whether all subsets of R are in Σλ. The answer is no, but
the Axiom of Choice is needed for this, see Exercise 2.6. Unlike showing that
there exist sets that are not Borel-measurable, here a counting argument as in
Section 1.1 is useless, since it holds that Σλ has the same cardinality as 2R. This
fact can be seen as follows.

Consider the Cantor set in [0, 1]. Let C1 = [0, 1
3 ]∪ [ 2

3 , 1], obtained from C0 =
[0, 1] be deleting the ‘middle third’. From each of the components of C1 we leave
out the ‘middle thirds’ again, resulting in C2 = [0, 1

9 ]∪ [ 2
9 ,

1
3 ]∪ [ 2

3 ,
7
9 ]∪ [ 8

9 , 1], and
so. The obtained sequence of sets Cn is decreasing and its limit C :=

⋂∞
n=1 Cn

the Cantor set, is well defined. Moreover, we see that λ(C) = 0. On the other
hand, C is uncountable, since every number in it can be described by its ternary
expansion

∑∞
k=1 xk3−k, with the xk ∈ {0, 2}. By completeness of ([0, 1],Σλ, λ),

every subset of C has Lebesgue measure zero as well, and the cardinality of the
power set of C equals that of the power set of [0, 1].

An interesting fact is that the Lebesgue-measurable sets Σλ coincide with
the σ-algebra B(R)∨N , where N is the collection of subsets of [0, 1] with outer
measure zero. This follows from Exercise 2.4.

2.2 A general extension theorem

Recall Theorem 2.6. Its content can be described by saying that there exists
a measure on a σ-algebra (in this case on B) that is such that its restriction
to a suitable subclass of sets (the intervals) has a prescribed behavior. This is
basically also valid in a more general situation. The proof of the main result of
this section parallels to a large extent the development of the previous section.
Let’s state the theorem.

Theorem 2.7 Let Σ0 be an algebra on a set S and let µ0 : Σ0 → [0,∞] be
finitely additive and countably subadditive. Then there exists a measure µ defined
on Σ = σ(Σ0) such that µ restricted to Σ0 coincides with µ0. The measure µ is
thus an extension of µ0, and this extension is unique if µ0 is σ-finite on Σ0.

Proof We only sketch the main steps. First we define an outer measure on 2S

by putting

µ∗(E) = inf
Σ0(E)

∑
Ek∈Σ0(E)

µ0(Ek),
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where the infimum is taken over all Σ0(E), countable covers of E with elements
Ek from Σ0. Compare this to the definition in (2.3). It follows as in the proof
of Lemma 2.4 that µ∗ is an outer measure.

Let E ∈ Σ0. Obviously, {E} is a (finite) cover of E and so we have that
µ∗(E) ≤ µ0(E). Let {E1, E2, . . .} be a cover of E with the Ek ∈ Σ0. Since µ0 is
countably subadditive and E = ∪k(E ∩ Ek), we have µ0(E) ≤

∑
k µ0(E ∩ Ek)

and since µ0 is finitely additive, we also have µ0(E ∩Ek) ≤ µ0(Ek). Collecting
these results we obtain

µ0(E) ≤
∑
k

µ0(Ek).

Taking the infimum in the displayed inequality over all covers Σ0(E), we obtain
µ0(E) ≤ µ∗(E), for E ∈ Σ0. Hence µ0(E) = µ∗(E) and µ∗ is an extension of
µ0.

In order to show that µ∗ restricted to Σ is a measure, it is by virtue of
Theorem 2.3 sufficient to show that Σ0 ⊂ Σµ, because we then also have Σ ⊂ Σµ.
We proceed to prove the former inclusion. Let F ∈ S be arbitrary, ε > 0. Then
there exists a cover Σ0(F ) such that µ∗(F ) ≥

∑
Ek∈Σ0(F ) µ0(Ek)− ε. Using the

same kind of arguments as in the proof of Lemma 2.5, one obtains (using that
µ0 is additive on the algebra Σ0, where it coincides with µ∗) for every E ∈ Σ0

µ∗(F ) + ε ≥
∑
k

µ0(Ek)

=
∑
k

µ0(Ek ∩ E) +
∑
k

µ0(Ek ∩ Ec)

=
∑
k

µ∗(Ek ∩ E) +
∑
k

µ∗(Ek ∩ Ec)

≥ µ∗(F ∩ E) + µ∗(F ∩ Ec),

by subadditivity of µ∗. Letting ε→ 0, we arrive at µ∗(F ) ≥ µ∗(F ∩E)+µ∗(F ∩
Ec), which is equivalent to µ∗(F ) = µ∗(F ∩E) + µ∗(F ∩Ec). Below we denote
the restriction of µ∗ to Σ by µ.

We turn to the asserted unicity. Let ν be a measure on Σ that also coincides
with µ0 on Σ0. The key result, which we will show below, is that µ and ν
also coincide on the sets F in Σ for which µ(F ) < ∞. Indeed, assuming that
this is the case, we can write for E ∈ Σ and S1, S2, . . . disjoint sets in Σ0 with
µ(Sn) <∞ and ∪nSn = S, using that also µ(E ∩ Sn) <∞,

ν(E) =
∑
n

ν(E ∩ Sn) =
∑
n

µ(E ∩ Sn) = µ(E).

Now we show the mentioned key result. Let E ∈ Σ. Consider a cover Σ0(E) of
E. Then we have, since ν is a measure on Σ, ν(E) ≤

∑
k ν(Ek) =

∑
k µ0(Ek).

By taking the infimum over such covers, we obtain ν(E) ≤ µ∗(E) = µ(E). We
proceed to prove the converse inequality for sets E with µ(E) <∞.
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Let E ∈ Σ with µ(E) < ∞. Given ε > 0, we can chose a cover Σ0(E) such
that µ(E) >

∑
Ek∈Σ0(E) µ(Ek) − ε. Let Un = ∪nk=1Ek and note that Un ∈ Σ0

and U := ∪∞n=1Un = ∪∞k=1Ek ∈ Σ. Since U ⊃ E, we obtain µ(E) ≤ µ(U),
whereas σ-additivity of µ yields µ(U) < µ(E) + ε, which implies µ(U ∩ Ec) =
µ(U)−µ(U ∩E) = µ(U)−µ(E) < ε. Since it also follows that µ(U) <∞, there
is N ∈ N such that µ(U) < µ(UN ) + ε. Below we use that µ(UN ) = ν(UN ), the
already established fact that µ ≥ ν on Σ and arrive at the following chain of
(in)equalities.

ν(E) = ν(E ∩ U) = ν(U)− ν(U ∩ Ec)
≥ ν(UN )− µ(U ∩ Ec)
≥ ν(UN )− ε
= µ(UN )− ε
> µ(U)− 2ε
≥ µ(E)− 2ε.

It follows that ν(E) ≥ µ(E). �

The assumption in Theorem 2.7 that the collection Σ0 is an algebra can be
weakened by only assuming that it is a semiring. This notion is beyond the
scope of the present course.

Unicity of the extension fails to hold for µ0 that are not σ-finite. Here is a
counterexample. Let S be an infinite set and Σ0 an arbitrary algebra consisting
of the empty set and infinite subsets of S. Let µ0(E) = ∞, unless E = ∅, in
which case we have µ0(E) = 0. Then µ(F ) defined by µ(F ) =∞, unless F = ∅,
yields the extension of Theorem 2.7 on 2S , whereas the counting measure on 2S

also extends µ0.

2.3 Exercises

2.1 Let µ be an outer measure on some set S. Let N ⊂ S be such that µ(N) = 0.
Show that N ∈ Σµ.

2.2 Let (S,Σ, µ) be a measure space. A measurable covering of a subset A of S
is a countable collection {Ei : i ∈ N} ⊂ Σ such that A ⊂ ∪∞i=1Ei. Let M(A) be
the collection of all measurable coverings of A. Put µ∗(A) = inf{

∑∞
i=1 µ(Ei) :

{E1, E2, . . .} ∈ M(A)}. Show that µ∗ is an outer measure on S and that
µ∗(E) = µ(E), if E ∈ Σ. Show also that µ∗(A) = inf{µ(E) : E ⊃ A,E ∈ Σ}.
We call µ∗ the outer measure associated to µ.

2.3 Let (S,Σ, µ) be a measure space and let µ∗ be the outer measure on S
associated to µ. If A ⊂ S, then there exists E ∈ Σ such that A ⊂ E and
µ∗(A) = µ(E). Prove this.

2.4 Consider a measure space (S,Σ, µ) with σ-finite µ and let µ∗ be the associ-
ated outer measure on S. Show that Σµ∗ ⊂ Σ∨N , where N is the collection of
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all µ∗-null sets. Hint: Reduce the question to the case where µ is finite. Take
then A ∈ Σµ∗ and E as in Exercise 2.3 and show that µ∗(E \ A) = 0. (By
Exercise 2.1, we even have Σµ∗ = Σ ∨N .)

2.5 Show that the Lebesgue measure λ is translation invariant, i.e. λ(E + x) =
λ(E) for all E ∈ Σλ, where E + x = {y + x : y ∈ E}.

2.6 This exercise aims at showing the existence of a set E /∈ Σλ. First we define
an equivalence relation ∼ on R by saying x ∼ y iff x− y ∈ Q. By the axiom of
choice there exists a set E ⊂ (0, 1) that has exactly one point in each equivalence
class induced by ∼. The set E is our candidate.

(a) Show the following two statements. If x ∈ (0, 1), then ∃q ∈ Q ∩ (−1, 1) :
x ∈ E + q. If q, r ∈ Q and q 6= r, then (E + q) ∩ (E + r) = ∅.

(b) Assume that E ∈ Σλ. Put S = ∪q∈Q∩(−1,1)E+q and note that S ⊂ (−1, 2).
Use translation invariance of λ (Exercise 2.5) to show that λ(S) = 0,
whereas at the same time one should have λ(S) ≥ λ(0, 1).

(c) Show that λ∗(E) = 1 and λ∗((0, 1) \ E) = 1.
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3 Measurable functions and random variables

In this chapter we define random variables as measurable functions on a proba-
bility space and derive some properties.

3.1 General setting

Let (S,Σ) be a measurable space. Recall that the elements of Σ are called
measurable sets. Also recall that B = B(R) is the collection of all the Borel sets
of R.

Definition 3.1 A mapping h : S → R is called measurable if h−1[B] ∈ Σ for
all B ∈ B.

It is clear that this definition depends on B and Σ. When there are more
σ-algebras in the picture, we sometimes speak of Σ-measurable functions, or
Σ/B-measurable functions, depending on the situation. If S is topological space
with a topology T and if Σ = σ(T ), a measurable function h is also called a
Borel measurable function.

Remark 3.2 Consider E ⊂ S. The indicator function of E is defined by
1E(s) = 1 if s ∈ E and 1E(s) = 0 if s /∈ E. Note that 1E is a measurable
function iff E is a measurable set.

Sometimes one wants to extend the range of the function h to [−∞,∞]. If this
happens to be the case, we extend B with the singletons {−∞} and {∞}, and
work with B̄ = σ(B ∪ {{−∞}, {∞}}). We call h : S → [−∞,∞] measurable if
h−1[B] ∈ Σ for all B ∈ B̄.

Below we will often use the shorthand notation {h ∈ B} for the set {s ∈ S :
h(s) ∈ B}. Likewise we also write {h ≤ c} for the set {s ∈ S : h(s) ≤ c}. Many
variations on this theme are possible.

Proposition 3.3 Let (S,Σ) be a measurable space and h : S → R.
(i) If C is collection of subsets of R such that σ(C) = B, and if h−1[C] ∈ Σ for
all C ∈ C, then h is measurable.
(ii) If {h ≤ c} ∈ Σ for all c ∈ R, then h is measurable.
(iii) If S is topological and h continuous, then h is measurable with respect to
the σ-algebra generated by the open sets. In particular any constant function is
measurable.
(iv) If h is measurable and another function f : R → R is Borel measurable
(B/B-measurable), then f ◦ h is measurable as well.

Proof (i) Put D = {B ∈ B : h−1[B] ∈ Σ}. One easily verifies that D is a
σ-algebra and it is evident that C ⊂ D ⊂ B. It follows that D = B.
(ii) This is an application of the previous assertion. Take C = {(−∞, c] : c ∈ R}.
(iii) Take as C the collection of open sets and apply (i).
(iv) Take B ∈ B, then f−1[B] ∈ B since f is Borel. Because h is measurable,
we then also have (f ◦ h)−1[B] = h−1[f−1[B]] ∈ Σ. �
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Remark 3.4 There are many variations on the assertions of Proposition 3.3
possible. For instance in (ii) we could also use {h < c}, or {h > c}. Further-
more, (ii) is true for h : S → [−∞,∞] as well. We proved (iv) by a simple
composition argument, which also applies to a more general situation. Let
(Si,Σi) be measurable spaces (i = 1, 2, 3), h : S1 → S2 is Σ1/Σ2-measurable
and f : S2 → S3 is Σ2/Σ3-measurable. Then f ◦ h is Σ1/Σ3-measurable.

The set of measurable functions will also be denoted by Σ. This notation is of
course a bit ambiguous, but it turns that no confusion can arise. Remark 3.2,
in a way justifies this notation. The remark can, with the present convention,
be rephrased as 1E ∈ Σ iff E ∈ Σ.

Fortunately, the set Σ of measurable function is closed under elementary
operations.

Proposition 3.5 (i) The collection Σ of Σ-measurable functions is a vector
space and products of measurable functions are measurable as well.
(ii) Let (hn) be a sequence in Σ. Then also inf hn, suphn, lim inf hn, lim suphn
are in Σ, where we extend the range of these functions to [−∞,∞]. The set L,
consisting of all s ∈ S for which limn hn(s) exists as a finite limit, is measurable.

Proof (i) If h ∈ Σ and λ ∈ R, then λh is also measurable (use (ii) of the
previous proposition for λ 6= 0). To show that the sum of two measurable
functions is measurable, we first note that {(x1, x2) ∈ R2 : x1 + x2 > c} =
∪q∈Q{(x1, x2) ∈ R2 : x1 > q, x2 > c − q} (draw a picture!). But then we also
have {h1+h2 > c} = ∪q∈Q({h1 > q}∩{h2 > c−q}), a countable union. To show
that products of measurable functions are measurable is left as Exercise 3.1.
(ii) Since {inf hn ≥ c} = ∩n{hn ≥ c}, it follows that inf hn ∈ Σ. To suphn
a similar argument applies, that then also yield measurability of lim inf hn =
supn infm≥n hm and lim suphn. To show the last assertion we consider h :=
lim suphn − lim inf hn. Then h : S → [−∞,∞] is measurable. The assertion
follows from L = {lim suphn <∞} ∩ {lim inf hn > −∞} ∩ {h = 0}. �

For later use we present the Monotone Class Theorem.

Theorem 3.6 Let H be a vector space of bounded functions, with the following
properties.
(i) 1 ∈ H.
(ii) If (fn) is a nonnegative sequence in H such that fn+1 ≥ fn for all n, and
f := lim fn is bounded as well, then f ∈ H.
If, in addition, H contains the indicator functions of sets in a π-system I, then
H contains all bounded σ(I)-measurable functions.

Proof Put D = {F ⊂ S : 1F ∈ H}. One easily verifies that D is a d-system,
and that it contains I. Hence, by Corollary 1.14, we have Σ := σ(I) ⊂ D. We
will use this fact later in the proof.
Let f be a bounded, Σ-measurable function. Without loss of generality, we
may assume that f ≥ 0 (add a constant otherwise), and f < K for some real
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constant K. Introduce the functions fn defined by fn = 2−nb2nfc. In explicit
terms, the fn are given by

fn(s) =
K2n−1∑
i=0

i2−n1{i2−n≤f(s)<(i+1)2−n}.

Then we have for all n that fn is a bounded measurable function, fn ≤ f ,
and fn ↑ f (check this!). Moreover, each fn lies in H. To see this, observe that
{i2−n ≤ f(s) < (i+ 1)2−n} ∈ Σ, since f is measurable. But then this set is also
an element of D, since Σ ⊂ D (see above) and hence 1{i2−n≤f(s)<(i+1)2−n} ∈ H.
SinceH is a vector space, linear combinations remain inH and therefore fn ∈ H.
Property (ii) of H yields f ∈ H. �

3.2 Random variables

We return to the setting of Section 1.5 and so we consider a probability space
(Ω,F ,P). In this setting Definition 3.1 takes the following form.

Definition 3.7 A function X : Ω → R is called a random variable if it is
(F-)measurable.

By definition, random variables are nothing else but measurable functions. Fol-
lowing the tradition, we denote them by X (or other capital letters), rather
than by h, as in the previous sections. We often need the σ-algebra σ(X), the
smallest σ-algebra on Ω that makes X a random variable. In other words, it
is the intersection of all σ-algebras F , such that X is a random variable in the
sense of Definition 3.7. Of course, X is F-measurable iff σ(X) ⊂ F .

If we have a collection of mappings X := {Xi : Ω→ R}i∈I , then we denote
by σ(X) the smallest σ-algebra on Ω such that all the Xi become measurable.
See Exercise 3.3.

Having a probability space (Ω,F ,P), a random variable X, and the measurable
space (R,B), we will use these ingredients to endow the latter space with a
probability measure. Define µ : B → [0, 1] by

µ(B) := P(X ∈ B) = P(X−1[B]). (3.1)

It is straightforward to check that µ is a probability measure on B. Commonly
used alternative notations for µ are PX , or LX , LX . This probability measure is
referred to as the distribution of X or the law of X. Along with the distribution
of X, we introduce its distribution function, usually denoted by F (or FX ,
or FX). By definition it is the function F : R → [0, 1], given by F (x) =
µ((−∞, x]) = P(X ≤ x).

Proposition 3.8 The distribution function of a random variable is right con-
tinuous, non-decreasing and satisfies limx→∞ F (x) = 1 and limx→−∞ F (x) = 0.
The set of points where F is discontinuous is at most countable.
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Proof Exercise 3.4. �

The fundamental importance of distribution functions in probability is based
on the following proposition.

Proposition 3.9 Let µ1 and µ2 be two probability measures on B. Let F1 and
F2 be the corresponding distribution functions. If F1(x) = F2(x) for all x, then
µ1 = µ2.

Proof Consider the π-system I = {(−∞, x] : x ∈ R} and apply Theorem 1.15.
�

This proposition thus states, in a different wording, that for a random variable
X, its distribution, the collection of all probabilities P(X ∈ B) with B ∈ B, is
determined by the distribution function FX .

We call any function on R that has the properties of Proposition 3.8 a distri-
bution function. Note that any distribution function is Borel measurable (sets
{F ≥ c} are intervals and thus in B). Below, in Theorem 3.10, we justify this
terminology. We will see that for any distribution function F , it is possible
to construct a random variable on some (Ω,F ,P), whose distribution function
equals F . This theorem is founded on the existence of the Lebesgue measure
λ on the Borel sets B[0, 1] of [0, 1], see Theorem 1.5. We now give a proba-
bilistic translation of this theorem. Consider (Ω,F ,P) = ([0, 1],B[0, 1], λ). Let
U : Ω → [0, 1] be the identity map. The distribution of U on [0, 1] is trivially
the Lebesgue measure again, in particular the distribution function FU of U
satisfies FU (x) = x for x ∈ [0, 1] and so P(a < U ≤ b) = FU (b)−FU (a) = b− a
for a, b ∈ [0, 1] with a ≤ b. Hence, to the distribution function FU corresponds
a probability measure on ([0, 1],B[0, 1]) and there exists a random variable U
on this space, such that U has FU as its distribution function. The random
variable U is said to have the standard uniform distribution.

The proof of Theorem 3.10 (Skorokhod’s representation of a random variable
with a given distribution function) below is easy in the case that F is continuous
and strictly increasing (Exercise 3.6), given the just presented fact that a random
variable with a uniform distribution exists. The proof that we give below for
the general case just follows a more careful line of arguments, but is in spirit
quite similar.

Theorem 3.10 Let F be a distribution function on R. Then there exists a prob-
ability space and a random variable X : Ω→ R such that F is the distribution
function of X.

Proof Let (Ω,F ,P) = ([0, 1],B[0, 1], λ). We define X−(ω) = inf{z ∈ R :
F (z) ≥ ω}. Then X− is a Borel measurable function, so a random variable,
as this follows from the relation to be proven below, valid for all c ∈ R and
ω ∈ [0, 1],

X−(ω) ≤ c⇔ F (c) ≥ ω. (3.2)
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This equivalence can be represented as {X− ≤ c} = [0, F (c)]. It also shows that
X− serves in a sense as an inverse function of F . We now show that (3.2) holds.
The implication F (c) ≥ ω ⇒ X−(ω) ≤ c is immediate from the definition of
X−. Conversely, let z > X−(ω). Then F (z) ≥ ω, by definition of X−. We now
take a sequence of zn > X−(ω) and zn ↓ X−(ω). Since F is right continuous, we
obtain F (X−(ω)) ≥ ω. It trivially holds that F (X−(ω)) ≤ F (c) if X−(ω) ≤ c,
because F is non-decreasing. Combination with the previous inequality yields
F (c) ≥ ω. This proves (3.2). In order to find the distribution function of X−,
we compute P(X− ≤ c) = P([0, F (c)]) = λ([0, F (c)]) = F (c). �

3.3 Independence

Recall the definition of independent events. Two events E,F ∈ F are called
independent if the product rule P(E ∩ F ) = P(E)P(F ) holds. In the present
section we generalize this notion of independence to independence of a sequence
of events and to independence of a sequence of σ-algebras. It is even convenient
and elegant to start with the latter.

Definition 3.11 (i) A sequence of σ-algebras F1,F2, . . . is called independent,
if for every n it holds that P(E1 ∩ · · · ∩ En) =

∏
i=1 P(Ei), for all choices of

Ei ∈ Fi (i = 1, . . . , n).
(ii) A sequence of random variables X1, X2, . . . is called independent if the σ-
algebras σ(X1), σ(X2), . . . are independent.
(iii) A sequence of events E1, E2, . . . is called independent if the random variables
1E1 ,1E2 , . . . are independent.

The above definition also applies to finite sequences. For instance, a finite se-
quence of σ-algebras F1, . . . ,Fn is called independent if the infinite sequence
F1,F2, . . . is independent in the sense of part (ii) of the above definition, where
Fm = {∅,Ω} for m > n. It follows that two σ-algebras F1 and F2 are inde-
pendent, if P(E1 ∩ E2) = P(E1)P(E2) for all E1 ∈ F1 and E2 ∈ F2. To check
independence of two σ-algebras, Theorem 1.15 is again helpful.

Proposition 3.12 Let I and J be π-systems and suppose that for all I ∈ I
and J ∈ J the product rule P(I ∩ J) = P(I)P(J) holds. Then the σ-algebras
σ(I) and σ(J ) are independent.

Proof Put G = σ(I) and H = σ(J ). We define for each I ∈ I the finite
measures µI and νI on H by µI(H) = P(H ∩ I) and νI(H) = P(H)P(I). Notice
that µI and νI coincide on J by assumption and that µI(Ω) = P(I) = νI(Ω).
Theorem 1.15 yields that µI(H) = νI(H) for all H ∈ H.

Now we consider for each H ∈ H the finite measures µH and νH on G
defined by µH(G) = P(G ∩H) and νH(G) = P(G)P(H). By the previous step,
we see that µH and νH coincide on I. Invoking Theorem 1.15 again, we obtain
P(G ∩H) = P(G)P(H) for all G ∈ G and H ∈ H. �
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Lemma 3.13 (Borel-Cantelli) Let E1, E2, . . . be a sequence of events.
(i) If it has the property that

∑
n≥1 P(En) <∞, then P(lim supEn) = 0.

(ii) If
∑
n≥1 P(En) = ∞ and if, moreover, the sequence is independent, then

P(lim supEn) = 1.

Proof (i) Let Un =
⋃
m≥nEm. Notice that the sequence (Un) decreases to

U = lim supEn. Hence we have P(U) ≤ P(Un) ≤
∑
m≥n P(Em), which con-

verges to zero by assumption.
(ii) We prove that P(lim inf Ecn) = 0. Let DN

n =
⋂N
m=nE

c
m (N ≥ n). No-

tice that for fixed n the sequence (DN
n )N≥n decreases to D∞n :=

⋂∞
m=nE

c
m.

By independence we obtain P(DN
n ) =

∏N
m=n(1 − P(Em)), which is less than

exp(−
∑N
m=n P(Em)). Hence by taking limits for N → ∞, we obtain for

every n that P(D∞n ) ≤ exp(−
∑∞
m=n P(Em)) = 0. Finally, we observe that

lim inf Ecn =
⋃∞
n=1D

∞
n and hence P(lim inf Ecn) ≤

∑∞
n=1 P(D∞n ) = 0. �

We close this section by presenting a nice construction of a probability space
on which a sequence of independent random variables is defined, whereas at
the same the marginal distributions of each member is prescribed. This is the
content of Theorem 3.15 below. It turns out the probability space on which we
can realize this construction is ([0, 1),B, λ). This must have something to do
with Skorokhod’s theorem 3.10!

Let’s start with some preparations. Consider the set [0, 1) endowed with its
Borel σ-algebra and let for each x the sequence b1(x), b2(x), . . . be its unique
binary expansion. Uniqueness can be obtained in many ways, for instance
b1(x) = 1 iff x ∈ [ 1

2 , 1), b2(x) = 1 iff x ∈ [ 1
4 ,

1
2 ) ∪ [ 3

4 , 1), etc. Then the functions
x 7→ bk(x), k = 1, 2, . . . are Borel-measurable and x =

∑∞
k=1 2−kbk(x).

Lemma 3.14 (i) Let U be a random variable defined on some (Ω,F ,P) with
values in [0, 1) and let Xk = bk ◦ U . Then U is uniformly distributed on [0, 1)
iff the Xk are iid with P(Xk = 1) = 1

2 .
(ii) If U is uniformly distributed on [0, 1), then there are Borel measurable func-
tions fk : [0, 1) → [0, 1) such that Zk = fk ◦ U defines an iid sequence, with all
Zk uniformly distributed on [0, 1) as well.

Proof (i) Let U have the uniform distribution on [0, 1). For x1, . . . , xn ∈ {0, 1},
one easily computes the joint probability P(X1 = x1, . . . , Xn = xn) = 2−n. It
follows that P(Xk = xk) = 1

2 for all k and that the Xk are independent.
Conversely, let the Xk be distributed as assumed. Let V be a random

variable having a uniform distribution on [0, 1). Then by the above part of
the proof the sequence of Yk := bk ◦ V is distributed as the Xk and therefore∑∞
k=1 2−kXk has the same distribution as

∑∞
k=1 2−kYk, which means that U

and V have the same distribution. Hence U is uniformly distributed on [0, 1).
(ii) Take the functions bk and relabel them in a rectangular array as bkj ,

j, k = 1, 2, . . . by using any bijective mapping from N onto N2. Put fk(x) :=∑∞
j=1 2−jbkj(x). The functions fk are Borel measurable. Since for fixed k the

bkj ◦ U are iid, we have by the first part of the lemma that Zk is uniform on
[0, 1). Moreover, for different k and k′ the sequences (bkj) and (bk′j) are disjoint
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and therefore Zk and Zk′ are independent. By extension of this argument the
whole sequence (Zk) becomes independent (think about this!). �

Here is the result we are after.

Theorem 3.15 Let µ1, µ2, . . . be a sequence of probability measures on (R,B).
Then there exists a probability space (Ω,F ,P) and random variables Yk defined
on it such that the law of each Yk is µk and such that the sequence (Yk) is an
independent one.

Proof Let (Ω,F ,P) = ([0, 1),B[0, 1), λ). Choose for each k a random variable
Xk according to Theorem 3.10. Then certainly, the Xk have law µk. Let U be
the identity mapping on [0, 1), then U is uniformly distributed on [0, 1). Choose
the Zk as in part (ii) of Lemma 3.14 and define Yk = Xk ◦Zk, k ≥ 1. These are
easily seen to have the desired properties �

3.4 Exercises

3.1 If h1 and h2 are Σ-measurable functions on (S,Σ, µ), then h1h2 is Σ-
measurable too. Show this.

3.2 Let X be a random variable. Show that Π(X) := {X−1(−∞, x] : x ∈ R} is
a π-system and that it generates σ(X).

3.3 Let {Yγ : γ ∈ C} be an arbitrary collection of random variables and {Xn :
n ∈ N} be a countable collection of random variables, all defined on the same
probability space.

(a) Show that σ{Yγ : γ ∈ C} = σ{Y −1
γ (B) : γ ∈ C,B ∈ B}.

(b) Let Xn = σ{X1, . . . , Xn} (n ∈ N) and A =
⋃∞
n=1 Xn. Show that A is an

algebra and that σ(A) = σ{Xn : n ∈ N}.

3.4 Prove Proposition 3.8.

3.5 Let F be a σ-algebra on Ω with the property that for all F ∈ F it holds
that P(F ) ∈ {0, 1}. Let X : Ω→ R be F-measurable. Show that for some c ∈ R
one has P(X = c) = 1. (Hint: P(X ≤ x) ∈ {0, 1} for all x.)

3.6 Let F be a strictly increasing and continuous distribution function. Let U be
a random variable having a uniform distribution on [0, 1] and put X = F−1(U).
Show that X has distribution F .

3.7 Let F be a distribution function and put X+(ω) = inf{z ∈ R : F (x) > ω}.
Show that (next to X−) also X+ has distribution function F and that P(X+ =
X−) = 1 (Hint: P(X− ≤ q < X+) = 0 for all q ∈ Q). Show also that X+ is a
right continuous function and Borel-measurable.
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3.8 Consider a probability space (Ω,F ,P). Let I1, I2, I3 be π-systems on Ω
with the properties Ω ∈ Ik and Ik ⊂ F , for all k. Assume that for all Ik ∈ Ik
(k = 1, 2, 3)

P(I1 ∩ I2 ∩ I3) = P(I1)P(I2)P(I3).

Show that σ(I1), σ(I2), σ(I3) are independent.

3.9 Let G1,G2, . . . be σ-algebras and let G = σ(G1 ∪ G2 ∪ . . .).

(a) Show that Π = {Gi1 ∩ Gi2 ∩ . . . ∩ Gik : k ∈ N, ik ∈ N, Gij ∈ Gij} is a
π-system that generates G.

(b) Assume that G1,G2, . . . is an independent sequence. Let M and N be
disjoint subsets of N and put M = σ(Gi, i ∈ M) and N = σ(Gi, i ∈ N).
Show that M and N are independent σ-algebras.

3.10 Consider an iid sequence X1, X2, . . .. Let Fn = σ(X1, . . . , Xn) and Tn =
σ(Xn+1, Xn+2, . . .), n ≥ 1. Let I be the collection of events of the type {X1 ∈
B1, . . . , Xn ∈ Bn}, with the Bi Borel sets in R. Show that I is a π-system that
generates Fn. Find a π-system that generates Tn and show that Fn and Tn are
independent. (Use Proposition 3.12.)

3.11 Consider an infinite sequence of coin tossing. We take Ω = {H,T}∞, a
typical element ω is an infinite sequence (ω1, ω2, . . .) with each ωn ∈ {H,T},
and F = σ({ω ∈ Ω : ωn = w}, w ∈ {H,T}, n ∈ N). Define functions Xn by
Xn(ω) = 1 if ωn = H and Xn(ω) = 0 if ωn = T .

(a) Show that all Xn are random variables, i.e. everyone of them is measurable.

(b) Let Sn =
∑n
i=1Xi. Show that also Sn is a random variable.

(c) Let p ∈ [0, 1] and Ep = {ω ∈ Ω : limn→∞
1
nSn(ω) = p}. Show that Ep is

an F-measurable set.
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4 Integration

In elementary courses on Probability Theory, there is usually a distinction be-
tween random variables X having a discrete distribution, on N say, and those
having a density. In the former case we have for the expectation EX the ex-
pression

∑
k k P(X = k), whereas in the latter case one has EX =

∫
xf(x) dx.

This distinction is annoying and not satisfactory from a mathematical point of
view. Moreover, there exist random variables whose distributions are neither
discrete, nor do they admit a density. Here is an example. Suppose Y and Z,
defined on the same (Ω,F ,P), are independent random variables. Assume that
P(Y = 0) = P(Y = 1) = 1

2 and that Z has a standard normal distribution. Let
X = Y Z and F the distribution function of X. Easy computations (do them!)
yield F (x) = 1

2 (1[0,∞)(x) + Φ(x)). We see that F has a jump at x = 0 and is
differentiable on R\{0}, a distribution function of mixed type. How to compute
EX is this case?

In this section we will see that expectations are special cases of the unifying
concept of Lebesgue integral, a sophisticated way of addition. Lebesgue integrals
have many advantages. It turns out that Riemann integrable functions (on
a compact interval) are always Lebesgue integrable w.r.t. Lebesgue measure
and that the two integrals are the same. Also sums are examples of Lebesgue
integral. Furthermore, the theory of Lebesgue integrals allows for very powerful
limit theorems. Below we work with a measurable space (S,Σ, µ).

4.1 Integration of simple functions

Bearing in mind the elementary formula for the area of a rectangle and the
interpretation of the Riemann integral of a positive function as the area under
its graph, it is natural to define the integral of a multiple of an indicator function
a · 1E as a · µ(E), for E ∈ Σ. We extend this definition to the class of simple
functions.

Definition 4.1 A function f : S → [0,∞] is called a nonnegative simple func-
tion, if it has a representation as a finite sum

f =
n∑
i=1

ai1Ai , (4.1)

where ai ∈ [0,∞] and Ai ∈ Σ. The class of all nonnegative simple functions is
denoted by S+.

Notice that a simple function is measurable. Since we remember that Riemann
integrals are linear operators and knowing the definition of integral for an indi-
cator function, we now present the definition of the integral of f ∈ S+.

Definition 4.2 Let f ∈ S+. The (Lebesgue) integral of f with respect to the
measure µ is defined as∫

f dµ :=
n∑
i=1

aiµ(Ai), (4.2)
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when f has representation (4.1).

Other notations that we often use for this integral are
∫
f(s)µ(ds) and µ(f).

Note that if f = 1A, then µ(f) = µ(1A) = µ(A), so there is a bit of ambiguity in
the notation, but also a reasonable level of consistency. Note that µ(f) ∈ [0,∞]
and also that the above summation is well defined, since all quantities involved
are nonnegative, although possibly infinite. For products ab for a, b ∈ [0,∞], we
use the convention ab = 0, when a = 0.

It should be clear that this definition of integral is, at first sight, troublesome.
The representation of a simple function is not unique, and one might wonder if
the just defined integral takes on different values for different representations.
This would be very bad, and fortunately it is not the case.

Proposition 4.3 Let f be a nonnegative simple function. Then the value of
the integral µ(f) is independent of the chosen representation.

Proof Step 1. Let f be given by (4.1) and define φ : S → {0, 1}n by φ(s) =
(1A1(s), . . . ,1An(s)). Let {0, 1}n = {u1, . . . , um} where m = 2n and put Uk =
φ−1(uk). Then the collection {U1, . . . , Um} is a measurable partition of S (the
sets Uk are measurable). We will also need the sets Si = {k : Uk ⊂ Ai} and
Tk = {i : Uk ⊂ Ai}. Note that these sets are dual in the sense that k ∈ Si iff
i ∈ Tk.

Below we will use the fact Ai = ∪k∈SiUk, when we rewrite (4.1). We obtain
by interchanging the summation order

f =
∑
i

ai1Ai =
∑
i

ai(
∑
k∈Si

1Uk)

=
∑
k

(
∑
i∈Tk

ai)1Uk . (4.3)

Now apply the definition of µ(f) by using the representation of f given by (4.3).
This gives µ(f) =

∑
k(
∑
i∈Tk ai)µ(Uk). Interchanging the summation order, we

see that this is equal to
∑
i ai(

∑
k∈Si µ(Uk)) =

∑
i aiµ(Ai), which coincides

with (4.2). We conclude that if f is given by (4.1), we can also represent f in
a similar fashion by using a partition, and that both representations give the
same value for the integral.
Step 2: Suppose that we have two representation of a simple function f , one is
as in (4.1) with the collection of Ai a measurable partition of S. The other one
is

f =
m∑
j=1

bj1Bj , (4.4)

where the Bj form a measurable partition of S as well. We obtain a third
measurable partition of S by taking the collection of all intersections Ai ∩ Bj .
Notice that if s ∈ Ai ∩ Bj , then f(s) = ai = bj and so we have the implication
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Ai∩Bj 6= ∅ ⇒ ai = bj . We compute the integral of f according to the definition.
Of course, this yields (4.2) by using the representation (4.1) of f , but

∑
j bjµ(Bj)

if we use (4.4). Rewrite∑
j

bjµ(Bj) =
∑
j

bjµ(∪i(Ai ∩Bj)) =
∑
j

bj
∑
i

µ(Ai ∩Bj)

=
∑
i

∑
j

bjµ(Ai ∩Bj) =
∑
i

∑
j

aiµ(Ai ∩Bj)

=
∑
i

ai
∑
j

µ(Ai ∩Bj) =
∑
i

aiµ(∪j(Ai ∩Bj))

=
∑
i

aiµ(Ai),

which shows that the two formulas for the integral are the same.
Step 3: Take now two arbitrary representations of f of the form (4.1) and (4.4).
According to step 1, we can replace each of them with a representation in terms
of a measurable partition, without changing the value of the integral. According
to step 2, each of the representations in terms of the partitions also gives the
same value of the integral. This proves the proposition. �

Example 4.4 Here is the most elementary example. Let (S,Σ, µ) = (N, 2N, τ),
with counting measure τ . A function f on N can be identified with a sequence
(fi). If f ∈ S+, only finitely many of the fi are nonzero. Let us assume that
fi = 0 for i > n. Then f can be represented in a somewhat cumbersome (but
not necessarily unique) way by

f(k) =
n∑
i=1

fi1{i}(k).

Since τ({i}) = 1, we get τ(f) =
∑n
i=1 fi, not else but the sum of the fi. In this

case, integration is just summation. Of course, a different representation would
yield the same answer.

We say that a property of elements of S holds almost everywhere (usually abbre-
viated by a.e. or by µ-a.e.), if the set for which this property does not hold, has
measure zero. For instance, we say that two measurable functions are almost
everywhere equal, if µ({f 6= g}) = 0. Elementary properties of the integral are
listed below.

Proposition 4.5 Let f, g ∈ S+ and c ∈ [0,∞].
(i) If f ≤ g a.e., then µ(f) ≤ µ(g).
(ii) If f = g a.e., then µ(f) = µ(g).
(iii) µ(f + g) = µ(f) + µ(g) and µ(cf) = cµ(f).

Proof (i) Represent f and g by means of measurable partitions, f =
∑
i ai1Ai

and g =
∑
j bj1Bj say. We have {f > g} = ∪i,j:ai>bjAi ∩Bj , and since µ({f >
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g}) = 0, we have that µ(Ai∩Bj) = 0 if ai > bj . It follows that for all i and j, the
inequality aiµ(Ai ∩Bj) ≤ bjµ(Ai ∩Bj) holds. We use this in the computations
below.

µ(f) =
∑
i

aiµ(Ai)

=
∑
i

∑
j

aiµ(Ai ∩Bj)

≤
∑
i

∑
j

bjµ(Ai ∩Bj)

=
∑
j

bjµ(Bj).

Assertion (ii) follows by a double application of (i), whereas (iii) can also be
proved by using partitions and intersections Ai ∩Bj . �

4.2 A general definition of integral

We start with a definition, in which we use that we already know how to integrate
simple functions.

Definition 4.6 Let f be a nonnegative measurable function. The integral of
f is defined as µ(f) := sup{µ(h) : h ≤ f, h ∈ S+}, where µ(h) is as in Defini-
tion 4.2.

Notice that for functions f ∈ S+, Definition 4.6 yields for µ(f) the same as
Definition 4.2 in the previous section. Thus there is no ambiguity in notation
by using the same symbol µ. The set of nonnegative measurable functions will
be denoted by Σ+. We immediately have some extensions of results in the
previous section.

Proposition 4.7 Let f, g ∈ Σ+. If f ≤ g a.e., then µ(f) ≤ µ(g), and if f = g
a.e., then µ(f) = µ(g).

Proof Let N = {f > g}. Take h ∈ S+ with h ≤ f . Then also h1N , h1Nc ∈ S+

and by Proposition 4.5(iii), we then have µ(h) = µ(h1N )+µ(h1Nc) = µ(h1Nc).
Moreover,

h1Nc ≤ f1Nc ≤ g1Nc ≤ g.

By definition of µ(g) (as a supremum), we obtain µ(h) ≤ µ(g). By taking the
supremum in this inequality over all h, we get µ(f) ≤ µ(g), which gives the first
assertion. The other one immediately follows. �

Example 4.8 We extend the situation of Example 4.4, by allowing infinitely
many fi to be positive. The result will be τ(f) =

∑∞
i=1 fi, classically defined as

limn→∞
∑n
i=1 fi. Check that this is in agreement with Definition 4.6. See also

Exercise 4.1.
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Example 4.9 Let (S,Σ, µ) = ([0, 1],B([0, 1]), λ) and f the indicator of the
rational numbers in [0, 1]. Then f = 0 a.e. and, consequently, λ(f) = 0. This is
a nice example of a function that is not Riemann integrable.

The following will frequently be used.

Lemma 4.10 Let f ∈ Σ+ and suppose that µ(f) = 0. Then f = 0 a.e.

Proof Because µ(f) = 0, it holds that µ(h) = 0 for all nonnegative simple
functions with h ≤ f . Take hn = 1

n1{f≥1/n}, then hn ∈ S+ and hn ≤ f .
The equality µ(hn) = 0 implies µ({f ≥ 1/n}) = 0. The result follows from
{f > 0} = ∪n{f ≥ 1/n} and Corollary 1.8. �

We now present the first important limit theorem, the Monotone Convergence
Theorem.

Theorem 4.11 Let (fn) be a sequence in Σ+, such that fn+1 ≥ fn a.e. for
each n. Let f = lim sup fn. Then µ(fn) ↑ µ(f) ≤ ∞.

Proof We first consider the case where fn+1(s) ≥ fn(s) for all s ∈ S, so (fn) is
increasing everywhere. Then f(s) = lim fn(s) for all s ∈ S, possibly with value
infinity. It follows from Proposition 4.7, that µ(fn) is an increasing sequence,
bounded by µ(f). Hence we have ` := limµ(fn) ≤ µ(f).

We show that we actually have an equality. Take h ∈ S+ with h ≤ f ,
c ∈ (0, 1) and put En = {fn ≥ ch}. The sequence (En) is obviously increasing
and we show that its limit is S. Let s ∈ S and suppose that f(s) = 0. Then
also h(s) = 0 and s ∈ En for every n. If f(s) > 0, then eventually fn(s) ≥
cf(s) ≥ ch(s), and so s ∈ En. This shows that ∪nEn = S. Consider the chain
of inequalities

` ≥ µ(fn) ≥ µ(fn1En) ≥ cµ(h1En). (4.5)

Suppose that h has representation (4.1). Then µ(h1En) =
∑
i aiµ(Ai∩En). This

is a finite sum of nonnegative numbers and hence the limit of it for n→∞ can
be taken inside the sum and thus equals µ(h), since En ↑ S and the continuity
of the measure (Proposition 1.7). From (4.5) we then conclude ` ≥ cµ(h), for
all c ∈ (0, 1), and thus ` ≥ µ(h). Since this holds for all our h, we get ` ≥ µ(f)
by taking the supremum over h. This proves the first case.

Next we turn to the almost everywhere version. Let Nn = {fn > fn+1},
by assumption µ(Nn) = 0. Put N = ∪nNn, then also µ(N) = 0. It follows
that µ(fn) = µ(fn1Nc). But on N c we have that f = f1Nc and similarly
µ(f) = µ(f1Nc). The previous case can be applied to get µ(fn1Nc) ↑ µ(f1Nc),
from which the result follows. �

Example 4.12 Here is a nice application of Theorem 4.11. Let f ∈ Σ+ and,
for each n ∈ N, put En,i = {i2−n ≤ f < (i+1)2−n} (i ∈ In := {0, . . . , n2n−1}),
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similar to the sets in the proof of Theorem 3.6. Put also En = {f ≥ n}. Note
that the sets En,i and En are in Σ. Define

fn =
∑
i∈In

i2−n1En,i + n1En .

These fn form an increasing sequence in Σ+, even in S+, with limit f . Theo-
rem 4.11 yields µ(fn) ↑ µ(f). We have exhibited a sequence of simple functions
with limit f , that can be used to approximate µ(f).

Proposition 4.13 Let f, g ∈ Σ+ and α, β > 0. Then µ(αf + βg) = αµ(f) +
βµ(g) ≤ ∞.

Proof Exercise 4.2. �

We proceed with the next limit result, known as Fatou’s lemma.

Lemma 4.14 Let (fn) be an arbitrary sequence in Σ+. Then lim inf µ(fn) ≥
µ(lim inf fn). If there exists a function h ∈ Σ+ such that fn ≤ h a.e., and
µ(h) <∞, then lim supµ(fn) ≤ µ(lim sup fn).

Proof Put gn = infm≥n fm. We have for all m ≥ n the inequality gn ≤ fm.
Then also µ(gn) ≤ µ(fm) for m ≥ n, and even µ(gn) ≤ infm≥n µ(fm). We want
to take limits on both side of this inequality. On the right hand side we get
lim inf µ(fn). The sequence (gn) is increasing, with limit g = lim inf fn, and by
Theorem 4.11, µ(gn) ↑ µ(lim inf fn) on the left hand side. This proves the first
assertion. The second assertion follows by considering f̄n = h− fn ≥ 0. Check
where it is used that µ(h) <∞. �

Remark 4.15 Let (En) be a sequence of sets in Σ, and let fn = 1En and h = 1.
The statements of Exercise 1.4 follow from Lemma 4.14.

We now extend the notion of integral to (almost) arbitrary measurable functions.
Let f ∈ Σ. For (extended) real numbers x on defines x+ = max{x, 0} and
x− = max{−x, 0}. Then, for f : S → [−∞,∞], one defines the functions f+

and f− by f+(s) = f(s)+ and f−(s) = f(s)−. Notice that f = f+ − f− and
|f | = f+ + f−. If f ∈ Σ, then f+, f− ∈ Σ+.

Definition 4.16 Let f ∈ Σ and assume that µ(f+) <∞ or µ(f−) <∞. Then
we define µ(f) := µ(f+) − µ(f−). If both µ(f+) < ∞ and µ(f−) < ∞, we
say that f is integrable. The collection of all integrable functions is denoted by
L1(S,Σ, µ). Note that f ∈ L1(S,Σ, µ) implies that |f | <∞ µ-a.e.

Proposition 4.17 Let f, g ∈ L1(S,Σ, µ) and α, β ∈ R. Then αf + βg ∈
L1(S,Σ, µ) and µ(αf + βg) = αµ(f) + βµ(g). Hence µ can be seen as a linear
operator on L1(S,Σ, µ).

Proof Exercise 4.3. �
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The next theorem is known as the Dominated Convergence Theorem, also called
Lebesgue’s Convergence Theorem.

Theorem 4.18 Let (fn) ⊂ Σ and f = lim sup fn. Assume that fn(s) → f(s)
for all s outside a set of measure zero. Assume there exists a function g ∈ Σ+

such that |fn| ≤ g a.e. and that µ(g) < ∞. Then µ(|fn − f |) → 0, and hence
µ(fn)→ µ(f).

Proof The second assertion easily follows from the first one, which we prove
now for the case that fn → f everywhere. One has the inequality |f | ≤ g,
whence |fn − f | < 2g. The second assertion of Fatou’s lemma immediately
yields lim supµ(|fn− f |) ≤ 0, which is what we wanted. The almost everywhere
version is left as Exercise 4.4. �

The convergence µ(|fn − f |) → 0 is often denoted by fn
L1

→ f . The following
result is known as Scheffé’s lemma.

Lemma 4.19 Let (fn) ⊂ Σ+ and assume that fn → f a.e. Assume that µ(fn)
is finite for all n and µ(f) <∞ as well. Then µ(|fn−f |)→ 0 iff µ(fn)→ µ(f).

Proof The ‘only if’ part follows from Theorem 4.18. Assume then that µ(fn)→
µ(f). We have the elementary equality |fn − f | = (fn − f) + 2(fn − f)−, and
hence µ(|fn− f |) = (µ(fn)−µ(f)) + 2µ((fn− f)−). The first term on the right
hand side of the last expression tends to zero by assumption. The second one
we treat as follows. Since f − fn ≤ f and f ≥ 0, it follows that (fn − f)− ≤ f .
Hence µ((fn − f)−)→ 0, by virtue of Theorem 4.18. �

Example 4.20 Let (S,Σ, µ) = ([0, 1],B(R), λ), where λ is Lebesgue measure.
Assume that f ∈ C[0, 1]. Exercise 4.6 tells us that f ∈ L1([0, 1],B(R), λ) and
that λ(f) is equal to the Riemann integral

∫ 1

0
f(x) dx. This implication fails to

hold if we replace [0, 1] with an unbounded interval, see Exercise 4.7.
On the other hand, one can even show that every function that is Riemann

integrable over [0, 1], not only a continuous function, is Lebesgue integrable too.
Knowledge of Chapter 2 is required for a precise statement and its proof, see
Exercise 4.14.

Many results in integration theory can be proved by what is sometimes called
the standard machine. This ‘machine’ works along the following steps. First
one shows that results hold true for an indicator function, then one extends
this by a linearity argument to nonnegative simple functions. Invoking the
Monotone Convergence Theorem, one can then prove the results for nonnegative
measurable functions. In the final step one shows the result to be true for
functions in L1(S,Σ, µ) by splitting into positive and negative parts.
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4.3 Integrals over subsets

This section is in a sense a prelude to the theorem of Radon-Nikodym, Theo-
rem 6.7. Let f ∈ Σ+ and E ∈ Σ. Then we may define∫

E

f dµ := µ(1Ef). (4.6)

An alternative approach is to look at the measurable space (E,ΣE), where
ΣE = {E ∩ F : F ∈ Σ} (check that this a σ-algebra). Denote the restriction of
µ to ΣE by µE . Then (E,ΣE , µE) is a measure space. We consider integration
on this space.

Proposition 4.21 Let f ∈ Σ and denote by fE its restriction to E. Then
fE ∈ L1(E,ΣE , µE) iff 1Ef ∈ L1(S,Σ, µ), in which case the identity µE(fE) =
µ(1Ef) holds.

Proof Exercise 4.8. �

Let f ∈ Σ+. Define for all E ∈ Σ

ν(E) =
∫
E

f dµ(= µ(1Ef)). (4.7)

One verifies (Exercise 4.9) that ν is a measure on (S,Σ). We want to compute
ν(h) for h ∈ Σ+. For measurable indicator functions we have by definition
that the integral ν(1E) equals ν(E), which is equal to µ(1Ef) by (4.7). More
generally we have

Proposition 4.22 Let f ∈ Σ+ and h ∈ Σ. Then h ∈ L1(S,Σ, ν) iff hf ∈
L1(S,Σ, µ), in which case one has ν(h) = µ(hf).

Proof Exercise 4.10. �

For the measure ν above, Proposition 4.22 states that
∫
hdν =

∫
hf dµ, valid

for all h ∈ L1(S,Σ, ν). By ‘erasing’ on both sides of this equality, one gets
dν = f dµ, and then, by ‘dividing’, one gets

dν
dµ

= f.

Although both of these operations are nonsense from a mathematical point of
view, the notation in the last displayed identity, which looks like a derivative,
turns out to be very convenient. We will return to this in Chapter 6, where we
discuss Radon-Nikodym derivatives.
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4.4 Expectation and integral

The whole point of this section is that the expectation of a random variable is a
Lebesgue integral. Indeed, consider a probability space (Ω,F ,P), and let X be
a (real) random variable defined on it. Recall that X : Ω → R is by definition
a measurable function. Making the switch between the notations (S,Σ, µ) and
(Ω,F ,P), one has the following notation for the integral of X w.r.t. P

P(X) =
∫

Ω

X dP,

provided that the integral is well defined, which is certainly the case if P(|X| <
∞) = 1. Other often used notations for this integral are PX and EX. The latter
is the favorite one among probabilists and one speaks of the Expectation of X.
Note that EX is always defined when X ≥ 0 almost surely. The latter concept
meaning almost everywhere w.r.t. the probability measure P. We abbreviate
almost surely by a.s.

Example 4.23 Let (Ω,F ,P) = (N, 2N,P), where P is defined by P(n) = pn,
where all pn ≥ 0 and

∑
pn = 1. Let (xn) be a sequence of nonnegative real

numbers and define the random variable X by X(n) = xn. In a spirit similar
to what we have seen in Examples 4.4 and 4.8, we get EX =

∑∞
n=1 xnpn. Let

us switch to a different approach. Let ξ1, ξ2, . . . be the different elements of the
set {x1, x2, . . .} and put Ei = {j : xj = ξi}, i ∈ N. Notice that {X = ξi} = Ei
and that the Ei form a partition of N with P(Ei) =

∑
j∈Ei pj . It follows that

EX =
∑
i ξiP(Ei), or EX =

∑
i ξiP(X = ξi), the familiar expression for the

expectation.

If h : R → R is Borel measurable, then Y := h ◦X (we also write Y = h(X))
is a random variable as well. We give two recipes to compute EY . One is of
course by direct application of the definition of expectation to Y . But we also
have

Proposition 4.24 Let X be a random variable, and h : R → R Borel mea-
surable. Let PX be the distribution of X. Then h ◦ X ∈ L1(Ω,F ,P) iff h ∈
L1(R,B,PX), in which case

Eh ◦X =
∫

R
hdPX . (4.8)

Proof Exercise 4.11. �

It follows from this proposition that one can also compute EY as EY =∫
R y PY ( dy).

This definition of expectation yields the familiar formulas containing a sum for
discrete random variables and integrals for random variables as special cases.
So, we see that the Lebesgue integral serves as a unifying concept for expecta-
tion. At least as important is that we can use the powerful convergence theorems
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(obtained for integrals) of Section 4.2 for expectations as well. Notice that ev-
ery real constant (function) has a well defined, and trivially finite, expectation.
Therefore one can in pertaining cases apply the Dominated Convergence Theo-
rem (Theorem 4.18) with the function g equal to a constant. Here is a simple
example of the application of the Monotone Convergence Theorem.

Example 4.25 Let (Xn) be a sequence of nonnegative random variables, so all
EXn ≤ ∞ are well defined. Then

∑
Xn is a well defined random variable as

well, nonnegative, and we have E (
∑
Xn) =

∑
EXn. Moreover if

∑
EXn <∞,

then
∑
Xn <∞ a.s. Verification of these assertions is straightforward and left

as Exercise 4.12

The next two propositions have proven to be very useful in proofs of results
in Probability Theory. We use the fact that P is a probability measure in an
essential way.

Proposition 4.26 Let X be a real valued random variable and g : R → [0,∞]
an increasing function. Then E g(X) ≥ g(c)P(X ≥ c).

Proof This follows from the inequality g(X)1{X≥c} ≥ g(c)1{X≥c}. �

The inequality in Proposition 4.26 is known as Markov’s inequality. An example
is obtained by taking g(x) = x+ and by replacing X with |X|. One gets E |X| ≥
cP(|X| ≥ c). For the special case where g(x) = (x+)2, it is known as Chebychev’s
inequality. This name is especially used, if we apply it with |X − EX| instead
of X. For c ≥ 0 we then obtain VarX ≥ c2P(|X − EX| ≥ c).

We now turn to a result that is known as Jensen’s inequality, Proposition 4.27
below. Recall that a function g : G → R is convex, if G is a convex set and if
for all x, y ∈ G and α ∈ [0, 1] one has

g(αx+ (1− α)y) ≤ αg(x) + (1− α)g(y).

We consider only the case where G is an interval. Let us first give some proper-
ties of convex functions. Let x, y, z ∈ G and x < y < z. Then y = αx+(1−α)z,
with α = z−y

z−x , and from convexity of g we get

(g(y)− g(x))(z − x) ≤ (g(z)− g(x)(y − x).

By taking the appropriate limits, one obtains that g is continuous on IntG, the
interior of G. Rewrite the above inequality as

g(y)− g(x)
y − x

≤ g(z)− g(x)
z − x

. (4.9)

It follows that the right derivative D+g(y) := limx↓y
g(y)−g(x)
y−x exists and is finite.

In a similar way one can show that the left derivative D−g(y) := limx↑y
g(y)−g(x)
y−x

exists and is finite. Moreover, one has D+g(y) ≥ D−g(y) for all y ∈ IntG and
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that both onesided derivatives are increasing. If one takes in (4.9) the limit
when y ↓ x, one gets the inequality (z − x)D+g(x) ≤ g(z) − g(x), valid for
z > x. Likewise one has the inequality (x − z)D−g(x) ≥ g(x) − g(z), valid for
z < x. It follows that for any d(x) ∈ [D−g(x), D+g(x)], it holds that

g(z)− g(x) ≥ d(x)(z − x). (4.10)

The following proposition is now easy to prove.

Proposition 4.27 Let g : G → R be convex and X a random variable with
P(X ∈ G) = 1. Assume that E |X| <∞ and E |g(X)| <∞. Then

E g(X) ≥ g(EX).

Proof Since P(X ∈ G) = 1, we have EX ∈ G and (4.10) with x = EX and z
replaced with X holds a.s. So,

g(X)− g(EX) ≥ d(EX)(X − EX).

Take expectations to get E g(X)− g(EX) ≥ 0. �

4.5 Lp-spaces of random variables

In this section we introduce the p-norms and the spaces of random variables
with finite p-norm. We start with a definition.

Definition 4.28 Let 1 ≤ p < ∞ and X a random variable on (Ω,F ,P). If
E |X|p <∞, we write X ∈ Lp(Ω,F ,P) and ||X||p = (E |X|p)1/p.

The notation || · || suggests that we deal with a norm. In a sense, this is correct,
but we will not prove until the end of this section. It is however obvious that
Lp := Lp(Ω,F ,P) is a vector space, since |X + Y |p ≤ (|X|+ |Y |)p ≤ 2p(|X|p +
|Y |p).

In the special case p = 2, we have forX,Y ∈ L2, that |XY | = 1
2 ((|X|+|Y |)2−

X2−Y 2) has finite expectation and is thus in L1. Of course we have |E (XY )| ≤
E |XY |. For the latter we have the famous Cauchy-Schwartz inequality.

Proposition 4.29 Let X,Y ∈ L2. Then E |XY | ≤ ||X||2 ||Y ||2.

Proof If EX2 = EY 2 = 0, then X = 0 and Y = 0 a.s. (Lemma 4.10) and there
is nothing to prove. Assume then that EY 2 > 0 and let c = E |XY |/EY 2. One
trivially has E (|X|− c|Y |)2 ≥ 0. But the left hand side equals EX2− (E |XY |)2

EY 2 .
�

Proposition 4.29 tells us that X,Y ∈ L2(Ω,F ,P) is sufficient to guarantee that
the product XY is integrable. For independent X and Y weaker integrability
assumptions suffice and the product rule for probabilities of intersections extend
to a product rule for expectations.
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Proposition 4.30 Let X,Y ∈ L1(Ω,F ,P) be independent random variables.
Then XY ∈ L1(Ω,F ,P) and E (XY ) = EX · EY .

Proof The standard machine easily gives E (1AY ) = P(A) ·EY for A an event
independent of Y . Assume that X ∈ S+. Since X is integrable we can assume
that it is finite, and thus bounded by a constant c. Since then |XY | ≤ c|Y |,
we obtain E |XY | < ∞. If we represent X as

∑n
i=1 ai1Ai , then E (XY ) =∑n

i=1 aiP(Ai)EY readily follows and thus E (XY ) = EX · EY . The proof may
be finished by letting the standard machine operate on X. �

We continue with some properties of Lp-spaces. First we have monotonicity of
norms.

Proposition 4.31 Let 1 ≤ p ≤ r and X ∈ Lr, then X ∈ Lp and ||X||p ≤
||X||r.

Proof It follows from the trivial inequality |u| ≤ 1 + |u|a, valid for u ∈ R and
a ≥ 1, that |X|p ≤ 1+|X|r, by taking a = r/p, and hence X ∈ Lp. Observe that
x → |x|a is convex. We apply Jensen’s inequality to get (E |X|p)a ≤ E (|X|pa),
from which the result follows. �

4.6 Lp-spaces of functions

In the previous section we have introduced the Lp-spaces for random variables
defined on a probability space (Ω,F ,P). In the present section, we consider
in some more generality the spaces Lp(S,Σ, µ). For completeness, we give the
definition, which is of course completely analogous to Definition 4.28.

Definition 4.32 Let 1 ≤ p < ∞ and f a measurable function on (S,Σ, µ). If
µ(|f |p) <∞, we write f ∈ Lp(S,Σ, µ) and ||f ||p = (µ(|X|p))1/p.

Occasionally, it is useful to work with ||f ||p for p =∞. It is defined as follows.
For f ∈ Σ we put

||f ||∞ := inf{m ∈ R : µ({|f | > m}) = 0},

with the convention inf ∅ = ∞. It is clear that |f | ≤ ||f ||∞ a.e. We write
f ∈ L∞(S,Σ, µ) if ||f ||∞ <∞.

Here is the first of two fundamental inequalities, known as Hölder’s inequality.

Theorem 4.33 Let p, q ∈ [1,∞], f ∈ Lp(S,Σ, µ) and g ∈ Lq(S,Σ, µ). If
1
p + 1

q = 1, then fg ∈ L1(S,Σ, µ) and ||fg||1 ≤ ||f ||p||g||q.

Proof Notice first that for p = 1 or p =∞ there is basically nothing to prove.
So we assume p, q ∈ (1,∞). We give a probabilistic proof by introducing a
conveniently chosen probability measure and by using Jensen’s inequality. We
assume without loss of generality that f, g ≥ 0 a.e. If ||f ||p = 0, then f = 0 a.e.
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in view of Lemma 4.10 and we have a trivial inequality. Let then 0 < ||f ||p <∞.
We now define a probability measure P on Σ by

P(E) =
µ(1Efp)
µ(fp)

.

Put h(s) = g(s)/f(s)p−1 if f(s) > 0 and h(s) = 0 otherwise. Jensen’s inequality
gives (P(h))q ≤ P(hq). We compute

P(h) =
µ(fg)
µ(fp)

,

and

P(hq) =
µ(1{f>0}g

q)
µ(fp)

≤ µ(gq)
µ(fp)

.

Insertion of these expressions into the above version of Jensen’s inequality yields

(µ(fg))q

(µ(fp))q
≤ µ(gq)
µ(fp)

,

whence (µ(fg))q ≤ µ(gq)µ(fp)q−1. Take q-th roots on both sides and the result
follows. �

Notice that this result for p = 2 yields the Cauchy-Schwartz inequality ||fg||1 ≤
||f ||2||g||2 for square integrable functions.

We now give the second fundamental inequality, Minkowski’s inequality.

Theorem 4.34 Let f, g ∈ Lp(S,Σ, µ) and p ∈ [1,∞]. Then ||f +g||p ≤ ||f ||p+
||g||p.

Proof The case p = ∞ is almost trivial, so we assume p ∈ [1,∞). To exclude
another triviality, we suppose ||f + g||p > 0. Note the following elementary
relations.

|f + g|p = |f + g|p−1|f + g| ≤ |f + g|p−1|f |+ |f + g|p−1|g|.

Now we take integrals and apply Hölder’s inequality to obtain

µ(|f + g|p) ≤ µ(|f + g|p−1|f |) + µ(|f + g|p−1|g|)
≤ (||f ||p + ||g||p)(µ(|f + g|(p−1)q)1/q.

But (p − 1)q = p and after dividing by (µ(|f + g|(p−1)q)1/q, we obtain µ(|f +
g|p)1−1/q ≤ ||f ||p + ||g||p. The result follows, because 1− 1/q = 1/p. �

Recall the definition of a norm on a (real) vector space X. One should have
||x|| = 0 iff x = 0, ||αx|| = |α| ||x|| for α ∈ R (homogeneity) and ||x + y|| ≤
||x||+ ||y|| (triangle inequality). For || · ||p homogeneity is obvious, the triangle
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inequality has just been proved under the name Minkowski’s inequality and
we also trivially have f = 0 ⇒ ||f ||p = 0. But, conversely ||f ||p = 0 only
implies f = 0 a.e. This annoying fact disturbs || · ||p being called a genuine
norm. This problem can be circumvented by identifying a function f that is
zero a.e. with the zero function. The proper mathematical way of doing this is
by defining the equivalence relation f ∼ g iff µ({f 6= g}) = 0. By considering
the equivalence classes induced by this equivalence relation one gets the quotient
space Lp(S,Σ, µ) := Lp(S,Σ, µ)/ ∼. One can show that || · ||p induces a norm
on this space in the obvious way. We don’t care too much about these details
and just call || · ||p a norm and Lp(S,Σ, µ) a normed space, thereby violating a
bit the standard mathematical language.

A desirable property of a normed space, (a version of) completeness, holds for
Lp spaces. We give the proof for Lp(Ω,F ,P).

Theorem 4.35 Let p ∈ [1,∞]. The space Lp(Ω,F ,P) is complete in the fol-
lowing sense. Let (Xn) be a Cauchy-sequence in Lp: ||Xn − Xm||p → 0 for
n,m → ∞. Then there exists a limit X ∈ Lp such that ||Xn −X||p → 0. The
limit is unique in the sense that any other limit X ′ satisfies ||X −X ′||p = 0.

Proof Assume that p ∈ [1,∞). Since (Xn) is Cauchy, for all n ∈ N there exists
kn ∈ N such that ||Xl −Xm||p ≤ 2−n if l,m ≥ kn. By monotonicity of the p-
norms, we then have ||Xkn+1 −Xkn ||1 ≤ ||Xkn+1 −Xkn ||p ≤ 2−n. It follows (see
Example 4.25) that E

∑
n |Xkn+1 −Xkn | =

∑
n E |Xkn+1 −Xkn | <∞. But then∑

n |Xkn+1 −Xkn | <∞ a.s., which implies
∑
n(Xkn+1 −Xkn) <∞ a.s. This is

a telescopic sum, so we obtain that limXkn exists and is finite a.s. To have a
proper random variable, we define X := lim supXkn and we have Xkn → X a.s.

We have to show that X is also a limit in Lp. Recall the definition of the kn.
Take m ≥ n and l ≥ kn. Then ||Xl −Xkm ||p ≤ 2−n, or E |Xl −Xkm |p ≤ 2−np.
We use Fatou’s lemma for m→∞ and get

E |Xl −X|p = E lim inf |Xl −Xkm |p ≤ lim inf E |Xl −Xkm |p ≤ 2−np.

This shows two things. First Xl−X ∈ Lp and then, since Xl ∈ Lp also X ∈ Lp.
Secondly, lim sup E |Xl − X|p ≤ 2−np, for all n. Hence ||Xl − X||p → 0. The
proof for p =∞ is left as Exercise 4.13. �

Remark 4.36 Notice that it follows from Theorem 4.35 and the discussion
preceding it, that Lp(Ω,F ,P) is a truly complete normed space, a Banach space.
The same is true for Lp(S,Σ, µ) (p ∈ [0,∞]), for which you need Exercise 4.13.
For the special case p = 2 we obtain that L2(S,Σ, µ) is a Hilbert space with the
inner product 〈f, g〉 :=

∫
fg dµ. Likewise L2(Ω,F ,P) is a Hilbert space with

inner product 〈X,Y 〉 := EXY .

Let S be an inner product space and norm || · ||. Recall that an orthogonal
projection on a subspace L is a linear mapping π : S → L with the property
that πx = arg inf{||x− y|| : y ∈ L}. The argument of the infimum exists if L is
complete, which is partly contained in the following theorem.
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Theorem 4.37 Let S be a Hilbert space and L a closed subspace. Let x ∈ S.
Then there exists a unique x̂ ∈ L such that
(i) ||x− x̂|| = inf{||x− y|| : y ∈ L}.
Moreover, the element x̂ satisfying (ii) is characterized by each the following
two properties.
(ii) ||x− y||2 = ||x− x̂||2 + ||x̂− y||2, ∀y ∈ L.
(iii) x− x̂ is orthogonal to L, i.e. 〈x− x̂, y〉 = 0, ∀y ∈ L.

Proof Let α be the infimum in (i). For every n ∈ N there exists xn ∈ L such
that ||x− xn||2 < α2 + 1/n. Add up the two equalities

||x− xm +
1
2

(xm − xn)||2

= ||x− xm||2 + ||1
2

(xm − xn)||2 + 2〈x− xn,
1
2

(xm − xn)〉

||x− xm −
1
2

(xm − xn)||2

= ||x− xn||2 + ||1
2

(xm − xn)||2 − 2〈x− xn,
1
2

(xm − xn)〉

to get

2||x− 1
2

(xm + xn)||2 = ||x− xm||2 + ||x− xn||2 −
1
2
||xm − xn||2. (4.11)

Since the left hand side of (4.11) is at least equal to 2α2, one obtains by definition
of xn and xm that 1

2 ||xm−xn||
2 ≤ 1

m + 1
n . Therefore (xn) is a Cauchy sequence

in L which by completeness has a limit, we call it x̂. We now show that x̂ attains
the infimum. Since ||x − x̂|| ≤ ||x − xn|| + ||xn − x̂||, we get for n → ∞ that
||x− x̂|| ≤ α and hence we must have equality.

Suppose that there are two x̂1, x̂2 ∈ L that attain the infimum. Let x̂ =
1
2 (x̂1 + x̂2). Then ||x − x̂|| ≤ 1

2 (||x − x̂1|| + ||x − x̂2||) = α, so also x̂ attains
the infimum. Replace in (4.11) xm with x̂1 and xn with x̂2 to conclude that
||x̂1 − x̂2|| = 0. Hence x̂1 = x̂2.

We now show that the three characterizations of x̂ are equivalent. First we
prove (i) ⇒ (iii). Consider the quadratic function f(t) = ||x − x̂ + ty||2, t ∈ R,
where y ∈ L is arbitrary. The function f has minimum at t = 0. Computing
f(t) explicitly gives f(t) = ||x− x̂||2 + 2t〈x− x̂, y〉+ t2||y||. A minimum at t = 0
can only happen if the coefficient of t vanishes, so 〈x−x̂, y〉 = 0. The implication
(iii) ⇒ (ii) follows from ||x− y||2 = ||x− x̂||2 + 2〈x− x̂, x̂− y〉+ ||y− x̂||2, since
the cross term vanishes by assumption. The implication (ii)⇒ (i) is obvious. �

Corollary 4.38 Consider L2(Ω,F ,P) and let G be a sub-sigma-algebra of F .
Let X ∈ L2(Ω,F ,P). Then there exists X̂ ∈ L2(Ω,G,P) such that E (X−X̂)2 ≤
E (X−Y )2 for all Y ∈ L2(Ω,G,P). Any other X ′ with this property is a.s. equal
to X̂.

Proof The space L2(Ω,F ,P) is complete in the sense of Theorem 4.35 and
L2(Ω,G,P) is a closed subspace. The proof of this theorem then becomes just a
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copy of the proof of Theorem 4.37, the only difference is that for two minimizers
one only gets ||X̂1 − X̂2||2 = 0, which is equivalent to X̂1 = X̂2 a.s. �

4.7 Exercises

4.1 Let (x1, x2, . . .) be a sequence of nonnegative real numbers, let ` : N → N
be a bijection and define the sequence (y1, y2, . . .) by yk = x`(k). Let for each
n the n-vector yn be given by yn = (y1, . . . , yn). Consider then for each n
a sequence of numbers xn defined by xnk = xk if xk is a coordinate of yn.
Otherwise put xnk = 0. Show that xnk ↑ xk for every k as n → ∞. Show that∑∞
k=1 yk =

∑∞
k=1 xk.

4.2 Prove Proposition 4.13.

4.3 Prove Proposition 4.17 (assume Proposition 4.13). Show also that |µ(f)| ≤
µ(|f |), if f ∈ L1(S,Σ, µ).

4.4 Prove the ‘almost everywhere’ version of Theorem 4.18 by using the ‘every-
where’ version.

4.5 Here is another version of Scheffé’s lemma (Lemma 4.19). Let (fn) ⊂
L1(S,Σ, µ) and assume that fn → f a.e., where f ∈ L1(S,Σ, µ) too. Then
µ(|fn − f |) → 0 iff µ(|fn|) → µ(|f |). Show this. (Hint: apply Lemma 4.19 to
f+
n and f−n .)

4.6 In this exercise λ denotes Lebesgue measure on the Borel sets of [0, 1]. Let
f : [0, 1]→ R be continuous. Then the Riemann integral I :=

∫ 1

0
f(x) dx exists

(this is standard Analysis). But also the Lebesgue integral of f exists. (Explain
why.). Construct (use the definition of the Riemann integral) an increasing
sequence of simple functions hn with limit f satisfying hn ≤ f and λ(hn) ↑ I.
Prove that λ(f) = I.

4.7 Let f : [0,∞) → R be given by f(x) = sin x
x for x > 0 and f(0) = 1. Show

that I :=
∫∞

0
f(x) dx exists as an improper Riemann integral (i.e. the limit

limT→∞
∫ T

0
f(x) dx exists and is finite), but that f /∈ L1([0,∞),B([0,∞)), λ).

In Exercise 5.10 you compute that I = π
2 .

4.8 Prove Proposition 4.21 by means of the standard machinery.

4.9 Verify that ν defined in (4.7) is a measure.

4.10 Prove Proposition 4.22.

4.11 Prove Proposition 4.24. Hint: Use the standard machinery for h.

4.12 Give the details for Example 4.25.

4.13 Give the proof of Theorem 4.35 for an arbitrary measure space Lp(S,Σ, µ)
and p ∈ [0,∞) (it requires minor modifications). Give also the proof of com-
pleteness of L∞(S,Σ, µ).
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4.14 This exercise requires knowledge of Chapter 2. Let f : [0, 1] → R be
Riemann integrable and let I =

∫ 1

0
f(x) dx. The aim is to show that f ∈

L1([0, 1],Σλ, λ). Without loss of generality we may assume that f ≥ 0.

(a) Exploit Riemann integrability to show that there exist a decreasing se-
quence of simple functions (un) in S+ and an increasing sequence (`n) in
S+ such that `n ≤ f ≤ un, for all n, and λ(`n) ↑ I, λ(un) ↓ I.

(b) Let u = limun and ` = lim `n and put f̂ = 1{u=`}u. Show that λ({u 6=
`}) = 0 and {f 6= f̂} ⊂ {u 6= `}.

(c) Conclude that f ∈ Σλ and that µ(f) = I.

4.15 This exercise concerns a more general version of Theorem 4.18. Let (fn) ⊂
Σ and f = lim sup fn and assume that fn(s) → f(s) for all s outside a set of
measure zero. Assume also there exist functions g, gn ∈ Σ+ such that |fn| ≤ gn
a.e. with gn(s)→ g(s) for all s outside a set of measure zero and that µ(gn)→
µ(g) <∞. Show that µ(|fn − f |)→ 0.

41



5 Product measures

Sofar we have considered measure spaces (S,Σ, µ) and we have looked at inte-
grals of the type µ(f) =

∫
f dµ. Here f is a function of ‘one’ variable (depends

on how you count and what the underlying set S is). Suppose that we have two
measure spaces (S1,Σ1, µ1) and (S2,Σ2, µ2) and a function f : S1 × S2 → R.
Is it possible to integrate such a function of two variables w.r.t. some measure,
that has to be defined on some Σ-algebra of S1 × S2. There is a natural way
of constructing this σ-algebra and a natural construction of a measure on this
σ-algebra. Here is a setup with some informal thoughts.

Take f : S1 × S2 → R and assume any good notion of measurability and
integrability. Then µ(f(·, s2)) :=

∫
f(·, s2) dµ1 defines a function of s2 and so

we’d like to take the integral w.r.t. µ2. We could as well have gone the other way
round (integrate first w.r.t. µ2), and the questions are whether these integrals
are well defined and whether both approaches yield the same result.

Here is a simple special case, where the latter question has a negative an-
swer. We have seen that integration w.r.t. counting measure is nothing else but
addition. What we have outlined above is in this context just interchanging the
summation order. So if (an,m) is a double array of real numbers, the above is
about whether

∑
n

∑
m an,m =

∑
m

∑
n an,m. This is obviously true if n and m

run through a finite set, but things can go wrong for indices from infinite sets.
Consider for example

an,m =

 1 if n = m+ 1
−1 if m = n+ 1

0 else.

One easily verifies
∑
m a1,m = −1,

∑
m an,m = 0, if n ≥ 2 and hence

∑
n

∑
m an,m =

−1. Similarly one shows that
∑
m

∑
n an,m = +1. In order to justify interchang-

ing the summation order, additional conditions have to be imposed.

5.1 Product of two measure spaces

Our aim is to construct a measure space (S,Σ, µ) with S = S1 × S2. First
we construct Σ. It is natural that ‘measurable rectangles’ are in Σ. Let R =
{E1 ×E2 : E1 ∈ Σ1, E2 ∈ Σ2}. Obviously R is a π-system, but in general not a
σ-algebra on S. Therefore we define Σ := σ(R).

Alternatively, one can consider the projections πi : S → Si, defined by
πi(s1, s2) = si. It is easy to show that Σ coincides with the smallest σ-algebra
that makes these projections measurable.

Next to the projections, we now consider embeddings. For fixed s1 ∈ S1 we
define es1 : S2 → S by es1(s2) = (s1, s2). Similarly we define es2(s1) = (s1, s2).
One easily checks that the embeddings es1 are Σ2/Σ-measurable and that the
es2 are Σ1/Σ-measurable (Exercise 5.1). As a consequence we have the following
proposition.
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Proposition 5.1 Let f : S → R be Σ-measurable. Then the marginal mappings
s1 7→ f(s1, s2) and s2 7→ f(s1, s2) are Σ1-, respectively Σ2-measurable, for any
s2 ∈ S2, respectively s1 ∈ S1.

Proof This follows from the fact that a composition of measurable functions is
also measurable. �

Having constructed the product σ-algebra Σ, we now draw our attention to
the construction of the product measure µ on Σ, denoted by µ1 × µ2. We will
construct µ such that the property µ(E1 × E2) = µ1(E1)µ2(E2) holds. This
justifies the name product measure.

Until later notice we assume that the measures µ1 and µ2 are finite.

Consider a bounded Σ-measurable function f . We know that the mappings
si 7→ f(s1, s2) are Σi-measurable and therefore the integrals w.r.t. µi are well
defined (why?). Let then

If1 (s1) =
∫
f(s1, s2)µ2(ds2)

If2 (s2) =
∫
f(s1, s2)µ1(ds1).

Lemma 5.2 Let f be a bounded Σ-measurable function. Then the mappings
Ifi : Si → R are Σi-measurable (i = 1, 2). Moreover we have the identity

µ1(If1 ) = µ2(If2 ), (5.1)

or, in a more appealing notation,∫
S1

( ∫
S2

f(s1, s2)µ2(ds2)
)
µ1(ds1) =

∫
S2

( ∫
S1

f(s1, s2)µ1(ds1)
)
µ2(ds2). (5.2)

Proof We use the Monotone Class Theorem, Theorem 3.6, and so we have
to find a good vector space H. The obvious candidate is the collection of all
bounded Σ-measurable functions f that satisfy the assertions of the lemma.

First we notice that H is indeed a vector space, since sums of measurable
functions are measurable and linearity of the integral. Obviously, the constant
functions belong to H. Then we have to show that if fn ∈ H, fn ≥ 0 and fn ↑ f ,
where f is bounded, then also f ∈ H. Of course here the Monotone Convergence
Theorem comes into play. First we notice that measurability of the Ifi follows
from measurability of the Ifni for all n. Theorem 4.11 yields that the sequences
Ifni (si) are increasing and converging to Ifi (si). Another application of this
theorem yields that µ1(Ifn1 ) converges to µ1(If1 ) and that µ2(Ifn2 ) converges to
µ2(If2 ). Since µ1(Ifn1 ) = µ2(Ifn2 ) for all n, we conclude that µ1(If1 ) = µ2(If2 ),
whence f ∈ H.

Next we check that H contains the indicators of sets in R. A quick com-
putation shows that for f = 1E1×E2 one has If1 = 1E1µ2(E2), which is Σ1-
measurable, If2 = 1E2µ1(E1), and µ1(If1 ) = µ2(If2 ) = µ1(E1)µ2(E2). Hence

43



f ∈ H. By Theorem 3.6 we conclude that H coincides with the space of all
bounded Σ-measurable functions. �

Remark 5.3 The converse statement of Proposition 5.1 is in general not true.
There are functions f : S → R that are not measurable w.r.t. the product σ-
algebra Σ, although the mappings s1 7→ f(s1, s2) and s2 7→ f(s1, s2) are Σ1-,
respectively Σ2-measurable. Counterexamples are not obvious, see below for a
specific one. Fortunately, there are also conditions that are sufficient to have
measurability of f w.r.t. Σ, when measurability of the marginal function is given.
See Exercise 5.9.

Here is a sketch of a counterexample, based on the Continuum Hypothesis,
with (S1,Σ1, µ1) = (S2,Σ2, µ2) = ([0, 1],B([0, 1]), λ). Consider V := {0, 1}N and
the set W of (countable) ordinal numbers smaller than ω1, the first uncountable
ordinal number. The cardinality of W is equal to ℵ1, whereas {0, 1}N has
cardinality 2ℵ0 . The Continuum hypothesis states that there exists a bijective
mapping between V and W . Hence there also exists a bijective mapping φ
between the interval [0, 1] and W . The set W has the property that for every
x ∈ [0, 1] the element φ(x) of W has countable many predecessors. Consider
Q := {(x, y) ∈ [0, 1]2 : φ(x) < φ(y)}. For fixed y we let Qy = {x ∈ [0, 1] :
(x, y) ∈ Q} and for fixed x we let Qx = {y ∈ [0, 1] : (x, y) ∈ Q}. It follows
that for every y, the set Qy is countable and thus Borel-measurable and it has
Lebesgue measure zero. For every x, the complement of Qx is countable and
has Lebesgue measure zero, hence Qx has Lebesgue measure one. For f = 1Q,
we thus have that x 7→ f(x, y) and y 7→ f(x, y) are Borel-measurable and that
If1 (x) = 1 and If2 (y) = 0. We see that Lemma 5.2 doesn’t hold and therefore
conclude that f cannot be measurable w.r.t. B([0, 1])× B([0, 1]).

It follows from Lemma 5.2 that for all E ∈ Σ, the indicator function 1E sat-
isfies the assertions of the lemma. This shows that the following definition is
meaningful.

Definition 5.4 We define µ : Σ→ [0,∞) by µ(E) = µ2(I1E2 ) for E ∈ Σ.

In Theorem 5.5 (known as Fubini’s theorem) below we assert that this defines
a measure and it also tells us how to compute integrals w.r.t. this measure in
terms of iterated integrals w.r.t. µ1 and µ2.

Theorem 5.5 (i) The mapping µ of Definition 5.4 is a measure on (S,Σ).
Moreover, it is the only measure on (S,Σ) with the property that µ(E1 ×E2) =
µ1(E1)µ1(E2). It is therefore called the product measure of µ1 and µ2 and often
written as µ1 × µ2.
(ii) If f ∈ Σ+, then

µ(f) = µ2(If2 ) = µ1(If1 ) ≤ ∞. (5.3)

(iii) If f ∈ L1(S,Σ, µ), then Equation (5.3) is still valid and µ(f) ∈ R.
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Proof (i) It is obvious that µ(∅) = 0. If (En) is a disjoint sequence in Σ with
union E, then we have 1E = limn

∑n
i=1 1Ei . Linearity of the integral and Mono-

tone Convergence (applied two times) show that µ is σ-additive. Uniqueness of
µ follows from Theorem 1.15 applied to the π-system R.
(ii) We use the standard machine. The two equalities in (5.3) are by definition
of µ valid for f = 1E , when E ∈ Σ. Linearity of the integrals involved show
that it is true for nonnegative simple functions f and Monotone Convergence
yields the assertion for f ∈ Σ+.
(iii) Of course, here we have to use the decomposition f = f+− f−. The tricky
details are left as Exercise 5.2. �

Theorem 5.5 has been proved under the standing assumption that the initial
measures µ1 and µ2 are finite. The results extend to the case where both these
measures are σ-finite. The approach is as follows. Write S1 = ∪ni=1S

i
1 with the

Si1 ∈ Σ1 and µ1(Si1) <∞. Without loss of generality, we can take the Si1 disjoint.
Take a similar partition (Sj2) of S2. Then S = ∪i,jSij , where the Sij := Si1×S

j
2,

form a countable disjoint union as well. Let Σij = {E ∩ Sij : E ∈ Σ}. On each
measurable space (Sij ,Σij) the above results apply and one has e.g. identity of
the involved integrals by splitting the integration over the sets Sij and adding
up the results.

We note that if one goes beyond σ-finite measures (often a good thing to do
if one wants to have counterexamples), the assertion may not longer be true.
Let S1 = S2 = [0, 1] and Σ1 = Σ2 = B[0, 1]. Take µ1 equal to Lebesgue measure
and µ2 the counting measure, the latter is not σ-finite. It is a nice exercise to
show that ∆ := {(x, y) ∈ S : x = y} ∈ Σ. Let f = 1∆. Obviously If1 (s1) ≡ 1
and If2 (s2) ≡ 0 and the two iterated integrals in (5.3) are 1 and 0. So, more or
less everything above concerning product measure fails in this example.

We close the section with a few remarks on products with more than two factors.
The construction of a product measure space carries over, without any problem,
to products of more than two factors, as long as there are finitely many. The
result is product spaces of the form (S1× . . .×Sn,Σ1× . . .×Σn, µ1× . . .×µn)
under conditions similar to those of Theorem 5.5. The product σ-algebra is
again defined as the smallest σ-algebra that makes all projections measurable.
Existence of product measures is proved in just the same way as before, using
an induction argument. We leave the details to the reader.

Things become however more complicated, when we work with infinite prod-
ucts of measure spaces (Si,Σi, µi). In Section 5.3 we treat the construction of
an infinite product of probability spaces.

5.2 Application in Probability theory

In this section we consider real valued random variables, as well as random
vectors. The latter require a definition. Consider a probability space (Ω,F ,P)
and a map X : Ω→ E, where E is some other set. Let E be a σ-algebra on E.
If the map X is F/E measurable, X is also called a random element of E. If E
is a vector space, we call X in such a case a random vector. Notice that this
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definition depends on the σ-algebras at hand, which we don’t recognize in the
term random vector.

An obvious example of a vector space is R2. Suppose we have two random
variables X1, X2 : Ω → R. We can consider the map X = (X1, X2) : Ω → R2,
defined by X(ω) = (X1(ω), X2(ω)) and it is natural to call X a random vector.
To justify this terminology, we need a σ-algebra on R2 and there are two obvious
candidates, the Borel σ-algebra B(R2) generated by the ordinary open sets (as in
section 1.1), and, continuing our discussion of the previous section, the product
σ-algebra B(R)× B(R).

Proposition 5.6 It holds that B(R2) = B(R)× B(R).

Proof The projections πi : R2 → R are continuous and thus B(R2)-measurable.
Since B(R)×B(R) is the smallest σ-algebra for which the projections are mea-
surable, we have B(R) × B(R) ⊂ B(R2). Conversely, if G is open in R2, it is
the countable union of (open) rectangles in R (similar to the proof of Proposi-
tion 1.3) and hence G ∈ B(R)× B(R), which yields the other inclusion. �

Remark 5.7 Observe that the proof of B(R) × B(R) ⊂ B(R2) generalizes to
the situation, where one deals with two topological spaces with the Borel sets.
For the proof of the other inclusion, we used (and needed) the fact that R is
separable under the ordinary topology. In a general setting one might have the
strict inclusion of the product σ-algebra in the Borel σ-algebra on the product
space (with the product topology).

We now know that there is no difference between B(R2) and B(R)×B(R). This
facilitates the use of the term 2-dimensional random vector and we have the
following easy to prove corollary.

Corollary 5.8 Let X1, X2 : Ω → R be given. The vector mapping X =
(X1, X2) : Ω→ R2 is a random vector iff the Xi are random variables.

Proof Exercise 5.3. �

Remark 5.9 Let X1, X2 be two random variables. We already knew that X1 +
X2 is a random variable too. It also follows from the present results. Let
f : R2 → R be a continuous function. Then it is also B(R2)-measurable, and by
Corollary 5.8 and composition of measurable functions, f(X1, X2) is a random
variable as well. Apply this with f(x1, x2) = x1 + x2.

Recall that we defined in Section 3.2 the distribution, or the law, of a random
variable. Suppose that X = (X1, X2) is a random vector defined on (Ω,F ,P)
with values in R2. Let E ∈ B(R2), then

PX(E) := P(X ∈ E),

for E ∈ B(R2) defines a probability measure on (R2,B(R2)), the distribution of
X, also called the joint distribution of (X1, X2). If we take E = E1 × R, then
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we have PX(E1×R) = P(X1 ∈ E1) = PX1(E1). Common terminology is to call
PX1 the marginal distribution, or marginal law, of X1.

Along with the (joint) distribution of X, we introduce the joint distribution
function F = FX : R2 → [0, 1], given by

F (x1, x2) = PX((−∞, x1]× (−∞, x2]) = P(X1 ≤ x1, X2 ≤ x2).

Notice that, for instance, FX1(x1) = limx2→∞ F (x1, x2), also written as F (x1,∞).

Independence (of random variables) had to do with multiplication of probabili-
ties (see Definition 3.11), so it should in a natural way be connected to product
measures.

Proposition 5.10 Two random variables X1, X2 on (Ω,F ,P) are independent
iff the joint distribution P(X1,X2) is the product measure PX1 × PX2 . This in
turn happens iff F (x1, x2) = FX1(x1)FX2(x2), for all x1, x2 ∈ R. Assume
further that (X1, X2) has a joint probability density function f . Let f1 and f2

be the (marginal) probability density functions of X1 and X2 respectively. Then
X1 and X2 are independent iff f(x1, x2) = f1(x1)f2(x2) for all (x1, x2) except
in a set of λ× λ-measure zero.

Proof Exercise 5.4. �

5.3 Infinite products

The extension of product spaces from finite to infinite products is a different
matter. Nevertheless, this extension is inevitable if one wants to construct
a well defined independent infinite sequence of random variables. Just recall
that we have seen that independence of two random variables has everything
to do with product measures. Hence for an (infinite) sequence of independent
random variables, one should use an infinite product of probability measures.
For real valued random variables we have already encountered a construction
of a supporting probability space in Section 3.3. Here we continue with the
construction of a countable product of probability spaces. See also Exercise 5.13
for products of arbitrarily many factors.

Assume that we have for every n ∈ N a probability space (Ωn,Fn,Pn).
Let Ω =

∏∞
n=1 Ωn and denote by ω = (ω1, ω2, . . .) a typical element of Ω.

The construction of the product σ-algebra remains the same as before. The
projection πn : Ω → Ωn is defined by πn(ω) = ωn. On the product set Ω
we define the σ-algebra F as the smallest one that makes all projections πn
measurable mappings (this reminds you of a subbasis of the product topol-
ogy). One can also define a multivariate projection π(1,...,n) : Ω →

∏n
k=1 Ωk

by π(1,...,n)(ω) = (ω1, . . . , ωn). It follows that all multivariate projections are
F-measurable as well. A cylinder, or a measurable rectangle, is by definition the
inverse image of a measurable set in some

∏n
k=1 Ωk, endowed with the product

σ-algebra F1×· · ·×Fn under the projection π(1,...,n). It follows that a cylinder is
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of the type Bn×
∏∞
k=n+1 Ωk (for some n), with Bn ∈ F1×· · ·×Fn. Such a cylin-

der will be denoted by Cn. Let C be the collection of all cylinders and note that
C is an algebra. Define the mapping P0 : C → [0, 1] by P0(C) =

∏n
i=1 Pi(Bn), if

C = Cn for some n. Verify that if one writes C = Cm for some m 6= n, it holds
that

∏n
i=1 Pi(Bn) =

∏m
i=1 Pi(Bm), which implies that P0 is unambiguously de-

fined, i.e. not depending on the chosen representation of C. Verify too that P0

is finitely additive on C. The next theorem states the existence of an infinite
product probability measure P, sometimes denoted by

∏∞
n=1 Pn. In the proof

we use results from Section 2.2.

Theorem 5.11 There exists a unique probability measure P on (Ω,F) such that
P restricted to C is equal to P0. In particular,

P(E1 × · · · × En ×
∞∏

k=n+1

Ωk) =
n∏
i=1

Pi(Ei),

if Ei ∈ Fi, i = 1, . . . , n.

Proof The proof is based on an application of Theorem 2.7. We proceed by
showing that P0 is countably additive on C. To that end we invoke Exercise 1.9,
from which we deduce that it is sufficient to show for a decreasing sequence
of cylinders Cn with limn→∞ P0(Cn) > 0, one must have C := ∩∞n=1C

n 6= ∅.
Without loss of generality we may assume that the Cn are of the type Cn as
above. If it happens that there is an N ∈ N such that all Cn can be written
as Bn ×

∏∞
n=N+1 Ωn, with Bn ∈ F1 × . . .×FN , we are done, since in this case

P0(Cn) = P1× . . .×PN (Bn). We already know that P1× . . .×PN is a measure
and therefore countably additive. Henceforth we assume that such an N doesn’t
exist.

For simplicity we write Ω′n =
∏∞
k=n+1 Ωk, so that Cn = Bn × Ω′n. Typical

elements of Ω′n are ω′n and we have ω = (ω1, . . . , ωn, ω
′
n). On the cylinders in

Ω′n we can define set functions P′n in the same way as P0 was defined on C. Note
that, similar to the definition of P0, the action of P′n on cylinders in Ω′n only
involves product measures with finitely many factors. For every cylinder C in C,
one defines C(ω1, . . . , ωn) = {ω′n : (ω1, . . . , ωn, ω

′
n) ∈ C}. Then the probabilities

P′n(C(ω1, . . . , ωn)) are well defined.
Since we have assumed for the decreasing sequence (Cn) that limn→∞ P0(Cn) >

0, there exists ε > 0 such that P0(Cn) > ε for all n. Define

E1
n = {ω1 : P′1(Cn(ω1)) >

1
2
ε}.

It follows from Lemma 5.2 that E1
n ∈ F1. Then, using ‘Fubini computations’,

48



we obtain

P0(Cn) =
∫

Ω1

P′1(Cn(ω1)) P1(dω1)

=
∫
E1
n

P′1(Cn(ω1)) P1(dω1) +
∫

Ω1\E1
n

P′1(Cn(ω1)) P1(dω1)

≤ P1(E1
n) +

1
2
εP1(Ω1 \ E1

n).

Since P0(Cn) > ε, it then follows that P1(E1
n) > 1

2ε. Since the Cn form a
decreasing sequence, the same holds for the E1

n. Letting E1 = ∩nE1
n, we get by

continuity of P1 that P1(E1) ≥ 1
2ε. In particular E1 is not empty and we can

choose some ω∗1 ∈ E1 for which we have P′1(Cn(ω∗1)) > ε
2 for all n.

Then we repeat the above story applied to the sets Cn(ω∗1) instead of the Cn.
So we consider the sets Cn(ω∗1 , ω2) and E2

n(ω∗1) = {ω2 : P′2(Cn(ω∗1 , ω2)) > ε
4}.

This results in a non-empty limit set E2(ω∗1) ⊂ Ω2 from which we select some ω∗2
and we obtain P′2(Cn(ω∗1 , ω

∗
2)) > ε

4 for all n. Continuing this way we construct
a point ω∗ = (ω∗1 , ω

∗
2 , . . .) that belongs to all Cn and therefore the intersection

∩nCn is not empty. �

5.4 Exercises

5.1 Show that the embeddings es1 are Σ2/Σ-measurable and that the es2 are
Σ1/Σ-measurable. Prove also Proposition 5.1.

5.2 Prove part (iii) of Fubini’s theorem (Theorem 5.5) for f ∈ L1(S,Σ, µ) (you
already know it for f ∈ mΣ+). Explain why s1 7→ f(s1, s2) is in L1(S1,Σ1, µ1)
for all s2 outside a set N of µ2-measure zero and that If2 is well defined on N c.

5.3 Prove Corollary 5.8.

5.4 Prove Proposition 5.10.

5.5 A two-dimensional random vector (X,Y ) is said to have a density f w.r.t.
the Lebesgue measure on B(R)2 is for every set B ∈ B(R2) one has

P((X,Y ) ∈ B) =
∫ ∫

B

f(x, y) dx dy.

Define

fX(x) =
∫

R
f(x, y) dy.

Show that the distribution PX of X is absolutely continuous w.r.t. the Lebesgue
measure on B(R) and that for all B ∈ B(R) one has

PX(B) =
∫
B

fX(x) dx.
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5.6 Let X and Y be independent random variables on some probability space
(Ω,F ,P). Let FX and FY be their distribution functions and µX and µY their
laws. Put Z = X + Y and FZ its distribution function.

(a) Show that FZ(z) =
∫

R FX(z − y)µ(dy).

(b) Assume that FX admits a density fX (w.r.t. Lebesgue measure). Show
that also FZ admits a density, which can be taken to be

fZ(z) :=
∫

R
fX(z − y)µ(dy).

5.7 If Z1, Z2, . . . is a sequence of nonnegative random variables, then

E
∞∑
k=1

Zk =
∞∑
k=1

EZk. (5.4)

Show that this follows from Fubini’s theorem (as an alternative to the arguments
of Exercise 4.12). If

∑∞
k=1 EZk < ∞, what is P(

∑∞
k=1 Zk = ∞). Formulate a

result similar to (5.4) for random variables Zk that may assume negative values
as well.

5.8 Let the vector of random variables (X,Y ) have a joint probability density
function f . Let fX and fY be the (marginal) probability density functions
of X and Y respectively. Show that X and Y are independent iff f(x, y) =
fX(x)fY (y) for all x, y except in a set of λ× λ-measure zero.

5.9 Let f be defined on R2 such that for all a ∈ R the function y 7→ f(a, y) is
Borel and such that for all b ∈ R the function x 7→ f(x, b) is continuous. Show
that for all a, b, c ∈ R the function (x, y) 7→ bx+ cf(a, y) is Borel-measurable on
R2. Let ani = i/n, i ∈ Z, n ∈ N. Define

fn(x, y) =
∑
i

1(ani−1,a
n
i ](x)(

ani − x
ani − ani−1

f(ani−1, y) +
x− ani−1

ani − ani−1

f(ani , y)).

Show that the fn are Borel-measurable on R2 and conclude that f is Borel-
measurable on R2.

5.10 Show that for t > 0∫ ∞
0

sinx e−tx dx =
1

1 + t2
.

Although x 7→ sin x
x doesn’t belong L1([0,∞),B([0,∞),Leb), show that one can

use Fubini’s theorem to compute the improper Riemann integral∫ ∞
0

sinx
x

dx =
π

2
.
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5.11 Let F,G : R → R be nondecreasing and right-continuous. Similar to the
case of distribution functions, these generate measures µF and µG on the Borel
sets satisfying e.g. µF ((a, b]) = F (b) − F (a). Integrals w.r.t µF are commonly
denoted by

∫
f dF instead of

∫
f dµF . Use Fubini’s theorem to show the inte-

gration by parts formula, valid for all a < b,

F (b)G(b)− F (a)G(a) =
∫

(a,b]

F (s−) dG(s) +
∫

(a,b]

G(s) dF (s).

Hint: integrate 1(a,b]2 and split the square into a lower and an upper triangle.

5.12 Let F be the distribution function of a nonnegative random variable X
and assume that EXα <∞ for some α > 0. Use Exercise 5.11 to show that

EXα = α

∫ ∞
0

xα−1(1− F (x)) dx.

5.13 Let I be an arbitrary uncountable index set. For each i there is a proba-
bility space (Ωi,Fi,Pi). Define the product σ-algebra F on

∏
i∈I Ωi as for the

case that I is countable. Call a set C a countable cylinder if it can be written
as a product

∏
i∈I Ci, with Ci ∈ Fi and Ci a strict subset of Ωi for at most

countably many indices i.
(i) Show that the collection of countable cylinders is a σ-algebra, that it con-
tains the measurable rectangles and that every set in F is in fact a countable
cylinder.
(ii) Let F =

∏
i∈I Ci ∈ F and let IF be the set of indices i for which Ci is

a strict subset of Ωi. Define P(F ) :=
∏
i∈IF Pi(Ci). Show that this defines a

probability measure on F with the property that P(π−1
i [E]) = Pi(E) for every

i ∈ I and E ∈ Fi.
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6 Derivative of a measure

The topics of this chapter are absolute continuity and singularity of a pair of
measures. The main result is a kind of converse of Proposition 4.22, known
as the Radon-Nikodym theorem, Theorem 6.7. In the proof it, we need that
a continuous map on a Hilbert space can be represented by the inner product
with a fixed element in that space. Therefore we start with proving this.

6.1 Linear functionals on Rn

Let H = Rn. It is well known that every linear map T : H → Rm can uniquely
be represented by an m × n matrix M = M(T ) via Tx = Mx, which we will
prove below for the case m = 1. Take the result for granted, let m = 1 and
〈·, ·〉 be the usual inner product on H, 〈x, y〉 = x>y. For this case the matrix
M becomes a row vector. Let y = M> ∈ Rn, then we have

Tx = 〈x, y〉. (6.1)

Hence we can identify the mapping T with the vector y. Let H∗ be the set of
all linear maps on H. Then we have for this case the identification of H∗ with
H itself via equation (6.1).

Suppose that we know that (6.1) holds. Then the kernel K of T is the space
of vectors that are orthogonal to y and the orthogonal complement of K is the
space of all vectors that are multiples of y. This last observation is the core of
the following elementary proof of (6.1).

Let us first exclude the trivial situation in which T = 0. Let K be the kernel
of T . Then K is a proper linear subspace of H. Take a nonzero vector z in
the orthogonal complement of K. Every vector x can be written as a sum
x = λz + u, with λ ∈ R and u ∈ K. Then we have

λ =
〈x, z〉
〈z, z〉

and Tx = λTz. (6.2)

Let y = Tz
〈z,z〉z. Then 〈x, y〉 = Tz

〈z,z〉 〈x, z〉 = Tx, as follows from (6.2). Uniqueness
of y is shown as follows. Let y′ ∈ E be such that Tx = 〈x, y′〉. Then 〈x, y − y′〉
is zero for all x ∈ E, in particular for x = y − y′. But then y − y′ must be the
zero vector.

The interesting observation is that this proof carries over to the case where one
works with continuous linear functionals on a Hilbert space, which we treat in
the next section.

6.2 Linear functionals on a Hilbert space

Let H be a (real) Hilbert space, a vector space over the real numbers, endowed
with an inner product 〈·, ·〉, that is complete w.r.t. the norm || · || generated by
this inner product. Let T be a continuous linear functional on H. We will prove
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the Riesz-Fréchet theorem, which states that every continuous linear functional
on H is given by an inner product with a fixed element of H.

Theorem 6.1 There exists a unique element y ∈ H such that Tx = 〈x, y〉.

Proof We exclude the trivial case in which T = 0. Let K be the kernel of T .
Since T is linear, K is a closed subspace of H. Take an element w with Tw 6= 0.
Since K is closed, the orthogonal projection u of w on K exists and we have
w = u + z, where z belongs to the orthogonal complement of K. Obviously
z 6= 0. The rest of the proof is exactly the same as for the finite dimensional
case. �

This theorem can be summarized as follows. The dual space H∗ of H (the
linear space of all continuous linear functionals on H) can be identified with
H itself. Moreover, we can turn H∗ into a Hilbert space itself by defining an
inner product 〈·, ·〉∗ on H∗, Let T, T ′ ∈ H∗ and let y, y′ the elements in H that
are associate to H according to the theorem. Then we define 〈T, T ′〉∗ = 〈y, y′〉.
One readily shows that this defines an inner product. Let || · ||∗ be the norm
on H∗. Then H∗ is complete as well. Indeed, let (Tn) be a Cauchy sequence
in H∗ with corresponding elements (yn) in H, satisfying Tnx ≡ 〈x, yn〉. Then
||Tn − Tm||∗ = ||yn − ym||. The sequence (yn) is thus Cauchy in H and has
a limit y. Define Tx = 〈x, y〉. Then T is obviously linear and ||Tn − T ||∗ =
||yn − y|| → 0. Concluding, we say that the normed spaces (H∗, || · ||∗) and
(H, || · ||) are isomorphic.

The usual operator norm of a linear functional T on a normed space is defined
as ||T ||∗ = supx 6=0

|Tx|
||x|| . It is a simple consequence of the Cauchy-Schwartz

inequality that this norm || · ||∗ is the same as the one in the previous paragraph.

6.3 Real and complex measures

Consider a measurable space (S,Σ). A function µ : Σ → C is called a complex
measure if it is countably additive. Such a µ is called a real or a signed measure
if it has its values in R. What we called a measure before, will now be called
a positive measure. In these notes a measure is either a positive or a complex
(or real) measure. Notice that a positive measure can assume the value infinity,
unlike a complex measure, whose values lie in C (see also (6.3)).

Let µ be a complex measure and E1, E2, . . . be disjoint sets in Σ with E =⋃
i≥1Ei, then (by definition)

µ(E) =
∑
i≥1

µ(Ei),

where the sum is convergent and the summation is independent of the order.
Hence the series is absolutely convergent as well, and we also have

|µ(E)| ≤
∑
i≥1

|µ(Ei)| <∞. (6.3)
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For a given set E ∈ Σ let Π(E) be the collection of all measurable partitions
of E, countable partitions of E with elements in Σ. If µ is a complex measure,
then we define

|µ|(E) = sup{
∑
i

|µ(Ei)| : Ei ∈ π(E) and π(E) ∈ Π(E)}.

It can be shown (and this is quite some work) that |µ| is a (positive) measure
on (S,Σ) with |µ|(S) < ∞ and it is called the total variation measure (of µ).
Notice that always |µ|(E) ≥ |µ(E)| and that in particular µ(E) = 0 as soon as
|µ|(E) = 0.

In the special case where µ is real valued,

µ+ =
1
2

(|µ|+ µ)

and

µ− =
1
2

(|µ| − µ)

define two bounded positive measures such that

µ = µ+ − µ−.

This decomposition of the real measure µ is called the Jordan decomposition.

6.4 Absolute continuity and singularity

We start this section with the definition of absolute continuity and singularity
for two measures. The former is connected to Section 4.3.

Definition 6.2 Let µ be a positive measure and ν a complex or positive mea-
sure on a measurable space (S,Σ). We say that ν is absolutely continuous w.r.t.
µ (notation ν � µ), if ν(E) = 0 for every E ∈ Σ with µ(E) = 0. Two arbitrary
measures µ and ν on (S,Σ) are called mutually singular (notation ν ⊥ µ) if there
exist disjoint sets E and F in Σ such that ν(A) = ν(A∩E) and µ(A) = µ(A∩F )
for all A ∈ Σ.

An example of absolute continuity we have seen already in the previous section:
µ� |µ| for a complex measure µ. Another example is provided by the measures
ν and µ of (4.7), ν � µ. See also Proposition 6.5 below. Note that for two
mutually singular measures µ and ν one has ν(F ) = µ(E) = 0, where E and F
are as in Definition 6.2.

Proposition 6.3 Let µ be a positive measure and ν1, ν2 arbitrary measures, all
defined on the same measurable space. Then the following properties hold true.

(a) If ν1 ⊥ µ and ν2 ⊥ µ, then ν1 + ν2 ⊥ µ.
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(b) If ν1 � µ and ν2 � µ, then ν1 + ν2 � µ.

(c) If ν1 � µ and ν2 ⊥ µ, then ν1 ⊥ ν2.

(d) If ν1 � µ and ν1 ⊥ µ, then ν1 = 0.

Proof Exercise 6.2. �

Proposition 6.4 Let µ be a positive measure and νa and νs be arbitrary mea-
sures on (S,Σ). Assume that νa � µ and νs ⊥ µ. Put

ν = νa + νs. (6.4)

Suppose that ν also admits the decomposition ν = ν′a + ν′s with ν′a � µ and
ν′s ⊥ µ. Then ν′a = νa and ν′s = νs.

Proof It follows that

ν′a − νa = νs − ν′s,

ν′a−νa � µ and νs−ν′s ⊥ µ (Proposition 6.3), and hence both are zero (Propo-
sition 6.3 again). �

The content of Proposition 6.4 is that the decomposition (6.4) of ν, if it exists,
is unique. We will see in section 6.5 that, given a positive measure µ, such a de-
composition exists for any measure ν and it is called the Lebesgue decomposition
of ν w.r.t. µ. Recall

Proposition 6.5 Let µ be a positive measure on (S,Σ) and h a nonnegative
measurable function on S. Then the map ν : Σ→ [0,∞] defined by

ν(E) = µ(1Eh) (6.5)

is a positive measure on (S,Σ) that is absolutely continuous w.r.t. µ. If h is
complex valued and in L1(S,Σ, µ), then ν is a complex measure.

Proof See Exercise 4.9 for nonnegative h. The other case is Exercise 6.3. �

The Radon-Nikodym theorem of the next section states that every measure ν
that is absolutely continuous w.r.t. µ is of the form (6.5). We will use in that
case the notation

h =
dν
dµ
.

In the next section we use

Lemma 6.6 Let µ be a finite positive measure and f ∈ L1(S,Σ, µ), possibly
complex valued. Let A be the set of averages

aE =
1

µ(E)

∫
E

f dµ,

where E runs through the collection of sets with µ(E) > 0. Then µ({f /∈ Ā}) =
0.
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Proof Assume that C \ Ā is not the empty set (otherwise there is nothing to
prove) and let B be a closed ball in C\ Ā with center c and radius r > 0. Notice
that |c − a| > r for all a ∈ Ā. It is sufficient to prove that E = f−1[B] has
measure zero, since C \ Ā is a countable union of such balls.
Suppose that µ(E) > 0. Then we would have

|aE − c| ≤
1

µ(E)

∫
E

|f − c| dµ ≤ r.

But this is a contradiction since aE ∈ A. �

6.5 The Radon-Nikodym theorem

As an appetizer for the Radon-Nikodym theorem below we consider a special
case. Let S be a finite or countable set and Σ = 2S . Let µ be a positive σ-
finite measure on (S,Σ) and ν another finite measure such that ν � µ. Define
h(x) = ν({x})

µ({x}) if µ({x}) > 0 and zero otherwise. It is easy to verify that
h ∈ L1(S,Σ, µ) and

ν(E) = µ(1Eh), ∀E ⊂ S. (6.6)

Observe that we have obtained an expression like (4.7). The principal theorem
on absolute continuity (and singularity) is the following.

Theorem 6.7 Let µ be a positive σ-finite measure and ν a complex measure.
Then there exists a unique decomposition ν = νa + νs and a function h ∈
L1(S,Σ, µ) (the Radon-Nikodym derivative of νa w.r.t. µ) such that νa(E) =
µ(1Eh) for all E ∈ Σ. Moreover, h is unique in the sense that any other h′ with
this property is such that µ({h 6= h′}) = 0. The function h is often written as

h =
dνa
dµ

.

Proof Uniqueness of the decomposition ν = νa + νs is the content of Proposi-
tion 6.4. Hence we proceed to show existence. Let us first assume that µ(S) <∞
and that ν is positive and finite.
Consider then the positive bounded measure φ = ν + µ. Let f ∈ L2(S,Σ, φ).
The Schwartz inequality gives

|ν(f)| ≤ ν(|f |) ≤ φ(|f |) ≤ (φ(f2))1/2(φ(S))1/2.

We see that the linear map f 7→ ν(f) is bounded on the pre-Hilbert space
L2(S,Σ, φ). Hence there exists, by virtue of the Riesz-Fréchet Theorem 6.1, a
g ∈ L2(S,Σ, φ) such that for all f

ν(f) = φ(fg). (6.7)

Take f = 1E for any E with φ(E) > 0. Then φ(E) ≥ ν(E) = φ(1Eg) ≥ 0 so
that the average 1

φ(E)φ(1Eg) lies in ∈ [0, 1]. From Lemma 6.6 we obtain that
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φ({g /∈ [0, 1]}) = 0. Replacing g with g1{0≤g≤1}, we see that (6.7) still holds
and hence we may assume that 0 ≤ g ≤ 1.
Rewrite (6.7) as

ν(f(1− g)) = µ(fg) (6.8)

and take f = 1{g=1} to obtain µ({g = 1}) = 0. Define the positive measure νs
on Σ by νs(E) = ν(E ∩{g = 1}). Then νs({g < 1}) = νs(∅) = 0. It follows that
νs ⊥ µ. Define the measurable function

h =
g

1− g
1{g<1}, (6.9)

and the measure νa on Σ by νa(E) = µ(1Eh). By Proposition 6.5 this indeed
defines a measure and obviously νa � µ. Take f = 1E∩{g<1}

1−g in (6.8) to obtain

ν(E ∩ {g < 1}) = νa(E).

It follows that ν = νa+νs, which is the desired decomposition and the function h
of (6.9) is as required. Since µ(h) = νa(S) <∞, we also see that h ∈ L1(S,Σ, µ).
Uniqueness of h is left as exercise 6.6.
If µ is not bounded but merely σ-additive and ν bounded and positive we
decompose S into a measurable partition S =

⋃
n≥1 Sn, with µ(Sn) < ∞.

Apply the previous part of the proof to each of the spaces (Sn,Σn) with Σn
the trace σ-algebra of Σ on Sn. This yields measures νa,n and functions hn
defined on the Sn. Put then νa(E) =

∑
n νa,n(E ∩ Sn), h =

∑
n 1Snhn. Then

νa(E) = µ(1Eh) and µ(h) = νa(S) < ∞. For real measures ν we apply the
results to ν+ and ν− and finally, if ν is complex we treat the real and imaginary
part separately. The trivial details are omitted. �

Remark 6.8 If we take ν a positive σ-finite measure, then the Radon-Nikodym
theorem is still true with the exception that we only have µ(h1Sn) <∞, where
the Sn form a measurable partition of S such that ν(Sn) <∞ for all n. Notice
that in this case (inspect the proof above) we may take h ≥ 0.

Remark 6.9 The function h of Theorem 6.7, the Radon-Nikodym derivative
of νa w.r.t. µ, is also called the density of νa w.r.t. µ. If λ is Lebesgue measure
on (R,B) and ν is the law of a random variable X that is absolutely continuous
w.r.t. λ, we have that F (x) := ν((−∞, x]) =

∫
(−∞,x]

f dλ, where f = dν
dλ .

Traditionally, the function f was called the density of X, and we see that calling
a Radon-Nikodym derivative a density is in agreement with the tradition. We
often follow the accepted terminology by merely saying that X admits a density
f , if f = dν

dλ without mentioning that its law is absolutely continuous w.r.t.
Lebesgue measure.

6.6 Additional results

Proposition 6.10 Let µ be a complex measure. Then µ� |µ| and the Radon-
Nikodym derivative h = dµ

d|µ| may be taken such that |h| = 1.
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Proof Let h be any function as in the Radon-Nikodym theorem. Since ||µ|(h1E)| =
|µ(E)| ≤ |µ|(E), it follows from Lemma 6.6 that |µ|({|h| > 1}) = 0. On the
other hand, for A = {|h| ≤ r} (r > 0) and a measurable partition with elements
Aj of A, we have∑

j

|µ(Aj)| =
∑
j

|µ|(1Ajh) ≤
∑
j

|µ|(1Aj |h|) ≤ r|µ|(A).

Then we find, by taking suprema over such partitions, that |µ|(A) ≤ r|µ|(A).
Hence for r < 1 we find |µ|(A) = 0 and we conclude that |µ|({|h| < 1}) = 0.
Combining this with the previous result we get |µ|({|h| 6= 1}) = 0. The function
that we look for, is h1{|h|=1} + 1{|h|6=1}. �

Corollary 6.11 Let µ be a real measure, h = dµ
d|µ| . Then for any E ∈ Σ we have

µ+(E) = |µ|(1E∩{h=1}) and µ−(E) = |µ|(1E∩{h=−1}) and µ+ ⊥ µ−. Moreover,
if µ = µ1 − µ2 with positive measures µ1, µ2, then µ1 ≤ µ+ and µ2 ≤ µ−. In
this sense the Jordan decomposition is minimal.

Proof The representation of µ+ and µ− follows from the previous proposition.
Minimality is proved as follows. Since µ ≤ µ1, we have µ+(E) = µ(E ∩ {h =
1}) ≤ µ1(E ∩ {h = 1}) ≤ µ1(E). �

Proposition 6.12 If µ is a positive measure and ν a complex measure such
that ν � µ, then |ν| � µ and

d|ν|
dµ

= |dν
dµ
|.

Proof Exercise 6.8. �

6.7 Exercises

6.1 Let µ be a real measure on a space (S,Σ). Define ν : Σ → [0,∞) by
ν(E) = sup{µ(F ) : F ∈ Σ, F ⊂ E,µ(F ) ≥ 0}. Show that ν is a finite positive
measure. Give a characterization of ν.

6.2 Prove Proposition 6.3.

6.3 Prove a version of Proposition 6.5 adapted to the case where h ∈ L1(S,Σ, µ)
is complex valued.

6.4 Let X be a symmetric Bernoulli distributed random variable (P(X = 0) =
P(X = 1) = 1

2 ) and Y uniformly distributed on [0, θ] (for some arbitrary θ > 0).
Assume that X and Y are independent. Show that the laws Lθ (θ > 0) of
XY are not absolutely continuous w.r.t. Lebesgue measure on R. Find a fixed
dominating σ-finite measure µ such that Lθ � µ for all θ and determine the
corresponding Radon-Nikodym derivatives.
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6.5 Let X1, X2, . . . be an iid sequence of Bernoulli random variables, defined on
some probability space (Ω,F ,P) with P(X1 = 1) = 1

2 . Let

X =
∞∑
k=1

2−kXk.

Find the distribution of X. A completely different situation occurs when we
ignore the odd numbered random variables. Let

Y = 3
∞∑
k=1

4−kX2k,

where the factor 3 only appears for esthetic reasons. Show that the distribution
function F : [0, 1] → R of Y is constant on ( 1

4 ,
3
4 ), that F (1 − x) = 1 − F (x)

and that it satisfies F (x) = 2F (x/4) for x < 1
4 . Make a sketch of F and show

that F is continuous, but not absolutely continuous w.r.t. Lebesgue measure.
(Hence there is no Borel measurable function f such that F (x) =

∫
[0,x]

f(u) du,
x ∈ [0, 1]).

6.6 Let f ∈ L1(S,Σ, µ) be such that µ(1Ef) = 0 for all E ∈ Σ. Show that
µ({f 6= 0}) = 0. Conclude that the function h in the Radon-Nikodym theorem
has the stated uniqueness property.

6.7 Let µ and ν be positive σ-finite measures and φ an arbitrary measure on a
measurable space (S,Σ). Assume that φ � ν and ν � µ. Show that φ � µ
and that

dφ
dµ

=
dφ
dν

dν
dµ
.

6.8 Prove Proposition 6.12.

6.9 Let ν and µ be positive σ-finite measures on (S,Σ) with ν � µ. Let h = dν
dµ .

Show that ν({h = 0}) = 0. Show that µ({h = 0}) = 0 iff µ� ν. What is dµ
dν if

this happens?

6.10 Let µ and ν be positive σ-finite measures and φ a complex measure on
(S,Σ). Assume that φ� µ and ν � µ with Radon-Nikodym derivatives h and
k respectively. Let φ = φa + φs be the Lebesgue decomposition of φ w.r.t. µ.
Show that (ν-a.e.)

dφa
dν

=
h

k
1{k>0}.

6.11 Consider the measurable space (Ω,F) and a measurable map X : Ω→ Rn
(Rn is endowed with the usual Borel σ-algebra Bn). Consider two probability
measure P and Q on (Ω,F) and let P = PX and Q = QX be the corresponding
distributions (laws) on (Rn,Bn). Assume that P and Q are both absolutely
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continuous w.r.t. some σ-finite measure (e.g. Lebesgue measure), with corre-
sponding Radon-Nikodym derivatives (in this context often called densities) f
and g respectively, so f, g : Rn → [0,∞). Assume that g > 0. Show that for
F = σ(X) it holds that P � Q and that (look at Exercise 6.10) the Radon-
Nikodym derivative here can be taken as the likelihood ratio

ω 7→ dP
dQ

(ω) =
f(X(ω))
g(X(ω))

.
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7 Convergence and Uniform Integrability

In this chapter we first review a number of convergence concepts for random
variables and study how they are interrelated. The important concept of uniform
integrability shall enable us to perform a more refined analysis.

7.1 Modes of convergence

Let X,X1, X2, . . . be random variables. We have the following definitions of
different modes of convergence. We will always assume that the parameter n
tends to infinity, unless stated otherwise.

Definition 7.1 (i) If P(ω : Xn(ω)→ X(ω)) = 1, then we say that Xn converges
to X almost surely (a.s.).
(ii) If P(|Xn −X| > ε) → 0 for all ε > 0, then we say that Xn converges to X
in probability.
(iii) If E |Xn − X|p → 0 (equivalently, ||Xn − X||p → 0) for some p ≥ 1, then
we say that Xn converges to X in p-th mean, or in Lp.
For these types of convergence we use the following notations: Xn

a.s.→ X, Xn
P→

X and Xn
Lp→ X respectively.

First we study a bit more in detail almost sure convergence of Xn to X. If this
type of convergence takes place we have

P(ω : ∀ε > 0 : ∃N : ∀n ≥ N : |Xn(ω)−X(ω)| < ε) = 1.

But then also (dropping the ω in the notation)

for all ε > 0: P(∃N : ∀n ≥ N : |Xn −X| < ε) = 1. (7.1)

Conversely, if (7.1) holds, we have almost sure convergence. Notice that we can
rewrite the probability in (7.1) as P(lim inf Eεn) = 1, with Eεn = {|Xn−X| < ε}.

Limits are often required to be unique in an appropriate sense. The natural
concept of uniqueness here is that of almost sure uniqueness.

Proposition 7.2 For each of the convergence concepts in Definition 7.1 the
limit, when it exists, is almost surely unique. This means that if there are two
candidate limits X and X ′, one must have P(X = X ′) = 1.

Proof Suppose that Xn
a.s.→ X and Xn

a.s.→ X ′. Let Ω0 be the set of probability
one on which Xn(ω) → X(ω) and Ω′0 be the set of probability one on which
Xn(ω) → X ′(ω). Then also P(Ω0 ∩ Ω′0) = 1 and by uniqueness of limits of
real numbers we must have that X(ω) = X ′(ω) for all ω ∈ Ω0 ∩ Ω′0. Hence
P(X = X ′) ≥ P(Ω0 ∩ Ω′0) = 1.
If Xn

P→ X and Xn
P→ X ′, then we have by the triangle inequality for any ε > 0

P(|X −X ′| > ε) ≤ P(|Xn −X| > ε/2) + P(|Xn −X ′| > ε/2),
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and the right hand side converges to zero by assumption.
Finally we consider the third convergence concept. We need the basic inequality
|a+ b|p ≤ 2p−1(|a|p + |b|p). This allows us to write E |X −X ′|p ≤ 2p−1(E |Xn−
X|p + E |Xn − X ′|p). It follows that E |X − X ′|p = 0 and hence that P(X =
X ′) = 1. �

The following relations hold between the types of convergence introduced in
Definition 7.1.

Proposition 7.3 (i) If Xn
a.s.→ X, then Xn

P→ X.
(ii) If for all ε > 0 the series

∑
n P(|Xn−X| > ε) is convergent, then Xn

a.s.→ X.

(iii) If Xn
Lp→ X, then Xn

P→ X.

(iv) If p > q > 0 and Xn
Lp→ X, then Xn

Lq→ X.

Proof (i) Assume Xn
a.s.→ X, fix ε > 0 and let An = {|Xn−X| ≥ ε}. From (7.1)

we know that P(lim inf Acn) = 1, or that P(lim supAn) = 0. But An ⊂ Un :=⋃
m≥nAm and the Un form a decreasing sequence with lim supAn as its limit.

Hence we have lim sup P(An) ≤ lim P(Un) = 0 and so Xn
P→ X.

(ii) Fix ε > 0 and let En = {|Xn−X| > ε}. The first part of the Borel-Cantelli
lemma (Lemma 3.13) gives that P(lim supEn) = 0, equivalently P(lim inf Ecn) =
1, but this is just (7.1).
(iii) By Markov’s inequality we have

P(|Xn −X| > ε) = P(|Xn −X|p > εp) ≤ 1
εp

E |Xn −X|p,

and the result follows.
(iv) Apply Proposition 4.31 to get (E |Xn −X|q)1/q ≤ (E |Xn −X|p)1/p. �

The next proposition gives a partial converse to Proposition 7.3 (iii). Notice that
the assertion would trivially follow from the Dominated Convergence Theorem
for an a.s. converging sequence. The weaker assumption on convergence in
probability makes it slightly less trivial. In Theorem 7.15 we will see a kind of
converse to Proposition 7.3(iii) for p = 1.

Proposition 7.4 Let (Xn) be a sequence of random variables that is almost
surely bounded, there is K > 0 such that P(|Xn| > K) = 0, for all n. Let X be

a random variable. If Xn
P→ X, then |X| ≤ K a.s. and Xn

L1

→ X.

Proof The first assertion follows from P(|X| > K+ε) ≤ P(|Xn−X| > ε), valid
for every ε > 0. Let n → ∞ to conclude P(|X| > K + ε) = 0, ∀ε > 0. Then
|Xn −X| ≤ 2K a.s., which we use to prove the second assertion. Consider for
any ε > 0

E |Xn −X| ≤ E |Xn −X|1{|Xn−X|>ε} + E |Xn −X|1{|Xn−X|≤ε}
≤ 2KP(|Xn −X| > ε) + ε.

By the assumed convergence in probability we obtain lim sup E |Xn − X| ≤ ε,
true for every ε > 0, from which the assertion follows. �
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The following result tells how to use almost sure convergence when convergence
in probability has to be established.

Proposition 7.5 There is equivalence between
(a) Xn

P→ X and
(b) every subsequence of (Xn) contains a further subsequence that is almost
surely convergent to X.

Proof Assume that (a) holds, then for any ε > 0 and any subsequence we also
have P(|Xnk −X| > ε) → 0. Hence for every p ∈ N, there is kp ∈ N such that
P(|Xnkp

− X| > ε) ≤ 2−p. Now we apply part (ii) of Proposition 7.3, which
gives us (b). Conversely, assume that (b) holds. We reason by contradiction.
Suppose that (a) doesn’t hold. Then there exist an ε > 0 and a level δ > 0 such
that along some subsequence (nk) one has

P(|Xnk −X| > ε) > δ, for all k. (7.2)

But the sequence Xnk by assumption has an almost surely convergent subse-
quence (Xnkp

), which, by Proposition 7.3 (i), also converges in probability. This
contradicts (7.2). �

The following result cannot be a surprise.

Proposition 7.6 Let X,X1, X2, . . . be random variables and g : R → R be
continuous. If Xn

a.s.→ X, we also have g(Xn) a.s.→ g(X) and if Xn
P→ X, then

also g(Xn) P→ g(X).

Proof Exercise 7.2. �

Convergence, almost surely or in probability, of random vectors is defined simi-
larly. For instance, if X,X1, X2, . . . are n-dimensional random vectors and || · ||
is a norm on Rn (you may also take a metric instead of a norm), then we say
that Xn

P→ X if ||Xn −X||
P→ 0. Here we apply the definition of convergence

for real random variables to ||Xn −X|| (which is truly a random variable!). A
nice feature of the convergence concepts introduced above is that appropriate
convergence results for real valued random variables carry over to results for
random vectors.

Proposition 7.7 Let X,X1, X2, . . . and Y, Y1, Y2, . . . be two sequence of random
variables, defined on a common probability space. Put Z = (X,Y ) and Zn =
(Xn, Yn), n ∈ N. Let ∗→ denote any of the three types of convergence a.s.→ , P→
and L

p

→. If Xn
∗→ X and Yn

∗→ Y , then Zn
∗→ Z.

Proof Exercise 7.3 �
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7.2 Uniform integrability

This section deals with collections of random variables that in some sense uni-
formly belong to L1(Ω,F ,P). First a preparatory result.

Lemma 7.8 Let X ∈ L1(Ω,F ,P) and put ν(F ) := E |X|1F , F ∈ F . Then for
all ε > 0 there exists δ > 0, such that ν(F ) < ε, if P(F ) < δ.

Proof We reason by contradiction. If the assertion doesn’t hold, there exists
ε > 0 such that for all δ > 0, there exists a set F ∈ F with P(F ) < δ and
ν(F ) ≥ ε. And thus, for all n ∈ N there are sets Fn ∈ F such that P(Fn) < 2−n

and ν(Fn) ≥ ε. Let F = lim supFn. The Borel-Cantelli Lemma 3.13 states
that P(F ) = 0. At the same time, we deduce from Fatou’s lemma for sets
(Exercise 1.4) the contradiction that ν(F ) ≥ lim sup ν(Fn) ≥ ε. �

Remark 7.9 The assertion of Lemma 7.8 justifies what we previously called
absolute continuity (of ν w.r.t. P).

The following corollary characterizes integrability of a random variable. It ex-
plains the concept of uniform integrability to be introduced in Definition 7.11.

Corollary 7.10 Let X be a random variable. Then X ∈ L1(Ω,F ,P) iff

lim
K→∞

E |X|1{|X|≥K} = 0.

Proof Exercise 7.4. �

Definition 7.11 Let C be a collection of random variable defined on a common
probability space (Ω,F ,P). This collection is called uniformly integrable (UI) if

lim
K→∞

sup{E |X|1{|X|>K} : X ∈ C} = 0.

We give some rather general examples of a uniformly integrable collection C.

Example 7.12 Let C be a collection of random variables that is bounded in
Lp(Ω,F ,P) for some p > 1. By definition, there is M > 0, such that E |X|p ≤
M,∀X ∈ C. Then

E |X|1{|X|>K} = E
|X|p

|X|p−1
1{|X|>K}

≤ E
|X|p

Kp−1
1{|X|>K}

≤ M

Kp−1
.

Let K →∞ to obtain that C is UI.
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Example 7.13 The content of the present example should be intuitively ob-
vious. Let Y be a nonnegative random variable with EY < ∞. Let C be a
collection of random variables X with the property |X| ≤ Y a.s. Then C is UI.
Indeed, we have from |X| ≤ Y a.s. that

E |X|1{|X|>K} ≤ EY 1{Y >K},

hence

sup{E |X|1{|X|>K} : X ∈ C} ≤ EY 1{Y >K},

and the result follows from Corollary 7.10.

Proposition 7.14 If C is a finite collection of random variables in L1(Ω,F ,P),
then C is UI. Also the union of two UI collections is UI again.

Proof Exercise 7.6 �

The importance of the concept of uniform integrability is a consequence of the
next theorem, which contains a converse to Proposition 7.3 (iii) for p = 1.

Theorem 7.15 Let (Xn) be a sequence in L1(Ω,F ,P) and X ∈ L1(Ω,F ,P).

Then Xn
L1

→ X (so E |Xn −X| → 0) iff
(i) Xn

P→ X and
(ii) (Xn) is uniformly integrable.

Proof Assume that E |Xn−X| → 0. Then (i) was already known from Propo-
sition 7.3. To prove (ii) we consider

E |Xn|1{|Xn|>K} ≤ E |Xn −X|+ E |X|1{|Xn|>K},

hence for every N ∈ N

sup
n≥N

E |Xn|1{|Xn|>K} ≤ sup
n≥N

E |Xn −X|+ sup
n≥N

E |X|1{|Xn|>K}. (7.3)

Let ε > 0 and choose N such that the first term is smaller than ε, which can be
done by L1-convergence. To control the second term, we observe that P(|Xn| >
K) ≤ supn E |Xn|/K. By L1-convergence one has supn E |Xn| < ∞ and hence,
by selecting K = K(δ) large enough, one has P(|Xn| > K) < δ, for any δ > 0.
Now choose δ as in Lemma 7.8. Then we get supn≥N E |X|1{Xn|>K} < ε. It
follows from (7.3) that the collection (Xn)n≥N is UI. The proof is concluded by
invoking the two assertions of Proposition 7.14.
For the converse implication we proceed as follows. Assume (i). Instead of (ii) we
assume for the time being the stronger assumption that (Xn) is a.s. (uniformly)
bounded. Then the results follows from Proposition 7.4. If (Xn) is merely UI, we
use truncation functions φK defined by φK(x) = x1{|x|≤K}+ sgn(x)K1{|x|>K}.
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These functions have the property that |φK(x) − x| ≤ |x|1{|x|>K}. By the
triangle inequality we get

E |Xn −X| ≤ E |Xn − φK(Xn)|+ E |φK(Xn)− φK(X)|+ E |φK(X)−X|
≤ E |Xn|1{|Xn|>K} + E |φK(Xn)− φK(X)|+ E |X|1{|X|>K}.

The first term can be made arbitrary small, by selecting K large enough in view
of the assumed uniform integrability and likewise we can control the last term
in view of Corollary 7.10. The middle term converges to zero in view of the first
part of the proof, no matter what K is. This concludes the proof. �

7.3 Exercises

7.1 Let X1, Y1, X2, Y2, . . . be an i.i.d. sequence whose members have a uniform
distribution on [0, 1] and let f : [0, 1] → [0, 1] be continuous. Define Zi =
1{f(Xi)>Yi}.

(a) Show that 1
n

∑n
i=1 Zi →

∫ 1

0
f(x) dx a.s.

(b) Show that E ( 1
n

∑n
i=1 Zi −

∫ 1

0
f(x) dx)2 ≤ 1

4n .

(c) Explain why these two results are useful.

7.2 Prove Proposition 7.6.

7.3 Prove Proposition 7.7.

7.4 Prove Corollary 7.10.

7.5 Let C be a collection of uniformly integrable random variables. Show that
C is bounded in L1(Ω,F ,P), i.e. sup{E |X| : X ∈ C} < ∞. Let (Ω,F ,P) =
([0, 1],B[0, 1], ν) and Xn(ω) = n1(0,1/n)(ω). Show that {Xn : n ∈ N} is bounded
in L1(Ω,F ,P), but not uniformly integrable.

7.6 Prove Proposition 7.14.

7.7 Let C1, . . . , Cn be uniformly integrable collections of random variables on
a common probability space. Show that

⋃n
k=1 Ck is uniformly integrable. (In

particular is a finite collection in L1 uniformly integrable).

7.8 If C1 and C2 are uniformly integrable collections in L1(Ω,F ,P), so is C1 +
C2 := {X1 +X2 : X1 ∈ C1, X2 ∈ C2}. Show this.

7.9 Here is uniform variation on Lemma 7.8. Let C be a class of random vari-
ables defined on some (Ω,F ,P). Put νX(F ) := E |X|1F , X ∈ C, F ∈ F . Show
that C is uniformly integrable iff the following two conditions hold.
(i) C is bounded in L1.
(ii) For all ε > 0 there exists δ > 0, such that νX(F ) < ε ∀X ∈ C, if P(F ) < δ.

7.10 Let C be a uniformly integrable collection of random variables.

66



(a) Consider C̄, the closure of C in L1. Use Exercise 7.9 to show that also C̄ is
uniformly integrable.

(b) Let D be the convex hull of C, the smallest convex set that contains C.
Then both D and its closure in L1 are uniformly integrable

7.11 In this exercise you prove (fill in the details) the following characterization:
a collection C is uniformly integrable iff there exists a function G : R+ → R+

such that limt→∞
G(t)
t =∞ and M := sup{EG(|X|) : X ∈ C} <∞.

The necessity you prove as follows. Let ε > 0 choose a = M/ε and c such
that G(t)

t ≥ a for all t > c. To prove uniform integrability of C you use that
|X| ≤ G(|X|)

a on the set {|X| ≥ c}.
It is less easy to prove sufficiency. Proceed as follows. Suppose that we have a se-
quence (gn) with g0 = 0 and limn→∞ gn =∞. Define g(t) =

∑∞
n=0 1[n,n+1)(t)gn

and G(t) =
∫ t

0
g(s)ds. Check that limt→∞

G(t)
t =∞.

With an(X) = P(|X| > n), it holds that EG(|X|) ≤
∑∞
n=1 gnan(|X|). Further-

more, for every k ∈ N we have
∫
|X|≥k |X| dP ≥

∑∞
m=k am(X). Pick for every n

a constant cn ∈ N such that
∫
|X|≥cn |X| dP ≤ 2−n. Then

∑∞
m=cn

am(X) ≤ 2−n

and hence
∑∞
n=1

∑∞
m=cn

am(X) ≤ 1. Choose then the sequence (gn) as the
‘inverse’ of (cn): gn = #{k : ck ≤ n}.

7.12 Prove that a collection C is uniformly integrable iff there exists an in-
creasing and convex function G : R+ → R+ such that limt→∞

G(t)
t = ∞ and

M := sup{EG(|X|) : X ∈ C} <∞. (You may use the result of Exercise 7.11.)
Let D be the closure of the convex hull of a uniformly integrable collection C
in L1. With the function G as above we have sup{EG(|X|) : X ∈ D} = M ,
whence also D is uniformly integrable.

7.13 Let p ≥ 1 and let X,X1, X2, . . . be random variables. Then Xn converges
to X in Lp iff the following two conditions are satisfied.

(a) Xn → X in probability,

(b) The collection {|Xn|p : n ∈ N} is uniformly integrable.

7.14 Here is an extension of Proposition 10.9, but you can do the exercise now.
Let C be a uniformly integrable collection of random variables on some (Ω,F ,P).
Let G be a family of sub-σ-algebras of F . Let D = {E [X|G] : X ∈ C, G ∈ G}
(‘in the sense of versions’). Show that also D is uniformly integrable. (Hint:
use Exercise 7.9.)

7.15 Let X,X1, X2, . . . be random variables that are defined on the same prob-
ability space (Ω,F ,P). Suppose that Xn

P→ X and that there exists a random
variable Y with EY < ∞ such that |Xn| ≤ Y a.s. Show that P(|X| ≤ Y ) = 1

and that Xn
L1

→ X.
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8 Conditional expectation

Let X be a random variable with values in {x1, . . . , xn} and Y a random variable
with values in {y1, . . . , ym}. The conditional probability

P(X = xi|Y = yj) :=
P(X = xi, Y = yj)

P(Y = yj)

is well defined if P(Y = yj) > 0. Otherwise we define it to be zero. We write
Ej for {Y = yj}. The conditional expectation x̂j := E [X|Ej ] is then

x̂j =
∑
i

xiP(X = xi|Ej).

We define now a new random variable X̂ by

X̂ =
∑
j

x̂j1Ej .

Since X̂ = x̂j on each event {Y = yj}, we call X̂ the conditional expectation
of X given Y . It has two remarkable properties. First we see that X̂ is σ(Y )-
measurable. The second property, which we prove below, is

E X̂1Ej = EX1Ej ,

the expectation of X̂ over the set Ej is the same as the expectation of X over
that set. We show this by simple computation. Note first that the values of
X1Ej are zero and xi, the latter reached on the event {X = xi} ∩ Ej that has
probability P({X = xi} ∩ Ej). Note too that X̂1Ej = x̂j1Ej . We then get

E X̂1Ej = E x̂j1Ej = x̂jP(E j)

=
∑
i

xiP({X = xi}|Ej)P(Ej)

=
∑
i

xiP({X = xi} ∩ Ej)

= EX1Ej .

Every event E ∈ σ(Y ) is a finite union of events Ej . It then follows that

E X̂1E = EX1E ,∀E ∈ σ(Y ). (8.1)

The random variable X̂ is the only σ(Y )-measurable random variable that sat-
isfies (8.1). Indeed, suppose that Z is σ(Y )-measurable and that EZ1E =
EX1E ,∀E ∈ σ(Y ). Let E = {Z > X̂}. Then (Z − X̂)1E ≥ 0 and has expecta-
tion zero since E ∈ σ(Y ), so we have (Z − X̂)1{Z>X̂} = 0 a.s. Likewise we get

(Z − X̂)1{Z<X̂} = 0 a.s. and it then follows that Z − X̂ = 0 a.s.

The just described two properties of the conditional expectation will lie at the
heart of a more general concept, conditional expectation of a random variable
given a σ-algebra.
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8.1 Conditional expectation for X ∈ L1(Ω,F ,P)

Let (Ω,F ,P) be a probability space and G a sub-σ-algebra of F . Assume that
X ∈ L1(Ω,F ,P). Inspired by the results of the previous section we adopt the
following definition.

Definition 8.1 A random variable X̂ is called a version of the conditional
expectation E [X|G], if it is G-measurable and if

E X̂1G = EX1G,∀G ∈ G. (8.2)

If G = σ(Y ), where Y is a random variable, then we usually write E [X|Y ]
instead of E [X|σ(Y )].

Theorem 8.2 If X ∈ L1(Ω,F ,P), then a version of the conditional expectation
E [X|G] exists and moreover, any two versions are a.s. equal.

Proof For any G ∈ G we define ν+(G) := EX+1G and ν−(G) = EX−1G We
have seen that ν+ and ν− are finite measures on the measurable space (Ω,G).
Moreover, ν+ � P and ν− � P on this space. According to the Radon-Nikodym
Theorem 6.7 there exist nonnegative G-measurable functions X̂+ and X̂− such
that ν+(G) = EX+1G and ν−(G) = EX−1G. These functions are a.s. unique.
Then X̂ = X̂+ − X̂− is a version of E [X|G]. �

Remark 8.3 It is common to call a given version of E [X|G] the conditional
expectation of X given G, but one should take care with this custom. In fact
one should consider E [X|G] as an equivalence class of random variables, where
equivalence Y1 ∼ Y2 for G-measurable functions means that P(Y1 = Y2) = 1. As
such one can consider E [X|G] as an element of L1(Ω,G,P). Later on we will
often identify a version X̂ of E [X|G] with E [X|G].

Remark 8.4 One can also define versions of conditional expectations for ran-
dom variables X with P(X ∈ [0,∞]) = 1 without requiring that EX < ∞.
Again this follows from the Radon-Nikodym theorem. The definition of condi-
tional expectation can also be extended to e.g. the case where X = X+ −X−,
where EX− <∞, but EX+ =∞.

Let us present the most relevant properties of conditional expectation. As be-
fore, we let X ∈ L1(Ω,F ,P), G a sub-σ-algebra of F and X̂ is a version of
E [X|G]. Other random variables below that are versions of a conditional ex-
pectation given G are similarly denoted with a ‘hat’.

Proposition 8.5 The following elementary properties hold.
(i) If X ≥ 0 a.s., then X̂ ≥ 0 a.s. If X ≥ Y a.s., then X̂ ≥ Ŷ a.s.
(ii) E X̂ = EX.
(iii) If a, b ∈ R and if X̂ and Ŷ are versions of E [X|G] and E [Y |G], then
aX̂ + bŶ is a version of E [aX + bY |G].
(iv) If X is G-measurable, then X is a version of E [X|G].
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Proof (i) Let G = {X̂ < 0}. Then we have from (8.2) that 0 ≥ E 1GX̂ =
E 1GX ≥ 0. Hence 1GX̂ = 0 a.s.
(ii) Take G = Ω in (8.2).
(iii) Just verify that E 1G(aX̂ + bŶ ) = E 1G(aX + bY ), for all G ∈ G.
(iv) Obvious. �

We have taken some care in formulating the assertions of the previous theorem
concerning versions. Bearing this in mind and being a bit less precise at the
same time, one often phrases e.g. (iii) as E [aX + bY |G] = aE [X|G] + bE [Y |G].
Some convergence properties are listed in the following theorem.

Theorem 8.6 The following convergence properties for conditional expectation
given a fixed sub-σ-algebra hold.
(i) If (Xn) is an a.s. increasing sequence of nonnegative random variables, then
the same holds for versions (X̂n). If moreover Xn ↑ X a.s., then X̂n ↑ X̂ a.s.
(monotone convergence for conditional expectations)
(ii) If (Xn) is a sequence of a.s. nonnegative random variables, and (X̂n) are
corresponding versions of the conditional expectations, then lim infn→∞ X̂n ≥ ˆ̀
a.s., where ˆ̀ is a version of the conditional expectation of ` := lim infn→∞Xn.
(Fatou’s lemma for conditional expectations)
(iii) If (Xn) is a sequence of random variables such that for some X one has
Xn → X a.s. and if there is a random variable Y such that EY <∞ and |Xn| ≤
Y a.s. for all n. Then X̂n → X̂ a.s. (dominated convergence for conditional
expectations)

Proof (i) From the previous theorem we know that the X̂n form a.s. an increas-
ing sequence. Let X̂ := lim sup X̂n, then X̂ is G-measurable and X̂n ↑ X̂ a.s.
We verify that this X̂ is a version of E [X|G]. But this follows by application of
the Monotone Convergence Theorem to both sides of E 1GXn = E 1GX̂n for all
G ∈ G.
(ii) and (iii) These properties follow by mimicking the proofs of the ordinary
versions of Fatou’s Lemma and the Dominated Convergence Theorem, Exer-
cises 8.4 and 8.5. �

Theorem 8.7 Additional properties of conditional expectations are as follows.
(i) If H is a sub-σ-algebra of G, then any version of E [X̂|H] is also a version
of E [X|H] and vice versa (tower property).
(ii) If Z is G-measurable such that ZX ∈ L1(Ω,F ,P), then ZX̂ is a version of
E [ZX|G]. We write ZE [X|G] = E [ZX|G].
(iii) Let X̂ be a version of E [X|G]. If H is independent of σ(X) ∨ G, then X̂
is a version of E [X|G ∨ H]. In particular, EX is a version of E [X|H] if σ(X)
and H are independent.
(iv) Let X be G-measurable, let Y be independent of G and assume that h ∈
B(R2) is such that h(X,Y ) ∈ L1(Ω,F ,P). Put ĥ(x) = E [h(x, Y )]. Then ĥ(X)
is a version of E [h(X,Y )|G].
(v) If c : R → R is a convex function and E |c(X)| < ∞, then c(X̂) ≤ C, a.s.,
where C is any version of E [c(X)|G]. We often write c(E [X|G]) ≤ E [c(X)|G]
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(Jensen’s inequality for conditional expectations).
(vi) ||X̂||p ≤ ||X||p, for every p ≥ 1.

Proof (i) Let X̃ be a version of E [X̂|H]. By definition, we have E 1HX̃ =
E 1HX̂, for all H ∈ H. But since H ⊂ G, it also holds that E 1HX̂ = E 1HX,
by (8.2). Hence X̃ is a version of E [X|H].

(ii) We give the proof for bounded Z. Certainly ZX is integrable in this case.
Without loss of generality we may then even assume that Z ≥ 0 a.s. (Add a
constant c to Z to have Z+c ≥ 0, if this is not the case and the result will follow
from the case of nonnegative Z). Assume first that also X is nonnegative. If
Z = 1G for some G ∈ G, then the result directly follows from the definition. By
linearity the assertion holds for nonnegative simple Z. For arbitrary Z ≥ 0, we
choose simple Zn such that Zn ↑ Z. Apply the Monotone Convergence Theorem
to both sides of E 1GZnX̂ = E 1GZnX to settle the case for X ≥ 0. If X is
arbitrary, linearity yields the assertion by applying the previous results for X+

and X−.
(iii) It is sufficient to show this for nonnegative X. Let G ∈ G and H ∈

H. By the independence assumption, we have E 1G1HX = E 1GX P(H) and
E 1G1HX̂ = E 1GX̂ P(H). It follows that E 1G1HX = E 1G1HX̂, since X̂ is
version of E [X|G]. Recall that the collection C := {G ∩H : G ∈ G, H ∈ H} is a
π-system that generates G∨H. Observe that E 7→ E 1EX and E 7→ E 1EX̂ both
define measures on G∨H and that these measures have been seen to coincide on
C. It follows from Theorem 1.15 that these measures are the same. The second
statement follows by taking G = {∅,Ω}.

(iv) We use the Monotone Class Theorem. Let V be the collection of all
bounded measurable functions for which the statement holds true. One easily
checks that h = 1B×C ∈ V , where B,C are Borel sets in R. The sets B×C form
a π-system that generates B(R2). The collection V is obviously a vector space
and the constant functions belong to it. Let (hn) be an increasing sequence
of nonnegative functions in V that converge to some bounded function h. If
ĥn(x) = Ehn(x, Y ) and ĥ(x) = Eh(x, Y ), then we also have ĥn(x) ↑ ĥ(x)
for all x by the Monotone Convergence Theorem. We will see that ĥ(X) is
a version of E [h(X,Y )|G]. Let G ∈ G. For all n it holds that E 1Gĥn(X) =
E 1Ghn(X,Y ). Invoking the Monotone Convergence Theorem again results in
E 1Gĥ(X) = E 1Gh(X,Y ). Since all ĥn(X) are G-measurable, the same holds
for ĥ(X) and we conclude that h ∈ V .

(v) Since c is convex, there are sequences (an) and (bn) in R such that
c(x) = sup{anx + bn : n ∈ N}, ∀x ∈ R. Hence for all n we have c(X) ≥
anX + bn and by the monotonicity property of conditional expectation, we
also have C ≥ anX̂ + bn a.s. If Nn is the set of probability zero, where this
inequality is violated, then also P(N) = 0, where N = ∪∞n=1Nn. Outside N we
have C ≥ supn(anX̂ + bn) = c(X̂).

(vi) The statement concerning the p-norms follows upon choosing c(x) = |x|p
in (v) and taking expectations. �

Here is an illustrative example.
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Example 8.8 Let X1, X2, . . . be an iid sequence of independent integrable ran-
dom variables. Put Sn =

∑n
i=1Xi, n ∈ N. We claim that for every n the

following reasonable identity (to be interpreted in the sense of versions)

E [X1|Sn] =
Sn
n

a.s.

holds true. Argue as follows. By symmetry we have for all sets G = {Sn ∈
B} the equality E 1GX1 = E 1GXj , for every j ∈ {1, . . . , n}. Hence we ob-
tain E [X1|Sn] = E [Xj |Sn] and then Sn = E [Sn|Sn] =

∑n
j=1 E [Xj |Sn] =

nE [X1|Sn]. Even more is true, E [X1|Sn] is also equal to E [X1|Gn], where
Gn = σ(Sn, Sn+1, . . .). To see this, observe first that Gn = σ(Sn) ∨ Hn, where
Hn = σ(Xn+1, Xn+2, . . .) and that Hn is independent of σ(X1, Sn)). Now apply
(iii) of Theorem 8.7.

Let P : L1(Ω,F ,P) → L1(Ω,G,P) be the linear map that transforms X into
E [X|G]. If X̂ is a version of E [X|G], then it is also a version of E [X̂|G]. So, we
get P 2 = P , meaning that P is a projection. In the next proposition we give
this a geometric interpretation in a slightly narrower context.

Proposition 8.9 Let X ∈ L2(Ω,F ,P) and G a sub-σ-algebra of F . If X̂ is a
version of E [X|G], then X̂ ∈ L2(Ω,G,P) and

E (X − Y )2 = E (X − X̂)2 + E (X̂ − Y )2, ∀Y ∈ L2(Ω,G,P).

Hence, E (X − Y )2 ≥ E (X − X̂)2, ∀Y ∈ L2(Ω,G,P). Conditional expecta-
tions of square integrable random variables are thus orthogonal projections onto
L2(Ω,G,P), in view of Corollary 4.38.

Proof Exercise 8.3. �

We conclude this section with the following loose statement, whose message
should be clear from the above results. A conditional expectation is a random
variable that has properties similar to those of ordinary expectation.

8.2 Conditional probabilities

Let F ∈ F and G a sub-σ-algebra of F . We define P(F |G) := E [1F |G]. So a
version of P(F |G) is a G-measurable random variable P̂(F ) that satisfies

P(F ∩G) = E [P̂(F )1G], ∀G ∈ G.

Of course all versions of P(F |G) are almost surely equal. Moreover, if F1, F2, . . .

is a sequence of disjoint events, and P̂(Fn) are versions of the conditional prob-
abilities, then one easily shows that

∑∞
n=1 P̂(Fn) is a version of the conditional

probability P(∪∞n=1Fn|G). So, if P̂(∪∞n=1Fn) is any version of P(∪∞n=1Fn|G), then
outside a set N of probability zero, we have

P̂(∪∞n=1Fn) =
∞∑
n=1

P̂(Fn). (8.3)
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Of course the set N in general depends on the sequence of events F1, F2, . . . Since
there are usually uncountably many of such sequences, it is not clear (and in
fact not always true!, see Exercise 8.9) that there is one (fixed) set of probability
zero such that outside this set for all disjoint sequences (Fn) the equality (8.3)
holds true. But if it does, this means that for every F ∈ F , there exists a
random variable P̂(F ) that is a version of P(F |G) and such that for all ω outside
a set N with P(N) = 0 the map F 7→ P̂(F )(ω) is a probability measure on F .
In this case, the map

F × Ω 3 (F, ω) 7→ P̂(F )(ω)

is called a regular conditional probability given G.
In the above setup for regular conditional probabilities, relation (8.3) is

assumed to hold outside a set N of probability zero. Of course, if N = ∅, this
relation holds everywhere. But also of N 6= ∅, this relation can be turned into
one that is everywhere true. Suppose that N 6= ∅. Redefine P̂ by taking P̂(F )(ω)
as given on N c, but for all ω ∈ N we take instead P̂(·)(ω) as any fixed probability
measure on F (for instance a Dirac measure). Since we change the map P̂(F ) on
the null set N only, we keep on having a conditional probability of F , whereas
(8.3) now holds everywhere. One easily checks that the modification P̂(·)(·)
enjoys the following properties. For any fixed ω, P̂(·)(ω) is a probability measure,
whereas for any fixed F ∈ F , P̂(F )(·) is a G-measurable function. These two
properties are often cast by saying that (F, ω) 7→ P̂(F )(ω) is a probability kernel
defined on F × Ω.

As mentioned before, regular conditional probabilities do not always exist.
But when it happens to be the case, conditional expectations can be computed
through integrals.

Theorem 8.10 Let X be a (real) random variable with law PX , a probability
measure on (R,B). There exists a regular conditional distribution of X given
G. That is, there exists a probability kernel P̂X on B ×Ω with the property that
P̂X(B) is a version of P(X−1[B]|G).

Proof We split the proof into two parts. First we show the existence of a
conditional distribution function, after which we show that it generates a regular
conditional distribution of X given G.

We will construct a conditional distribution function on the rational num-
bers. For each q ∈ Q we select a version of P(X ≤ q|G), call it G(q). Let
Erq = {G(r) < G(q)}. Assume that r > q. Then {X ≤ r} ⊃ {X ≤ q} and hence
G(r) ≥ G(q) a.s. and so P(Erq) = 0. Hence we obtain that P(E) = 0, where
E = ∪r>qErq. Note that E is the set where the random variables G(q) fail to be
increasing in the argument q. Let Fq = {infr>q G(r) > G(q)}. Let {q1, q2, . . .}
be the set of rationals strictly bigger then q and let rn = inf{q1, . . . , qn}.
Then rn ↓ q, as n → ∞. Since the indicators 1{X≤rn} are bounded, we
have G(rn) ↓ G(q) a.s. It follows that P(Fq) = 0, and then P(F ) = 0, where
F = ∪q∈QFq. Note that F is the event on which G(·) is not right-continuous.
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Let then H be the set on which limq→∞G(q) < 1 or limq→−∞G(q) > 0. By a
similar argument, we have P(H) = 0. On the set Ω0 := (E ∪ F ∪H)c, the ran-
dom function G(·) has the properties of a distribution function on the rationals.
Note that Ω0 ∈ G. Let F 0 be an arbitrary distribution function and define for
x ∈ R

F̂ (x) = 1Ωc0
F 0(x) + 1Ω0 inf

q>x
G(q).

It is easy to check that F̂ (·) is a distribution function for each hidden argument
ω. Moreover, F̂ (x) is G-measurable and since infq>x 1{X≤q} = 1{X≤x}, we
obtain that F̂ (x) is a version of P(X ≤ x|G). This finishes the proof of the
construction of a conditional distribution function of X given G.

For every ω, the distribution function F̂ (·)(ω) generates a probability mea-
sure PX(·)(ω) on (R,B(R)). Let C be the class of Borel-measurable sets B for
which PX(B) is a version of P(X ∈ B|G). It follows that all intervals (−∞, x]
belong to C. Moreover, C is a d-system. By virtue of Dynkin’s Lemma 1.13,
C = B(R). �

Proposition 8.11 Let X be a random variable and h : R → R be a Borel-
measurable function. Let P̂X be a regular conditional distribution of X given G.
If h(X) ∈ L1(Ω,F ,P), then∫

h(x) P̂X(dx) (8.4)

is a version of the conditional expectation E [h(X)|G].

Proof Consider the collection H of all Borel functions h for which (8.4) is a
version of E [h(X)|G]. Clearly, in view of Theorem 8.10 the indicator functions
1B for B ∈ B(R) belong to H and so do linear combinations of them. If
h ≥ 0, then we can find nonnegative simple functions hn that convergence to h
in a monotone way. Monotone convergence for conditional expectations yields
h ∈ H. If h is arbitrary, we split as usual h = h+ − h− and apply the previous
step. �

Once more we emphasize that regular conditional probabilities in general don’t
exist. The general definition of conditional expectation would be pointless if
every conditional expectation could be computed by Proposition 8.11. The
good news is that in most common situations Proposition 8.11 can be applied.

In Exercise 8.8 you find an explicit expression for the regular conditional
distribution of a random variable X given another random variable Y .

8.3 Exercises

8.1 Let (Ω,F ,P) be a probability space and let A = {A1, . . . , An} be a partition
of Ω, where the Ai belong to F . Let X ∈ L1(Ω,F ,P) and G = σ(A). Show that
any version of E [X|G] is of the form

∑n
i=1 ai1Ai and determine the ai.
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8.2 Let Y be a (real) random variable or random vector on a probability space
(Ω,F ,P). Assume that Z is another random variable that is σ(Y )-measurable.
Use the standard machine to show that there exists a Borel-measurable function
h on R such that Z = h(Y ). Conclude that for integrable X it holds that
E [X|Y ] = h(Y ) for some Borel-measurable function h.

8.3 Prove Proposition 8.9.

8.4 Prove the conditional version of Fatou’s lemma, Theorem 8.6(ii).

8.5 Prove the conditional Dominated Convergence theorem, Theorem 8.6(iii).

8.6 Let (X,Y ) have a bivariate normal distribution with EX = µX , EY = µY ,
VarX = σ2

X , VarY = σ2
Y and Cov (X,Y ) = c. Let

X̂ = µx +
c

σ2
Y

(Y − µY ).

Show that E (X − X̂)Y = 0. Show also (use a special property of the bivariate
normal distribution) that E (X−X̂)g(Y ) = 0 if g is a Borel-measurable function
such that E g(Y )2 <∞. Conclude that X̂ is a version of E [X|Y ].

8.7 Let X,Y ∈ L1(Ω,F ,P) and assume that E [X|Y ] = E [Y |X] (or rather,
version of them are a.s. equal). Show that P(X = Y ) = 1. Hint: Start to work
on E (X − Y )1{X>z,Y≤z} + E (X − Y )1{X≤z,Y≤z} for arbitrary z ∈ R.

8.8 Let X and Y be random variables and assume that (X,Y ) admits a density
f w.r.t. Lebesgue measure on (R2,B(R2)). Let fY be the marginal density of
Y . Define f̂(x|y) by

f̂(x|y) =

{
f(x,y)
fY (y) if fY (y) > 0
0 else.

Assume that E |h(X)| <∞. Put ĥ(y) =
∫

R h(x)f̂(x|y) dx. Show that ĥ(Y ) is a
version of E [h(X)|Y ]. Show also that

P̂(E) =
∫
E

f̂(x|Y ) dx

defines a regular conditional probability on B(R) given Y . What is the excep-
tional set N of section 8.2?

8.9 Consider (Ω,F ,P) = ([0, 1],B, λ), where λ denotes both the Lebesgue mea-
sure on B and the outer measure as in (2.3). Let E be a subset of [0, 1] for
which ν(E) = λ(Ec) = 1 (clearly E is not λ-measurable, see Exercise 2.6 for
existence of such a set). Let F be the smallest σ-algebra that contains B and E.
Show that F ∈ F iff there are B1, B2 ∈ B such that F = (B1 ∩E) ∪ (B2 ∩Ec).
For such a F we define P̂(F ) = 1

2 (λ(B1) + λ(B2)). Check that this definition is
independent of the specific B1 and B2 and that P is a probability measure on
F . Show that there exists no regular conditional probability P̂ on F given B.
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9 Martingales and alike

In this chapter we define martingales, sub- and supermartingales. In the next
chapter we formulate convergence theorems for them and see how these can be
applied to give elegant proofs of some central results in probability theory. The
power of martingales is the combination of their main defining property, that is
shared by a rich class of special cases, and the strong convergence results that
can be obtained in spite of a seemingly innocent definition.

9.1 Basic concepts and definition

As we shall see below, a martingale is a stochastic process with certain defin-
ing properties. A stochastic process, or simply a process, (in discrete time)
is nothing else but a sequence of random variables defined on some underly-
ing probability space (Ω,F ,P). The time set is often taken as {0, 1, 2, . . .} in
which case we have e.g. a sequence of random variables X0, X1, X2, . . .. Such
a sequence as a whole is often denoted by X. So we have X = (Xn)n≥0. Un-
less otherwise stated, all process have their values in R, while the extension to
Rd-valued processes should be clear.

We shall need a sequence of sub-σ-algebras of F , that form a filtration F.
This means that F = (Fn)n≥0, where each Fn is a σ-algebra satisfying Fn ⊂ F ,
and moreover Fn ⊂ Fn+1, for all n ≥ 0. The sequence F is thus increasing.
Recall that in general a union of σ-algebras is not a σ-algebra itself. We define
F∞ := σ(∪∞n=0Fn). Obviously Fn ⊂ F∞ for all n.

If X is a stochastic process, then one defines FXn := σ(X0, . . . , Xn). It is
clear that FX := (FXn )n≥0 is a filtration.

Given a filtration F, we shall often consider F-adapted processes. A process
Y is F-adapted (or adapted to F, or just adapted), if for all n the random
variable Yn is Fn-measurable (Yn ∈ Fn). If F = FX for some process X, then
another process Y is FX -adapted, iff for all n, there exists a Borel function
fn : Rn+1 → R such that Yn = fn(X0, . . . , Xn), see Exercise 8.2. Obviously X
is adapted to FX .

A filtration can be interpreted as an information flow, where each Fn rep-
resents the available information up to time n. For F = FX , the information
comes from the process X and the information at time n is presented by events
in terms of X0, . . . , Xn.

Having introduced all the relevant underlying terminology, we are ready to
define martingales.

Definition 9.1 A stochastic process M = (Mn)n≥0 is called a martingale (or
F-martingale), if it is adapted to a filtration F, if Mn ∈ L1(Ω,F ,P) for all n ≥ 0
and if

E [Mn+1|Fn] = Mn a.s. (9.1)

Equation (9.1), valid for all n ≥ 0 is called the martingale property of M .
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Remark 9.2 The equality (9.1) should be read in the sense that Mn is a version
of the conditional expectation E [Mn+1|Fn]. Although we have always been
careful in formulating properties of conditional expectations in terms of version,
we will drop this care and leave it to the reader to properly interpret statements
given below concerning conditional expectations.

Remark 9.3 The definition of martingales has been given in terms of ‘one-
step-ahead’ conditional expectations. If we change (9.1) in the sense that we
replace on the left hand side E [Mn+1|Fn] with E [Mm|Fn], m ≥ n+1 arbitrary,
we obtain an equivalent definition. (Use the tower property to check this!) A
similar remark applies to the definitions of sub- and supermartingales, that we
will meet shortly.

Let us give some concrete examples of martingales.

Example 9.4 Let X be a process consisting of iid random variables Xn, with
n ≥ 1 and assume that X1 ∈ L1(Ω,F ,P). Put X0 = 0 and Sn =

∑n
k=0Xk =∑n

k=1Xk. Take F = FX . Obviously, S is adapted to F, each Sn belongs to
L1(Ω,F ,P) and we have from properties of conditional expectation (see Propo-
sition 8.5 and Theorem 8.7) a.s. the following chain of equalities.

E [Sn+1|Fn] = E [Sn +Xn+1|Fn]
= E [Sn|Fn] + E [Xn+1|Fn]
= Sn + EXn+1.

Hence, S is a martingale iff EX1 = 0. We conclude that a martingale is an
extension of the partial sum process generated by a sequence of iid random
variables having expectation zero.

The previous example was in terms of sums. The next one involves products.

Example 9.5 Let X be a process consisting of iid random variables Xn, with
n ≥ 1 and assume that X1 ∈ L1(Ω,F ,P). Put X0 = 1 and Pn =

∏n
k=0Xk =∏n

k=1Xk. Take F = FX . Obviously, P is adapted to F. We even have that each
Sn belongs to L1(Ω,F ,P), because of the product rule for products of inde-
pendent random variables, see Proposition 4.30. From properties of conditional
expectation we obtain a.s.

E [Pn+1|Fn] = E [PnXn+1|Fn]
= Pn E [Xn+1|Fn]
= Pn EXn+1.

Hence, P is a martingale iff EX1 = 1.

Here is another fundamental example.
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Example 9.6 Let X be a random variable with E |X| <∞ and F a filtration.
Put Mn = E [X|Fn], n ≥ 0. By the tower property (see Theorem 8.7(i)) of con-
ditional expectation we obtain E [Mn+1|Fn] = E [E [X|Fn+1]|Fn] = E [X|Fn] =
Mn, where all equalities are to be understood in the a.s. sense. The process M
is thus a martingale.

Assume further that X ∈ L2(Ω,F ,P). We can interpret Mn as the best
prediction of X given the ‘information’ Fn. Take as a measure of ‘prediction
error’ the mean square loss E (X − Y )2, Y ∈ L2(Ω,Fn,P), see Proposition 8.9.
Put vn := E (Mn−X)2. One can show that the vn are decreasing (Exercise 9.2),
which supports our intuitive understanding that with more information one
should be able to predict better.

Next to martingales also super- en submartingales are of considerable interest.

Definition 9.7 A stochastic process X = (Xn)n≥0 is called a submartingale
(or F-submartingale), if it is adapted to a filtration F, if Xn ∈ L1(Ω,F ,P) for
all n ≥ 0 and if

E [Xn+1|Fn] ≥ Xn a.s. (9.2)

Equation (9.2), valid for all n ≥ 0 is called the submartingale property of
X. A stochastic process X = (Xn)n≥0 is called a supermartingale (or F-
supermartingale), if −X is a submartingale.

Equations (9.1) and (9.2) can be interpreted by saying that a martingale follows
a constant trend, whereas a submartingale displays an increasing trend. Of
course, a supermartingale fluctuates around a decreasing trend. Notice that
it also follows from (9.1) that a martingale has constant expectation, EMn =
EM0, for all n. On the other hand, a submartingale has increasing expectations,
as follows from (9.2).

Example 9.8 We revisit the first two examples given above. In Example 9.4
we obtain a submartingale if the Xn have positive expectation, resulting in
an increasing trend, whereas a negative expectation for the Xn turns S into a
supermartingale. In Example 9.5 we now restrict the Xn to be positive. Then
P will become a submartingale if EXn ≥ 1 and a supermartingale for EXn ≤ 1.

If X is any process, we define the process ∆X by

∆Xn = Xn −Xn−1, n ≥ 1.

It trivially follows that Xn = X0 +
∑n
k=1 ∆Xk. Sometimes it is convenient to

adopt the convention ∆X0 = X0, from which we then obtain Xn =
∑n
k=0 ∆Xk.

The martingale property of an adapted integrable process X can then be for-
mulated as E [∆Xn+1|Fn] = 0 a.s. for n ≥ 0. For submartingales it holds that
E [∆Xn+1|Fn] ≥ 0 a.s.

If you want to interpret random variables ξn as the payoffs (profits or losses, de-
pending on the sign) of your bets in the n-th game of a series, then Sn =

∑n
k=1 ξk
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would be your accumulated total capital after n games. Here we have ∆Sn = ξn.
If S is a submartingale, you are playing a favorable game, and if S is martingale
you are playing a fair game. It should be clear what an unfavorable fame is. In
the next subsection we will investigate whether it is possible by playing clever
strategies to turn an unfavorable game into a favorable one.

9.2 Stopping times and martingale transforms

Somebody who would know at time n − 1 what is going to be the outcome of
a random experiment to be held at time n, is in that sense clairvoyant. He is
able to ‘predict’ this future outcome. This motivates the notion of a predictable
(also called previsible) process.

Definition 9.9 Given a filtration F, a process Y = (Yn)n≥1 is called F-predict-
able (or just predictable) if Yn ∈ Fn−1, n ≥ 1. A convenient convention is to
set Y0 = 0.

You may consider a predictable process Y to be a strategy, it tells you what your
action at time n is going to be, given that you use your information available
at time n− 1. In a trivial sense, you ‘perfectly’ predict Yn at time n− 1.

Suppose that a sequence of random variables ξn (with ξ0 = 0) represents
the payoff of a game at time n when you make a unit bet, then Ynξn would be
the payoff when you bet Yn units at time n. When you are not a clairvoyant
and have no insider information, your bet Yn cannot depend on future outcomes
ξm, m ≥ n of the game, but you are allowed to let them depend on what has
been realized before, i.e. to take Y as Fξ-predictable. The accumulated, or
total, earnings up to time n are Sn =

∑n
k=1 Ykξk (with S0 = 0). If we let

Xn =
∑n
k=0 ξk, we get ∆Sn = Yn∆Xn. We also have Sn =

∑n
k=1 Yk∆Xk. This

notation is a discrete time analogue of an expression like St =
∫ t

0
Ys dXs. Such

an expression, for suitable defined stochastic processes with a continuous time
parameter are called stochastic integrals. Because of the analogy, a process like S
above, is sometimes called a discrete time stochastic integral, in particular when
X is a martingale. In that case one also speaks of a martingale transform. A
common notation is to write in this case S = Y ·X for the process S. Note that
the ‘dot’ here is not the multiplication operator. If Z is another (predictable)
process, we have Z · S = (ZY ) ·X. The term martingale transform is justified
by the following proposition.

Proposition 9.10 Let X be an adapted process and Y a predictable process.
Assume that the Xn are in L1(Ω,F ,P) as well as the Yn∆Xn. Let S = Y ·X.
The following results hold.
(i) If X is martingale, so is S.
(ii) If X is a submartingale (supermartingale) and if Y is nonnegative, also S
is a submartingale (supermartingale).

Proof Clearly, S is adapted. All three statements follow from the identity
E [∆Sn|Fn−1] = YnE [∆Xn|Fn−1] a.s., which holds by virtue of Theorem 8.7(ii),
and the definitions of martingale and sub-, supermartingale. �
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Back to the interpretation in terms of betting and games. If you play an unfavor-
able game, the accumulated ‘gains per unit bet’ process X is a supermartingale.
A (predictable) strategy Y has to be nonnegative (negative bets are usually
not allowed). Proposition 9.10 tells us that whatever strategy you play, your
accumulated gains process Y ·X will still be a supermartingale, an unfavorable
game.

Although, as we have explained above, you are not able to change the nature
of the game by using predictable strategies, it is still a good question to ask for
optimal strategies. A strategy could be called optimal, if it maximizes SN at
some fixed end time N . Questions like this are answered in the theory of optimal
stopping. We don’t treat this theory in this course, but we do pay attention to
one of the basic ingredients, stopping times. A formal definition follows.

Definition 9.11 Let F be a filtration. A mapping T : Ω→ {0, 1, 2, . . .} ∪ {∞}
is called a stopping time if for all n ∈ {0, 1, 2, . . .} it holds that {T = n} ∈ Fn.

Let us make a few observations. Recall the inclusions Fn ⊂ F∞ ⊂ F hold
for all n. The event {T = ∞} can be written as (∪∞n=0{T = n})c. Since
{T = n} ∈ Fn ⊂ F∞, we have {T = ∞} ∈ F∞. Hence the requirement
{T = n} ∈ Fn in Definition 9.11 extends to n =∞.

Another observation is that T is a stopping time iff {T ≤ n} ∈ Fn is true
for all n ∈ {0, 1, 2, . . .}. One implication follows from {T ≤ n} = ∪nk=0{T = k},
the other from {T = n} = {T ≤ n} \ {T ≤ n− 1}.

The name stopping time can be justified as follows. If you bet, you want to
reach a goal, which could be trying to gain a profit of at least 1000 euro, and
you stop playing, once you have reached your goal (if it ever happens). If
your gains process is S, in this case you will stop playing at time T , where
T = inf{n ≥ 0 : Sn ≥ 1000}, with the convention inf ∅ =∞. Indeed, as we will
see in the next proposition, that describes a slightly more general situation, T
is a stopping time if S is adapted.

Proposition 9.12 Let F be a filtration and X an adapted process. Let B ∈ B
be a Borel set in R and let T = inf{n ≥ 0 : Xn ∈ B}. Then T is a stopping
time.

Proof The event {T ≤ n} can alternatively be expressed as ∪nk=0{Xk ∈ B}
and here {Xk ∈ B} ∈ Fk ⊂ Fn by adaptedness of X. �

Let T be a stopping time and n ∈ {0, 1, 2, . . .}. Define Tn(ω) := T (ω) ∧ n, the
minimum of T (ω) and n. Then Tn is also a stopping time. Indeed, for k < n
we have {Tn ≤ k} = {T ≤ k} ∈ Fk, whereas {Tn ≤ k} = Ω for k ≥ n. Usually
we write T ∧ n for Tn.

If X is an adapted process and T a stopping time, we define the stopped
process XT by XT

n (ω) := XT (ω)∧n(ω), n ≥ 0. Note that XT
0 = X0 and XT

n (ω) =
XT (ω)(ω) for n ≥ T (ω), abbreviated XT

n = XT on {T ≤ n}. This explains the
terminology.
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Proposition 9.13 If X is an adapted process and T a stopping time, then XT

is adapted too. Moreover, if X is a supermartingale, so is XT and then EXT
n ≤

EX0. If X is a martingale, then XT is a martingale too and EXT
n = EX0.

Proof Let X be adapted. Write XT
n =

∑n
k=0 1{T=k}Xk + 1{T>n}Xn and Fn-

measurability of XT
n easily follows. To show the other assertions, we define the

process Yn = 1{T≥n}, n ≥ 1. Note that {Yn = 0} = {T ≤ n − 1} ∈ Fn−1.
Hence Y is predictable. A simple computation shows that ∆XT

k = Yk∆Xk,
hence XT = X0 + Y ·X. The assertions now follow from Proposition 9.10. �

For a stopping time T and an adapted process X, the obvious definition of the
random variable XT (the value of the process at the stopping time) would be
XT (ω) = XT (ω)(ω), so XT = Xn on {T = n}. But since T may assume the
value ∞, there is a problem, because we often only have Xn for n < ∞. The
problem can be circumvented by defining XT only on {T < ∞} and setting it
equal to zero outside that set, which leads to XT = XT1{T<∞}. Another way
out could be to assume that we also have a random variable X∞, in which case
XT is properly defined everywhere. Of course the problem disappears if T is
finite, or even bounded.

Example 9.14 Here is a seemingly winning strategy for a fair game. Let (ξ)n≥1

be an iid sequence of random variable with P(ξn = ±1) = 1
2 . Then the process

X, Xn =
∑n
k=1 ξk with X0 = 0, is a martingale with EXn = 0. For any strategy

Y , the total earnings process starting from zero is again S = Y ·X. Note that
Sn = Sn−1 +Ynξn. The strategy of interest is defined by the predictable process
Y , where Yn = 1−Sn−1 and Y1 = 1. What happens at time n if ξn = 1? In that
case, Sn = Sn−1 + (1−Sn−1) = 1 and then Yn+1 = 0, so Sn+1 = Sn = 1, and so
Sk = 1 for k ≥ n. If ξn = −1, we obtain Sn = Sn−1 − (1− Sn−1) = 2Sn−1 − 1.
Hence Yn+1 = 2(1− Sn−1) = 2Yn. It follows that the strategy doubles, as long
as the ξn are equal to −1, which results in Yn = 2n−1 on the event {ξ1 = · · · =
ξn−1 = −1} and zero on its complement. As soon as ξn = 1, you stop playing
and go home with your profit Sn = 1. Let T = inf{n : Sn = 1}. One checks that
P(T = n) = P(ξ1 = · · · = ξn−1 = −1, ξn = 1) = 2−n. Hence P(T < ∞) = 1.
Moreover ST = 1. Here is the pitfall of this strategy. The last (non-zero) bet is
equal to YT = 2T−1 =

∑∞
n=1 2n−11{T=n}, which assumes arbitrary large values

and has expectation EYT =
∑∞
n=1 2n−1P(T = n) =∞. Therefore, you need an

infinite capital to successfully play this strategy to the very end.

We have seen an example of a martingale, S, that has expectation zero, ESn = 0
for all n ≥ 1, whereas EST = 1. This was essentially caused by the facts that
S is not bounded, P(Sn = 1− 2n) > 0, and that T not bounded.

Theorem 9.15 Let X be supermartingale and T an a.s. finite stopping time.
Assume either
(i) X a.s. bounded from below by random variable Y ∈ L1(Ω,F ,P), or
(ii) T is bounded, i.e. there exists N <∞ such that P(T ≤ N) = 1 or
(iii) The process ∆X is bounded by a constant C and ET <∞
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Then EXT ≤ EX0.
If X is a martingale, then we get EXT = EX0 under (ii) and (iii) and also
under the assumption (iv) that X is bounded.

Proof Let X be a supermartingale. We know from Proposition 9.13 that XT

is a supermartingale, hence E |XT
n | <∞ for all n, and EXT

n ≤ EX0. Note that
XT
n
a.s.→ XT , since T <∞ a.s.

Assume (i). By assumption, XT
n − Y ≥ 0. Hence we can apply Fatou’s

lemma and Proposition 9.13 to get E (XT − Y ) = E limn→∞(XT
n − Y ) ≤

lim infn→∞ E (XT
n −Y ) = lim infn→∞ EXT

n −EY ≤ EX0−EY . Hence EXT ≤
EX0. If we assume (ii), then we only need XT = XT

N , whose expectation is at
most equal to EX0 by Proposition 9.13. Finally, we assume (iii) under which
we have |XT

n −X0| ≤ CT . Therefore we can apply the Dominated Convergence
Theorem to get E (XT −X0) = limn→∞ E (XT

n −X0) ≤ 0.
If X is a martingale, then the assertion follows as above under (ii) and (iii),

whereas under (iv) it follows by dominated convergence. �

9.3 Doob’s decomposition

The celebrated decomposition theorem by Doob for submartingales is presented
as part of the next proposition. It says that a submartingale can be decomposed
as the sum of a predictable increasing trend and a martingale.

Proposition 9.16 Let X be an adapted process and assume that E |Xn| < ∞
for all n. Then there exists a predictable process A and a martingale M such
that Xn = An + Mn a.s. for n ≥ 1. The process A is a.s. unique in the sense
that if A′+M ′ is another additive decomposition of X with the same properties,
then P(An = A′n,∀n ≥ 1) = 1. Moreover, A is a.s. an increasing process iff X
is a submartingale.

Proof Note first that E |∆Xn| <∞ for all n. We define the predictable process
A is follows. For n ≥ 1, we put ∆An := E [∆Xn|Fn−1] (or rather, any version
of it) and An =

∑n
k=1 ∆Ak. That A is predictable should be immediately clear.

Knowing this, we define M , by setting M0 = X0 and ∆Mn := ∆Xn −∆An for
n ≥ 1 and finally Mn = M0 +

∑n
k=1 ∆Mk. By its definition, M is a martingale,

since E [∆Mn|Fn−1] = 0 a.s. Note that ∆An ≥ 0 a.s. if X is a submartingale, in
which case A becomes increasing. The converse statement is as easy to prove.

To prove uniqueness, we argue as follows. Since Xn = An+Mn = A′n+M ′n,
we have A′n−An = M ′n−Mn and so A′−A becomes a predictable martingale.
These properties yield A′n − An = E [A′n − An|Fn−1] = A′n−1 − An−1 a.s. It
follows that P(∆A′n = ∆An) = 1 for each individual n. But then also P(∆A′n =
∆An,∀n ≥ 1) = 1, since it is the countable union of events with probability
one. Since A′0 = A0 = 0, we get the assertion about unicity. �

Corollary 9.17 Let M be a martingale with EM2
n < ∞ for all n. Then there

exists a unique (in the sense of Proposition 9.16) increasing predictable process
〈M〉 with 〈M〉0 = 0 such that M2 − 〈M〉 is a martingale. Moreover, for n ≥ 1
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the random variable ∆〈M〉n is (a version of) the conditional variance of Mn

given Fn−1, i.e.

∆〈M〉n = E [(Mn − E [Mn|Fn−1])2|Fn−1] = E [(Mn −Mn−1)2|Fn−1]a.s.

It follows that ‘Pythagoras’s theorem’ holds for square integrable martingales,

EM2
n = E (M0 +

n∑
k=1

∆Mk)2 = EM2
0 +

n∑
k=1

E (∆Mk)2,

Proof First we note that M2 is a submartingale, see Exercise 9.3. Hence the
previous proposition applies and the only thing left to prove is the statement
about the conditional variance. Since M is a martingale, we have a.s.

E [(Mn −Mn−1)2|Fn−1] = E [M2
n − 2MnMn−1 +M2

n−1|Fn−1]

= E [M2
n|Fn−1]−M2

n−1

= E [M2
n −M2

n−1|Fn−1],

which is by the proof of Proposition 9.16 just the definition of ∆〈M〉n. �

Remark 9.18 The process 〈M〉 of Corollary 9.17 is also called the predictable
quadratic variation process of M . It holds that EM2

n = EM2
0 + E 〈M〉n. Since

〈M〉 is an a.s. increasing process, it has an almost sure limit 〈M〉∞ ≤ ∞. It
follows that M is bounded in L2 (supn EM2

n <∞) iff E 〈M〉∞ <∞.

9.4 Optional sampling

Let F be a filtration. For a stopping time T we define the σ-algebra

FT := {F ⊂ Ω : F ∩ {T ≤ n} ∈ Fn for every n}.

If S and T are stopping times with S ≤ T , then FS ⊂ FT . If X is a process
with index set N, we define XT =

∑∞
n=0Xn1{T=n} and so XT = XT 1{T<∞}. If

also X∞ is defined, we include n =∞ in the last summation. In both cases XT

is a well-defined random variable and even FT -measurable (check!).

Lemma 9.19 Let X be a submartingale and T a bounded stopping time, T ≤ N
say for some N ∈ N. Then E |XT | <∞ and

XT ≥ E [XN |FT ] a.s. (9.3)

Proof Integrability of XT follows from |XT | ≤
∑N
n=0 |Xn|. Let F ∈ FT . Then,
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because F ∩ {T = n} ∈ Fn and the fact that X is a submartingale, we have

E [XN1F ] =
N∑
n=0

E [XN1F 1{T=n}]

≥
N∑
n=0

E [Xn1F 1{T=n}]

=
N∑
n=0

E [XT 1F 1{T=n}]

= E [XT 1F ],

which is what we wanted to prove. �

Theorem 9.20 Let X be a uniformly integrable martingale with a last element
X∞, so Xn = E [X∞|Fn] a.s. for every n. Let T and S be stopping times with
S ≤ T . Then XT and XS are integrable and
(i) XT = E [X∞|FT ] a.s.
(ii) XS = E [XT |FS ] a.s.

Proof First we show that XT is integrable. Notice that E |XT |1{T=∞} =
E |X∞|1{T=∞} ≤ E |X∞| < ∞. Next, because |X| is a submartingale with
last element |X∞|,

E |XT |1{T<∞} =
∞∑
n=0

E |Xn|1{T=n}

≤
∞∑
n=0

E |X∞|1{T=n}

= E |X∞|1{T<∞} <∞.

We proceed with the proof of (i). Notice that T ∧n is a bounded stopping time
for every n. But then by Lemma 9.19 it holds a.s. that

E [X∞|FT∧n] = E [E [X∞|Fn]|FT∧n]
= E [Xn|FT∧n]
= XT∧n.

Let now F ∈ FT , then F ∩ {T ≤ n} ∈ FT∧n and by the above display, we have

E [X∞1F∩{T≤n}] = E [XT∧n1F∩{T≤n} = E [XT 1F∩{T≤n}].

Let n→∞ and apply the Dominated convergence theorem to get

E [X∞1F 1{T<∞}] = E [XT 1F 1{T<∞}].
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Together with the trivial identity E [X∞1F 1{T=∞}] = E [XT 1F 1{T=∞}] this
yields E [X∞1F ] = E [XT 1F ] and (i) is proved.
For the proof of (ii) we use (i) two times and obtain

E [XT |FS ] = E [E [X∞|FT ]|FS ] = E [X∞|FS ] = XS .

�

Theorem 9.21 Let X be a submartingale such that Xn ≤ 0 for all n = 0, 1, . . ..
Let T and S be stopping times with S ≤ T . Then XT and XS are integrable
and XS ≤ E [XT |FS ] a.s.

Proof Because of Lemma 9.19 we have E [−XT∧n] ≤ E [−X0] for every n ≥ 0,
which implies by virtue of Fatou’s lemma 0 ≤ E [−XT 1{T<∞}] <∞.

Let E ∈ FS , then E ∩ {S ≤ n} ∈ FS∧n. An application of Lemma 9.19 and
non-positivity of X yields

E [XS∧n1E1{S≤n}] ≤ E [XT∧n1E1{S≤n}] ≤ E [XT∧n1E1{T≤n}]

and hence

E [XS1E1{S≤n}] ≤ E [XT 1E1{T≤n}].

The Monotone convergence theorem yields E [XS1E ] ≤ E [XT 1E ]. �

Theorem 9.22 Let X be a submartingale with a last element X∞, so Xn ≤
E [X∞|Fn] a.s. for every n. Let T and S be stopping times with S ≤ T . Then
XT and XS are integrable and
(i) XT ≤ E [X∞|FT ] a.s.
(ii) XS ≤ E [XT |FS ] a.s.

Proof Let Mn = E [X∞|Fn]. By Theorem 9.20, we get MS = E [MT |FS ].
Put then Yn = Xn − Mn. Then Y is a submartingale with Yn ≤ 0. From
Theorem 9.21 we get YS ≤ E [YT |FS ]. Since XT = MT +YT and XS = MS+YS ,
the result follows. �

9.5 Exercises

9.1 Let Ω = {0, 1}N and denote by ω = (ω1, ω2, . . .) a typical element of Ω. Let
Xn : Ω → R be defined by Xn(ω) = ωn (n ≥ 1) and put Fn = σ(X1, . . . , Xn).
Write down the elements of F1 and F2 explicitly and describe the elements of
Fn for arbitrary n. How many elements does Fn have?

9.2 Show that the sequence (vn) of Example 9.6 is decreasing.

9.3 Let X be a submartingale and f an increasing convex function. Show that
f(X) is again a submartingale, if E |f(Xn)| <∞ for all n. If X is a martingale,
then f(X) is a submartingale even if f is not increasing, but still convex.
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9.4 Let X be an adapted process and T a stopping time that is finite. Show
that XT is F-measurable.

9.5 For every n we have a measurable function fn on Rn. Let Z1, Z2, . . . be
independent random variables and Fn = σ(Z1, . . . , Zn). Show that (you may
assume sufficient integrability) that Xn = fn(Z1, . . . , Zn) defines a martingale
under the condition that Efn(z1, . . . , zn−1, Zn) = fn−1(z1, . . . , zn−1) for every
n.

9.6 If S and T are stopping times, then also S+T , S∨T and S∧T are stopping
times. Show this.

9.7 Show that an adapted process X is a martingale iff E[Xn+m|Fn] = Xn for
all n,m ≥ 0.

9.8 Let M be a martingale such that ∆M is a bounded process and Y a bounded
predictable process. Let X = Y ·M . Show that EXT = 0 if T is a finite stopping
time.

9.9 Let X1, X2, . . . be an iid sequence of Bernoulli random variables with prob-
ability of success equal to p. Put Fn = σ(X1, . . . , Xn), n ≥ 1. Let M be a
martingale adapted to the generated filtration. Show that the Martingale Rep-
resentation Property holds: there exists a constant m and a predictable process
Y such that Mn = m+ (Y · S), n ≥ 1, where Sn =

∑n
k=1(Xk − p).

9.10 Let X1, X2, . . . be a sequence of independent random variables with σ2
n =

EX2
n <∞ and EXn = 0 for all n. Let the filtration generated by X and define

the martingale M by Mn =
∑n
k=1Xk. Determine 〈M〉.

9.11 Let M be a martingale with EM2
n <∞ for every n. Let C be a bounded

predictable process and X = C ·M . Show that EX2
n < ∞ for all n and that

〈X〉 = C2 · 〈M〉.

9.12 Let M be a martingale with EM2
n <∞ for all n and T a stopping time. We

know that the stopped processMT is a martingale too. Show that E (MT
n )2 <∞

for all n and that 〈MT 〉n = 〈M〉n∧T for every n.
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10 Convergence theorems

The key idea behind the convergence theorems of this chapter is explained first.
Consider a sequence of real numbers (xn). Suppose that xn → x ∈ R and
let (a, b) be any open interval containing x. Then there is N > 0 such that
xn ∈ (a, b) for n ≥ N . Hence there will be only finitely many fluctuations of
the sequence between values smaller than a and values larger than b. This is
obviously also true, when x /∈ (a, b). Let’s see what happens if (xn) doesn’t have
a limit. In that case, x = lim inf xn < x̄ = lim supxn. Let (a, b) ⊂ (x, x̄). Then
there exists a subsequence (xnk) such that xnk > b for all k, and a subsequence
(xmk) such that xmk < a. Hence there are infinitely many fluctuations between
values below a and values above b. We conclude that convergence of the sequence
is equivalent to have only finitely many fluctuations from below a to above b,
for any pair of real (even rational) numbers a, b with a < b. Something similar
can be said if the limit is equal to ±∞.

Below we use upcrossings, these are defined next. Recall that inf ∅ =∞.

Definition 10.1 Let (xn) be a sequence of real numbers and N ∈ N. Let
a < b be real numbers. Put B1 = inf{n ≥ 0 : xn < a}, S1 = inf{n > B1 :
xn > b} and then recursively for n ≥ 2: Bn = inf{k > Sn−1 : xk < a}, and
Sn = inf{k > Bn : xk > b}. Then we define UN (a, b) = max{n : Sn ≤ N}
and U(a, b) = limN→∞ UN (a, b). UN (a, b) is called the number of upcrossings
over the interval (a, b) up to time N , whereas U(a, b) is the total number of
upcrossings of the sequence (xn) over (a, b). An upcrossing is a random interval
(Bk, Sk] in N. A downcrossing is then an interval (Sk, Bk+1].

It follows from the discussion above that a sequence converges, possibly with
limits ±∞, iff U(a, b) < ∞ for all a < b. If X is a stochastic process, then
we can apply the definition of upcrossings to any sequence (Xn(ω)). Then all
Bn and Sn will depend on ω, which we then view as mappings Bn, Sn : Ω →
{0, 1, 2, . . .} ∪ {∞}. The same holds for the Un(a, b) and U(a, b). In fact they
are all random variables.

10.1 Doob’s convergence theorem

The first result is that the random times Bn and Sn are stopping times, if the
underlying process X is adapted.

Proposition 10.2 Let X be an adapted process. Fix a < b. Then the Bn and
Sn are stopping times. Furthermore, UN (a, b) is FN -measurable and U(a, b) is
F∞-measurable.

Proof Exercise 10.1. �

Next we introduce the predictable process Y , defined by Yn =
∑∞
k=1 1{Bk<n≤Sk}.

Notice that Yn takes values in {0, 1} and that {Bk < n ≤ Sk} ∈ Fn−1, for all k
and n. Hence {Yn = 1} ∈ Fn−1 as well, which entails that Y is predictable. Let
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Z = Y ·X. If Sk <∞, then ZSk −ZBk > (b−a). You may think of Y as a ‘buy
low, sell high’ strategy, if X has the interpretation of a stock price. During an
upcrossing your profit will be at least b− a.

Lemma 10.3 It holds that ZN ≥ (b− a)UN − (XN − a)−.

Proof We discern two cases. If N belongs to a downcrossing, then we have
ZN ≥ (b− a)UN (a, b), since there are exactly UN (a, b) upcrossings to the left of
N . Note that in this case we have N ∈ (SUN , BUN+1 ]. If N falls in an upcrossing,
then we can write ZN = ZBUN+1

+ (ZN −ZBUN+1
) = ZSN + (XN −XBUN+1

) ≥
(b − a)UN (a, b) + XN − a ≥ (b − a)UN (a, b) − (XN − a)−. Combining the two
cases, we arrive at the assertion. �

Proposition 10.4 Let X be a supermartingale that is bounded in L1 (i.e. there
is M > 0 such that supn E |Xn| < M). Then for all a < b it holds that
EU(a, b) <∞ and thus U(a, b) <∞ a.s.

Proof If X is a supermartingale, then also Z by virtue of Proposition 9.10.
It follows that EZN ≤ EZ0 = 0. From Lemma 10.3 we obtain 0 ≥ EZN ≥
(b−a)EUN (a, b)−E (XN −a)−. Hence (b−a)EUN (a, b) ≤ supn E (Xn−a)− ≤
|a| + supn E |Xn| ≤ |a| + M . Since the UN (a, b) form an increasing sequence,
the Monotone Convergence Theorem yields (b− a)EU(a, b) ≤ |a|+M . �

Here is the first convergence result for supermartingales, Doob’s convergence
theorem.

Theorem 10.5 Let X be a supermartingale which is bounded in L1. Then there
exists a random variable X∞ ∈ L1(Ω,F∞,P) such that Xn

a.s.→ X∞.

Proof Define X∞ := lim inf X+
n − lim inf X−n . Then |X∞| ≤ lim inf X+

n +
lim inf X−n and from Fatou’s lemma we deduce that E |X∞| ≤ lim inf EX+

n +
lim inf EX−n ≤ 2 lim inf E |Xn|, which is finite by the assumption that X is
bounded in L1. Note that if (Xn) has an a.s. limit, it must be a.s. equal to
X∞. Hence, the limit -if it exists- has finite expectation and is thus a.s. finite.
Let now N be the event that Xn doesn’t have an a.s. limit in [−∞,∞]. Then
N = {lim inf Xn < lim supXn}. We can write N = ∪a<b, a,b∈QNa,b, where
Na,b = {lim inf Xn < a < b < lim supXn}. On Na,b it holds that U(a, b) = ∞.
But the latter event has probability zero, in view of Proposition 10.4. Hence,
N , being a countable union of events with probability zero also has probability
zero, which concludes the proof. �

Remark 10.6 Notice that the theorem only states that a.s. convergence hold,
no other type of convergence, except convergence in probability, necessarily
holds true. If X is a martingale, it is attractive to add X∞ to the sequence X
to obtain a process with time index set that includes infinity. It would be very
nice that the martingale property would extend to n =∞, i.e. E [X∞|Fn] = Mn

a.s. But this not true in general, see Exercise 10.2. In the next section we will
give necessary and sufficient conditions under which the extended martingale
property holds.
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The following corollary can be seen as a stochastic version of the elementary
result that every decreasing sequence that is bounded from below has a limit.

Corollary 10.7 If X is a supermartingale that is bounded from below, then
there exists a random variable X∞ ∈ L1(Ω,F∞,P) such that Xn

a.s.→ X∞.

Proof Take a constant c such that Yn = Xn + c ≥ 0 for all n. Then Y is also
a supermartingale and E |Yn| = EYn ≤ EY0. Hence Y admits an a.s. limit and
so does X. �

10.2 Uniformly integrable martingales and convergence

Recall the definition of a uniformly integrable collection of random variables C,
Definition 7.11, and that a uniformly integrable collection C is also bounded in
L1, Exercise 7.5. These facts account for half of the proof of

Theorem 10.8 Let X be a uniformly integrable supermartingale. Then there
exists a random variable X∞ ∈ L1(Ω,F∞,P) such that Xn → X∞ both almost
surely and in L1. Moreover, the extended supermartingale property holds, i.e.

E [X∞|Fn] ≤ Xn. (10.1)

If X is a martingale then we even have E [X∞|Fn] = Xn.

Proof Let X be a supermartingale. Existence of X∞ and a.s. convergence fol-
lows from Theorem 10.5. Then L1 convergence holds by virtue of Theorem 7.15.
We now show (10.1). Since E [Xm|Fn] ≤ Xn a.s. when m > n (Remark 9.3),
it holds by definition of conditional expectation that E 1GXm ≤ E 1GXn,∀G ∈
Fn. From this it follows that

E 1GX∞ − E 1GXn ≤ E 1GX∞ − E 1GXm

≤ E |1G(X∞ −Xm)|
≤ E |X∞ −Xm|,

which tends to zero for m → ∞ by L1 convergence. The result for super-
martingales follows. When X is martingale, one applies the same reasoning to
|E 1GX∞ − E 1GXn|. �

We conclude that every uniformly integrable martingale is of the form Xn =
E [X∞|Fn], where X∞ is the a.s. and L1 limit of the Xn. In the next proposition
we present a converse statement.

Proposition 10.9 Let ξ ∈ L1(Ω,F ,P) and let G be a family of sub-σ-algebras
of F . Write XG for any version of E [ξ|G]. Then the collection C = {XG :
G ∈ G} is uniformly integrable. In particular, if G is a filtration (Fn) and
Xn := E [ξ|Fn], then the process X is a uniformly integrable martingale.
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Proof Let ε > 0. We have to show the existence of k > 0 such that

sup{E |XG |1{|XG |>k} : G ∈ G} < ε. (10.2)

We exploit the integrability of ξ. Choose δ as in Lemma 7.8 and k > E |ξ|/δ.
By Jensen’s inequality for conditional expectations, see Theorem 8.7, we have

|XG | ≤ E [|ξ| |G] (10.3)

and then E |XG | ≤ E |ξ|. By Markov’s inequality, we obtain

P(|XG | > k) ≤ E |XG |
k

≤ E |ξ|
k

< δ.

Write G = {|XG | > k}. Note that G ∈ G and by (10.3) we get

E |XG |1G ≤ E |ξ|1G < ε,

in view of Lemma 7.8. This proves (10.2). For the case, where G is a filtration,
it remains to show that X is a martingale, but we have already done that in
Example 9.6 �

In the next theorem we connect the results of Theorem 10.8 and Proposi-
tion 10.9. It is known as Lévy’s upward convergence theorem.

Theorem 10.10 Let ξ ∈ L1(Ω,F ,P), F a filtration and Xn = E [ξ|Fn]. Then
the a.s. and L1 limit X∞ of the Xn is (a version of) E [ξ|F∞].

Proof In view of preceding theorems we know of the existence of a limit X∞,
both in the a.s. and L1 sense. To show that it is a.s. equal to E [ξ|F∞], we
invoke Theorem 1.15. Without loss of generality we suppose that ξ ≥ 0 a.s.,
then also X∞ ≥ 0 a.s. Since both ξ and X∞ are integrable, νξ(G) := E 1Gξ and
ν∞(G) := E 1GX∞ define finite measures on F∞ (Exercise 4.9) with νξ(Ω) =
ν∞(Ω) = E ξ. Moreover, they coincide on the algebra ∪∞n=1Fn, since for G ∈ Fn
one has νξ(G) = E 1GXn by the definition of X and ν∞(G) = E 1GXn by
Theorem 10.8. We conclude that νξ and ν∞ are the same on F∞. By definition
of conditional expectation, we then have νξ(G) = E 1GE [ξ|F∞], ∀G ∈ F∞.
Since both E [ξ|F∞] and X∞ are F∞-measurable, they must be equal. �

Next we need an extension of the concept of filtration. Recall that a filtration
is an increasing sequence of σ-algebras, Fn ⊂ Fn+1. A filtration is thus growing
to the right. We extend this in the sense that we now also allow the time index
n to be negative. Hence we have Fn ⊂ Fn+1 for all n ∈ Z. Hence a filtration is
shrinking to the left. Notice that F−∞ := ∩n<0Fn is a σ-algebra as well and can
be considered as an infimum. Similarly we extend the notion of a martingale
to have negative indexes too. So, a martingale X = (Xn)n∈Z is a sequence
of integrable random variables adapted to a filtration for which the martingale
property (9.1) is valid for all n ∈ Z. Below we need these concepts only for
n < 0. The next result is known as Lévy’s downward theorem.
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Theorem 10.11 Let F be a filtration on the negative integers and X an F-
adapted martingale. Then there is a F−∞-measurable random variable X−∞
such that Xn → X−∞ both a.s. and in L1 as n → −∞. Moreover X−∞ =
E [X−1|F−∞].

Proof Since Xn = E [X−1|Fn] for n < −1 we have that X is uniformly inte-
grable in view of Proposition 10.9. Hence L1 convergence follows from a.s. con-
vergence (Proposition 7.15), the latter to be established now. In the proof of
Theorem 10.5, we used the upcrossings inequality of Lemma 10.3. This applies
to the present case as well, if we shift the time over a distance of N to the left.
Denote the number of upcrossings over (a, b) in a time interval from −N to 0
by U−N (a, b). Taking expectations as in the proof of Theorem 10.5, we obtain
EU−N (a, b) ≤ E (X−1−a)−/(b−a). Hence also U−∞(a, b) := limN→∞ U−N (a, b)
has finite expectation. The rest of the proof of existence of the a.s. limit is as
before. The characterization of the limit as a conditional expectation is as in
the proof of Theorem 10.8. �

In Section 10.4 we will see a nice application of this theorem.

10.3 Lp convergence results

In this section our aim is to specialize preceding results to the case where a
martingale X is bounded in Lp, i.e. supn E |Xn|p < ∞, where p > 1. We have
already seen in Example 7.12 that X is uniformly integrable. By Theorem 10.8
the Xn converge to a limit X∞ almost surely and in L1. Our goal is to establish
Lp convergence, meaning ||Xn − X∞||p → 0, equivalently E |Xn − X∞|p → 0.
It turns out useful to formulate most results in terms of submartingales. Here
is the first one.

Proposition 10.12 Let X be a nonnegative submartingale and write X∗n =
max{X1, . . . , Xn}. For λ > 0 it holds that

λP(X∗n ≥ λ) ≤ E 1{X∗n≥λ}Xn. (10.4)

It then follows that λP(X∗n ≥ λ) ≤ EXn.

Proof Let T = inf{n ≥ 0 : Xn ≥ λ}. Then T is a stopping time and {X∗n ≥
λ} = {T ≤ n}. It holds that Ek := {T = k} ⊂ {Xk ≥ λ} and by the
submartingale property of X we have E 1EkXk ≤ 1EkXn, since Ek ∈ Fk. Then
we get λP(Ek) = λE 1Ek ≤ E 1EkXk ≤ E 1EkXn. Equation (10.4) follows by
summing over k. �

Remark 10.13 Let ξ1, ξ2, . . . be a sequence of independent random variables
with expectation zero and finite second moment. Let Mn =

∑n
k=1 ξk and

M∗n = max{|M1|, . . . , |Mn|}. Then λ2P(M∗n ≥ λ) ≤ EM2
n, as follows by taking

Xn = M2
n in Proposition 10.12. This can be viewed as a ‘supremum version’ of

Chebychev’s inequality.
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On our path to establishing Lp convergence we need the following lemma. Ob-
serve that (10.4) is of the type λP(Y ≥ λ) ≤ E 1{Y≥λ}X. Such an inequality
has a surprising consequence.

Lemma 10.14 Let X and Y be nonnegative random variables for which the
inequality

λP(Y ≥ λ) ≤ E 1{Y≥λ}X (10.5)

holds for all λ > 0. If X ∈ Lp(Ω,F ,P) for p > 1, then also Y ∈ Lp(Ω,F ,P)
and moreover, ||Y ||p ≤ q||X||p, where q = p

p−1 , as in Hölder’s inequality.

Proof Since (10.5) holds for all λ > 0 we can integrate both sides after multi-
plication with pλp−2. On the left we get the integral

∫∞
0
pλp−1P(Y ≥ λ) dλ =

EY p, in view of Exercise 5.12. On the right we compute using Fubini’s theorem
the integral∫ ∞

0

pλp−2E 1{Y≥λ}X dλ = E
∫ ∞

0

pλp−21{Y≥λ}X dλ

= E (X
∫ Y

0

pλp−2 dλ)

=
p

p− 1
EXY p−1.

We have established ||Y ||pp = EY p ≤ q EXY p−1. It follows from Hölder’s in-
equality (Theorem 4.33) that EXY p−1 ≤ (EXp)1/p(EY p)1/q = ||X||p(||Y ||p)p/q
and we obtain ||Y ||pp ≤ q||X||p(||Y ||p)p/q. Would we already know that ||Y ||p <
∞, then the result follows upon dividing by (||Y ||p)p/q. Here is the trick to es-
tablish that. First we truncate and consider Yn = Y ∧n instead of Y . Certainly
||Y ||p < ∞. Notice that the event {Yn ≥ λ} is empty for n < λ and equal to
{Y ≥ λ} otherwise. It follows that (10.5) is valid for Yn instead of Y . The
above reasoning thus yields that ||Yn||p ≤ q||X||p. Since Yn ↑ Y we apply the
Monotone Convergence Theorem to get the result. �

Here is the result we were aiming at.

Theorem 10.15 Let X be a nonnegative submartingale that is bounded in Lp
for p > 1. Let X∗ = supnXn.
(i) It holds that X∗ ∈ Lp(Ω,F∞,P) and ||X∗||p ≤ q supn ||Xn||p, where q = p

p−1 .

(ii) The a.s. limit X∞ = limn→∞Xn exists and moreover, Xn
Lp→ X∞ and

||X∞||p = supn ||Xn||p.

Proof (i) Put X∗n = max{X1, . . . , Xn}. Combining Proposition 10.12 and
Lemma 10.14, we get the inequality ||X∗n||p ≤ q ||Xn||p. If K = supn ||Xn||p <
∞, then we obtain by monotone convergence ||X∗||p ≤ qK.
(ii) Existence of the a.s. limit X∞ is guaranteed by for instance Theorem 10.8.
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From |Xn − X∞| ≤ 2X∗, we get ||Xn − X∞||p ≤ 2||X∗||p < ∞. By the

Dominated Convergence Theorem we get Xn
Lp→ X∞. Finally, ||X∞||p ≤

||X∞ −Xn||p + supn ||Xn||p yields the last assertion. �

Corollary 10.16 Let M be a martingale that is bounded in Lp for p > 1. The
a.s. limit M∞ = limn→∞Mn exists and moreover, Mn

Lp→M∞.

Proof Again existence of M∞ as an a.s. limit can be deduced from e.g. Theo-
rem 10.8. Moreover, |Mn−M∞| ≤ 2X∗, where X∗ = supn |Mn|. An application
of the previous theorem to the nonnegative submartingale X = |M | shows that
||X∗||p <∞. The rest of the proof is as in the proof of Theorem 10.15. �

10.4 The strong law of large numbers

In this section we present versions of a strong law of large numbers for martin-
gales and independent sequences of random variables. We start with a simple
analytic lemma.

Lemma 10.17 (i) Let (wnk)n,k≥1 be a double array of nonnegative real num-
bers satisfying limn→∞ wnk = 0 for every k ≥ 1 and limn→∞

∑n
k=1 wnk = 1.

Let (xn) be sequence of real numbers with limn→∞ xn = x ∈ R. Put x̄n =∑n
k=1 wknxk. Then limn→∞ x̄n = x.

(ii) Let (wn)n≥0 be an increasing sequence of nonnegative real numbers with
w0 = 0 and wn → ∞. Let (xn) be a sequence of real numbers for which the
series

∑∞
n=1

xn
wn

is convergent. Then 1
wn

∑n
k=1 xk → 0.

Proof (i) Let ε > 0 and choose m such that |xn − x| < ε for n > m. Then we
have for n > m

|x̄n − x| ≤
n∑
k=1

wkn|xk − x|+ |
n∑
k=1

wkn − 1||x|

≤
m∑
k=1

wkn|xk − x|+
n∑

k=m+1

wkn|xk − x|+ |
n∑
k=1

wkn − 1||x|

≤
m∑
k=1

wkn|xk − x|+ ε

n∑
k=m+1

wkn + |
n∑
k=1

wkn − 1||x|.

It follows from the assumptions that lim supn→∞ |x̄n − x| ≤ ε. Since ε > 0 is
arbitrary the result follows.

(ii) Given n ≥ 1, define wkn = wk−wk−1
wn

, for k = 1, . . . , n and yn =
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∑∞
k=n+1

xk
wk

. Note that yn → 0. We compute

1
wn

n∑
k=1

xk = − 1
wn

n∑
k=1

wk(yk − yk−1)

=
1
wn

(
− wnyn +

n∑
k=1

yk(wk − wk−1)
)

= −yn +
n∑
k=1

wknyk.

Application of part (i) yields the result. �

Remark 10.18 The first part of the previous proposition is known as Toeplitz’
lemma, and the second part is known as Kronecker’s lemma. There are many
variations on the assertions of this proposition known. The special case wkn = 1

n
for 1 ≤ k ≤ n yields for the first part Cesaro’s lemma.

Proposition 10.19 Let M be a square integrable martingale, EM2
n < ∞ for

all n. Let 〈M〉 be its predictable variation process. Then 1
〈M〉nMn → 0 a.s. on

the set {〈M〉n →∞}.

Proof Let X be the martingale transform X = 1
1+〈M〉 ·M . Then

E [∆X2
n|Fn−1] =

1
(1 + 〈M〉)2

E [∆M2
n|Fn−1]

=
1

(1 + 〈M〉)2
∆〈M〉n

≤ 1
1 + 〈M〉n−1

− 1
1 + 〈M〉n

.

It follows that ∆〈X〉n ≤ 1
1+〈M〉n−1

− 1
1+〈M〉n and hence that 〈X〉n ≤ 1 for all

n. Therefore supn EX2
n < ∞ (see Remark 9.18) and X converges a.s. in view

of Theorem 10.5 (and also in L2 by virtue of Theorem 10.15). An application
of Kronecker’s lemma yields the assertion. �

Corollary 10.20 Let X1, X2, . . . be an independent sequence with EXk = 0
and σ2

k := VarXk < ∞ for all k. Let αn =
∑n
k=1 σ

2
k. If αn → ∞, then

1
αn

∑n
k=1Xk → 0 a.s.

Proof Let M be the martingale (the filtration should be obvious) defined by
Mn =

∑n
k=1Xk. It follows that 〈M〉n = αn and the assertion immediately

follows by an application of Proposition 10.19. �

The assertion of Corollary 10.20 is the strong law for a sequence of indepen-
dent random variables with a finite second moment. If the sequence is moreover
iid, then we get 1

n

∑n
k=1Xk → 0, the usual strong law of large numbers. The
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assumption that an iid sequence has finite second moments can be dropped,
whereas the strong law still holds. This is the content of Theorem 10.23 below,
whose proof is based on completely different arguments.

We introduce some terminology. Let X1, X2, . . . be a sequence of random vari-
ables. Define Tn = σ(Xn+1, Xn+2, . . .) and T = ∩∞n=0Tn, T is called the tail
σ-algebra of the sequence. The following proposition is known as Kolmogorov’s
0-1 law. It tells us that the tail σ-algebra of an iid sequence is a.s. trivial. Its
proof is an easy consequence of Lévy’s theorem.

Proposition 10.21 Let F ∈ T , the tail σ-algebra of an iid sequence. Then
P(F ) ∈ {0, 1}.

Proof Put Fn = σ(X1, . . . , Xn). Let F ∈ T and observe the triviality F ∈ F∞.
Put ξ = 1F , then Xn = E [ξ|Fn] defines a martingale whose a.s. limit (see
Theorem 10.10) is equal to E [ξ|F∞] = ξ a.s. It is easy to show (Exercise 3.10)
that Fn and Tn are independent and therefore Fn and σ(ξ) are independent.
But then Xn = E ξ = P(F ) a.s. We conclude that 1F is a.s. equal to the
constant P(F ), and then it has expectation P(F ) and variance zero. So 0 =
E 12

F − (E 1F )2 = P(F )− P(F )2. The result follows. �

Example 10.22 Here is a first application. Let X1, X2, . . . be an iid sequence.
Put X̄n = 1

n

∑n
k=1Xk and X̄ = lim sup X̄n. Then for every m ≥ 1, it holds that

X̄ = lim sup 1
n (Xm+1, . . . , Xn+m), which belongs to Tm. It follows that X̄ ∈ T

and hence that X̄ is a.s. equal to a constant in view of Exercise 3.5. The same
holds for the lim inf and then also for the limit of the averages, if it exists.

All the heavy machinery that we have developed so far now pays off by having
a relatively simple proof of the Strong Law of Large Numbers for iid sequences.

Theorem 10.23 Let X1, X2, . . . be an iid sequence in L1(Ω,F ,P). Let µ =
EX1 and M−n = 1

n

∑n
k=1Xk. Then M−n → µ a.s. and in L1 as n→∞.

Proof We’d like to apply Theorem 10.11. The first thing we need is a filtration
that is defined on the negative integers. The following choice turns out be a
clever one. Let Sn =

∑n
k=1Xk and put F−n = σ(Sn, Sn+1, . . .), n ≥ 1. In Ex-

ample 8.8 we have seen that E [X1|F−n] = M−n. It follows from Theorem 10.11
that there exists M−∞ such that M−n →M−∞ both a.s. and in L1. We proceed
by identifying the limit. From Example 10.22, we know that M−∞ has to be
equal to a constant a.s. But Theorem 10.11 also tells us that EM−∞ = EM−1,
which is equal to µ. �

10.5 Exercises

10.1 Prove Proposition 10.2. Show also that the process Y below that proposi-
tion is predictable.
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10.2 Consider the probability space (Ω,F ,P) with Ω = [0, 1), F the Borel
sets of [0, 1) and P the Lebesgue measure. Let Ink = [k2−n, (k + 1)2−n) for
k = 0, . . . , 2n − 1 and Fn be the σ-algebra by the Ink for k = 0, . . . , 2n − 1.
Define Xn = 1In0 2n. Show that Xn is a martingale is and that the conditions of
Theorem 10.5 are satisfied. What is X∞ in this case? Do we have Xn → X∞
in L1?

10.3 Let X be a submartingale with supn≥0 E|Xn| <∞. Show that there exists
a random variable X∞ such that Xn → X∞ a.s.

10.4 Show that for a supermartingale X the condition sup{E |Xn| : n ∈ N} <∞
is equivalent to the condition sup{EX−n : n ∈ N} <∞.

10.5 Let Y ∈ L1, (Fn) and define for all n ∈ N the random variable Xn =
E [Y |Fn]. We know that there is X∞ such that Xn → X∞ a.s. Show that for

Y ∈ L2, we have Xn
L2

→ X∞. Find a condition such that X∞ = Y . Give also an
example in which P (X∞ = Y ) = 0.

10.6 Let X = (Xn)n≤0 a (backward) supermartingale.

(a) Show equivalence of the next two properties:
(i) supn E|Xn| <∞ and (ii) limn→−∞ EXn <∞.
(Use that x 7→ x+ is convex and increasing.)

(b) Under the condition supn E|Xn| =: A < ∞ the supermartingale X is uni-
formly integrable. To show this, you may proceed as follows (but other
solutions are equally welcome). Let ε > 0 and choose K ∈ Z such that
for all n < K one has 0 ≤ EXn − EXK < ε. It is then sufficient to
show that (Xn)n≤K is uniformly integrable. Let c > 0 be arbitrary and
Fn = {|Xn| > c}. Using the supermartingale inequality you show that∫

Fn

|Xn| dP ≤
∫
Fn

|XK | dP + ε.

Because P(Fn) ≤ A
c you conclude the proof.

10.7 Suppose that Q is a probability measure on (Ω,F) such that Q� P with
dQ/dP = M∞. Denote by Pn and Qn the restrictions of P and Q to Fn (n ≥ 1).
Show that Qn � Pn and that

dQn

dPn
= Mn,

where Mn = E P[M∞|Fn].

10.8 Let M be a nonnegative martingale with EMn = 1 for all n. Define
Qn(F ) = E 1FMn for F ∈ Fn (n ≥ 1). Show that for all n and k one has
Qn+k(F ) = Qn(F ) for F ∈ Fn. Assume that M is uniformly integrable. Show
that there exists a probability measure Q on F∞ = σ(

⋃
n Fn) that is absolutely

continuous w.r.t. P and that is such that for all n the restriction of Q to Fn
coincides with Qn. Characterize dQ/dP.
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10.9 Consider Theorem 10.15. Show that ||Xn||p is increasing in n.

10.10 Let (Xn) be a sequence of random variables with finite a.s. limit X.
Assume the existence of a random variable Y ≥ 0 with EY < ∞ such that for
all n it holds that |Xn| ≤ Y . Let (Fn) be an arbitrary filtration. Hunt’s lemma
states

E [Xn|Fn] a.s.→ E [X|F∞].

(a) Put Zm = supk≥m |Xk −X|. Show that Zm converges to zero, both in L1

and a.s.
(b) Show also that for n ≥ m:

|E [Xn|Fn]− E [X|F∞]| ≤ |E [X|Fn]− E [X|F∞]|+ |E [Zm|Fn]|

(c) Finish the proof of Hunt’s lemma.

10.11 LetM be a martingale withM0 = 0 and assume the existence of constants
ck such that for all k it holds that |Mk −Mk−1| ≤ ck. Let x > 0. The Azuma-
Hoeffding inequality is

P(sup
k≤n

Mk ≥ x) ≤ exp(− x2

2
∑n
i=1 c

2
k

).

Prove this inequality by the following two steps.

(a) Let c > 0 and Y a random variable with P(|Y | ≤ c) = 1 and EY = 0. Let
f(y) = eθy. Use convexity of f to obtain for y ∈ [−c, c]

f(y) ≤ c− y
2c

f(−c) +
c+ y

2c
f(c).

Show that E f(Y ) ≤ cosh θc ≤ exp( 1
2θ

2c2).
(b) Show that EZn ≤ exp( 1

2θ
2
∑n
k=1 c

2
k), where Zn = exp(θMn).

(c) Give a bound on the probability in Hoeffding’s inequality in terms of EZn
and minimize over θ > 0 to finish the proof.

10.12 Let Z1, Z2, . . . be independent nonnegative random variables defined on
some (Ω,F ,P) with EZn = 1 for all n. The process M defined by Mn =

∏n
i=1 Zi

is a nonnegative martingale w.r.t. an obvious filtration (which one?). We know
that M∞ exist as an almost sure limit of the Mn.

(a) Let Rn = Z
1
2
n . Show that rn := ERn ≤ 1.

(b) Let N be the martingale defined by Nn =
∏n
i=1

Ri
ri

. Assume that

∞∏
k=1

rk > 0. (10.6)

Show that N is bounded in L2 and that consequently M is uniformly
integrable.
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(c) Show that (10.6) implies that EM∞ = 1.

(d) Show that EM∞ = 1 implies that (10.6) holds. Hint: Reason by contra-
diction.

10.13 Let X1, X2, . . . be real valued functions defined on some Ω and take F =
σ(X1, X2, . . .). Assume there exist probability measures P and Q on (Ω,F),
such that the Xn are iid under both P and Q. Assume that X1 admits strictly
positive densities f and g under P and Q respectively. Let Zn = g(Xn)

f(Xn) and
Mn =

∏
k=1 Zn. Use Exercise 10.12 to show that either P = Q or P ⊥ Q. This

phenomenon is known as Kakutani’s dichotomy, or Kakutani’s alternatives.

10.14 Consider the setup of Exercise 10.13. Assume that

n∏
k=1

E P

√
g(Xk)
f(Xk)

→ 0.

Suppose one observes X1, . . . , Xn. Consider the testing problem H0: the densi-
ties of the Xk are the fk against H1: the density of Xk is f and the test that
rejects H0 if Mn > cn, where P(Mn > cn) = α ∈ (0, 1) (likelihood ratio test).
Show that this test is consistent: Q(Mn ≤ cn) → 0. (Side remark: the content
of the Neyman-Pearson lemma is that this test is most powerful among all test
with significance level less than or equal to α.)

10.15 Let (Hn) be a predictable sequence of random variables with EH2
n <∞

for all n. Let (εn) be a sequence with E ε2
n = 1, E εn = 0 and εn independent

of Fn−1 for all n. Let Mn =
∑
k≤nHkεk, n ≥ 0. Compute the conditional

variance process A of M . Take p > 1/2 and consider Nn =
∑
k≤n

1
(1+Ak)pHkεk.

Show that there exists a random variable N∞ such that Nn → N∞ a.s. Show
(use Kronecker’s lemma) that Mn

(1+An)p has an a.s. finite limit.
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11 Weak convergence

In this chapter we encounter yet another convergence concept for random vari-
ables, weak convergence. Although the origin of the terminology is in functional
analysis, fortunately weak convergence is also weaker than the other kinds of
convergence for random variables that we have seen sofar. First we sketch a
functional analytic background of weak convergence. After that we go back to
our probabilistic environment.

Consider a normed vector space (X, || · ||), often a Banach space, and let X∗ be
the vector space of all continuous linear functionals T : X → R, also called the
(strong) dual space of X. The operator norm of T ∈ X∗ is defined as

||T || = sup{ |Tx|
||x||

: ||x|| 6= 0}.

It is known that a linear functional is continuous iff it has finite norm. Note
that we use the same symbol || · || to denote both the norm on X and the one
on X∗. It follows that for all x ∈ X one has |Tx| ≤ ||T || ||x||. One can show
that (X∗, || · ||) is a Banach space. Let (xn) be a sequence in X that converges
to x in norm, ||xn − x|| → 0. If T ∈ X∗, we then have

|Txn − Tx| ≤ ||T || ||xn − x|| → 0. (11.1)

If a sequence (xn) satisfies (11.1) for some x ∈ X and all T ∈ X∗, we say that
xn converges to x weakly.

Now we mimic the above by taking Y = X∗ as the basic space and along
with Y we consider Y ∗, also denoted by X∗∗. A sequence of operators (Tn) ⊂ Y
then strongly converges to T ∈ Y , if ||Tn − T || → 0. Of course, we then also
have for all y∗ ∈ Y ∗ that

|y∗Tn − y∗T | → 0. (11.2)

Parallelling the above, we say that Tn converges weakly to T if (11.2) holds for
all y∗ ∈ Y ∗.

Let’s have a look at some special linear operators in Y ∗ = X∗∗. Let T ∈ X∗
and x ∈ X. Define x(T ) = Tx. We can view x(·) as an element of X∗∗, which is
easy to check. A sequence (Tn) ⊂ X∗ which weakly converges to T ∈ X∗, then
also satisfies (11.2) for y∗ = x(·) and we have

|Tnx− Tx| → 0, ∀x ∈ X. (11.3)

If (11.3) happens, we say that Tn converges to T in the weak∗ sense. This
convergence is by construction weaker than weak convergence, and in general
strictly weaker.

Let’s look at a more concrete situation. Consider C(R), the space of con-
tinuous functions and we take as a norm on this space, the sup-norm, ||f || =
sup{|f(x)| : x ∈ R}. We take X as the subset of C(R) consisting of functions
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with finite norm. Note that every f ∈ X is bounded. We write Cb(R) for this
space. One easily checks that Cb(R) is a linear space and one can verify by a
direct argument that it is complete. This is also known from Theorem 4.35,
upon noticing that Cb(R) is a closed subspace of L∞(R,B, λ).

Probability theory comes in when we look at special operators on Cb(R), orig-
inating from probability measures on (R,B). Although in this chapter we will
confine ourselves mainly to (R,B), occasionally we will hint at a more general
context. If µ is such a probability measure, we view the integral µ : f → µ(f) as
a linear functional. It is easy to check that every µ, viewed as a functional, has
norm ||µ|| = 1. Notice that the space of probability measures on (R,B) is not a
vector space, but only a convex set. The encompassing vector space is the set of
all signed finite measures. Following the above scheme, weak∗ convergence for a
sequence of probability measures (µn) means µn(f)→ µ(f), for all f ∈ Cb(R).
However, in probability theory, it has become a convention to speak of weak con-
vergence of a sequence of probability measures instead of weak∗ convergence,
partly because the above notion of weak convergence turns out to be too strong
and not useful for certain purposes, see further down in this chapter. You can
view Cb(R) as a space of test functions. Other choices for of test functions
are also possible, for instance the space of continuous functions with compact
support, CK(R), or the space of continuous functions that converge to zero at
±∞, C0(R). To distinguish between the convergence concepts related to the
different spaces of test functions, different names are used. What we have just
called weak convergence is then called narrow convergence, whereas the name
weak convergence is then reserved for C0(R) as the space of test functions. In
fact, a theorem by Riesz says that the dual space of C0(R) can be identified
with the space of all signed measures on (R,B), which makes C0(R) in a sense
more natural to work with, if one considers weak convergence. On the other
hand, we shall characterize weak convergence of probability measures by their
action on a relatively small but rich enough collection of functions that are not
in C0(R), see Theorem 11.15.

Below we will adhere to the custom followed in probability theory.

11.1 Generalities

Here is the formal definition of weak convergence of probability measures on
(R,B) and of a sequence of random variables.

Definition 11.1 Let µ, µ1, µ2, . . . be probability measures on (R,B). It is said
that µn converges weakly to µ, and we then write µn

w→ µ, if µn(f)→ µ(f) for
all f ∈ Cb(R). If X,X1, X2, . . . are (real) random variables (possibly defined
on different probability spaces) with distributions µ, µ1, µ2, . . . then we say that
Xn converges weakly to X, and write Xn

w→ X if it holds that µn
w→ µ. In this

case, one also says that Xn converges to X in distribution.

Other accepted notation for weak convergence of a sequence of random variables
is Xn

d→ X, one says that Xn converges to X in distribution. Later we will see
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an appealing characterization of weak convergence (convergence in distribution)
in terms of distribution functions, which makes the definition less abstract. Look
at the following example, that illustrates for a special case, that there is some
reasonableness in Definition 11.1. Let (xn) be a convergent sequence, suppose
with limxn = 0. Then for every f ∈ Cb(R) one has f(xn) → f(0). Let µn be
the Dirac measure concentrated on {xn} and µ the Dirac measure concentrated
in the origin. Since µn(f) = f(xn), we see that µn

w→ µ.
One could naively think of another definition of convergence of (probability)

measures, for instance by requiring that µn(B) → µ(B) for every B ∈ B, or
even by requiring that the integrals µn(f) converge to µ(f) for every bounded
measurable function. It turns out that each of these requirements is too strong
to get a useful convergence concept. One drawback of such a definition can be
illustrated by the above example with the Dirac measures. Take B = (−∞, x] for
some x > 0. Then for all n > 1/x, we have µn(B) = 1 and µ(B) = 1. For x < 0,
we get that all measures of B are equal to zero. But for B = (−∞, 0], we have
µn(B) = 0 for all n, whereas µ(B) = 1. Hence convergence of µn(B) → µ(B)
doesn’t hold for this choice of B. If Fn is the distribution function of µn and F
that of µ, then we have seen that Fn(x)→ F (x), for all x ∈ R except for x = 0.

Suppose that a random variable X has distribution µ. Recall from Propo-
sition 4.24 that E f(X) = E f ◦ X =

∫
f dµ. It follows that Xn

w→ X iff
E f(Xn) → E f(X) for all f ∈ Cb(R). Note that X and the Xn need not be
defined on the same probability space, but that an expectation doesn’t depend
on the underlying probability space, only on the law of the random variable
involved.

Next we given the relation between weak convergence and other types of con-
vergence. The proposition says that weak convergence is indeed weaker than
other types of convergence that we encountered.

Proposition 11.2 Let the random variables X,X1, X2, . . . be defined on a sin-
gle probability space. If Xn

a.s.→ X or if Xn
P→ X, then Xn

w→ X. If Xn
w→ X

and g : R → R is continuous, then also g(Xn) w→ g(X). Finally, if Xn
w→ x,

where x ∈ R is a constant random variable, then also Xn
P→ x.

Proof Assume Xn
a.s.→ X. If f ∈ Cb(R), then also f(Xn) a.s.→ f(X). Since

f is bounded, we can apply the Dominated Convergence Theorem to get the
assertion. The remainder of the proof is left as Exercise 11.1. �

One could guess that checking weak convergence of a sequence of random vari-
ables may be a hard job, one needs to work with all functions in Cb(R). For-
tunately there is a fine characterization in terms of distribution functions, and
these are the objects that we are quite familiar with. As a first result, we have
the following proposition. Recall the notation F (x−) = limy↑x F (y).

Proposition 11.3 Let µ, µ1, µ2 be a sequence of probability measures on (R,B)
and let F, F1, F2, . . . be their distribution functions. Assume that µn

w→ µ. Then
one has lim supFn(x) ≤ F (x) for all x ∈ R and lim inf Fn(x) ≥ F (x−) for all
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x ∈ R. Then limFn(x) = F (x) for all x ∈ CF , the set of points where F is
continuous.

Proof By definition, F (x) = µ((−∞, x]) =
∫

1(−∞,x] dµ, an integral of the
discontinuous function 1(−∞,x]. In order to connect to the definition of weak
convergence, we approximate the indicator with continuous functions as follows.
Let x ∈ R, ε > 0 and define g by g(y) = 1 if y ≤ x, g(y) = 0, if y ≥ x+ ε and by
linear interpolation on (x, x+ε). Then g ∈ Cb(R) and 1(−∞,x] ≤ g ≤ 1(−∞,x+ε].
Therefore we have

Fn(x) ≤ µn(g) ≤ Fn(x+ ε),
F (x) ≤ µ(g) ≤ F (x+ ε).

Hence, from the postulated weak convergence we have

lim supFn(x) ≤ lim supµn(g) = µ(g) ≤ F (x+ ε).

Letting ε ↓ 0, we get by right-continuity of F that lim supFn(x) ≤ F (x).
To prove the statement concerning the liminf we use

lim inf Fn(x+ ε) ≥ lim inf µn(g) = µ(g) ≥ F (x).

Since this holds for all x ∈ R, we rename x + ε as x to obtain lim inf Fn(x) ≥
F (x− ε). Let ε ↓ 0. The final statement then also follows. �

The last proposition has a converse statement, which can be directly proved,
see Exercise 11.5, but we prefer to let it follow from Skorohod’s representation
theorem, Theorem 11.4, as a trivial consequence. Note that this theorem is a
subtle kind of converse to Proposition 11.2.

Theorem 11.4 Let F, F1, F2, . . . be distribution functions satisfying Fn(x) →
F (x) for all x ∈ CF . Then there exists a probability space (Ω,F ,P) and random
variables X,X1, X2, . . . defined on it such that X has distribution function F ,
the Xn have distribution functions Fn and Xn

a.s.→ X.

Proof Look back at Theorem 3.10 and its proof. We take ([0, 1],B, λ) as our
probability space and we consider the random variables X− and X−n (n ≥ 1),
the definition of them should be clear. Along with these random variables we
also need X+(ω) = inf{z : F (z) > ω} and the similarly defined X+

n (ω). Fix
ω ∈ [0, 1] and take z ∈ CF with z > X+(ω). Then F (z) > ω and by the assumed
convergence, eventually all Fn(z) > ω. It follows that z ≥ lim supX+

n (ω). Since
this holds for all z ∈ CF , we can choose a sequence of them (there is plenty
of choice, since CF is at most countable) that decreases to X+(ω) to obtain
X+(ω) ≥ lim supX+

n (ω). Similar reasoning yields X−(ω) ≤ lim inf X−n (ω).
Since X−n (ω) ≤ X+

n (ω), we deduce X−(ω) ≤ lim inf X+
n (ω) ≤ lim supX+

n (ω) ≤
X+(ω). By Exercise 3.7, we know that λ({X− < X+}) = 0 and we thus con-
clude that lim inf X+

n = lim supX+
n = X on {X− = X+}, which has probability

one. �
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Corollary 11.5 Let µ, µ1, µ2, . . . be probability measures on (R,B) with distri-
bution functions F, F1, F2, . . .. Equivalence holds between (i) Fn(x)→ F (x) for
all x ∈ CF and (ii) µn

w→ µ.

Proof In view of Proposition 11.3 it is sufficient to establish (i) ⇒ (ii). This
implication follows by combining Proposition 11.2 and Theorem 11.4. �

Here is a result that gives an appealing sufficient condition for weak convergence,
when the random variables involved admit densities.

Theorem 11.6 Consider real random variables X,X1, X2, . . . having densities
f, f1, f2, . . . w.r.t. Lebesgue measure λ. Suppose that fn → f λ-a.e. Then
Xn

w→ X.

Proof Apply Scheffé’s lemma, Lemma 4.19, to conclude that fn → f in L1(R,B, λ).
Let g ∈ Cb(R). Since g is bounded, we also have fng → fg in L1(R,B, λ) and
hence Xn

w→ X. �

The Bolzano-Weierstraß theorem states that every bounded sequence of real
numbers has a convergent subsequence. The theorem easily generalizes to se-
quences in Rn, but fails to hold for uniformly bounded sequences in R∞. But
if extra properties are imposed, there can still be an affirmative answer. Some-
thing like that happens in the next proposition that is known as Helly’s selec-
tion principle. It is convenient to introduce the concept of defective distribution
function. Such a function, F say, has values in [0, 1] is by definition right-
continuous, increasing but at least one of the two properties limx→∞ F (x) = 1
and limx→−∞ F (x) = 0 fails to hold.

Proposition 11.7 Let (Fn) be a sequence of distribution functions. Then there
exists a, possibly defective, distribution function F and a subsequence (Fnk) such
that Fnk(x)→ F (x), for all x ∈ CF .

Proof The proof’s main ingredients are an infinite repetition of the Bolzano-
Weierstraß theorem combined with a Cantor diagonalization. First we restrict
ourselves to working on Q, instead of R, and exploit the countability of Q.
Write Q = {q1, q2, . . .} and consider the Fn restricted to Q. Then the sequence
(Fn(q1)) is bounded and along some subsequence (n1

k) it has a limit, `(q1) say.
Look then at the sequence Fn1

k
(q2). Again, along some subsequence (n2

k), we
have a limit, `(q2) say. Note that along the thinned subsequence, we still have
the limit limk→∞ Fn2

k
(q1) = `(q1). Continue like this to construct a nested

sequence of subsequence (njk) for which we have that limk→∞ Fnjk
(qi) = `(qi)

holds for every i ≤ j. Put nk = nkk, then (nk) is a subsequence of (nik) for every
i ≤ k. It follows that limk→∞ Fnk(qi) = `(qi) for all qi. In this way we have
constructed a function ` : Q → [0, 1] and by the monotonicity of the Fn this
function is increasing.
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In the next step we extend this function to a function F on R that is right-
continuous, and still increasing. We put

F (x) = inf{`(q) : q ∈ Q, q > x}.

Note that in general F (q) is not equal to `(q) for q ∈ Q, but the inequality
F (q) ≥ `(q) always holds true. Obviously, F is an increasing function and
by construction it is right-continuous. An explicit verification of the latter
property is as follows. Let x ∈ R and ε > 0. There is q ∈ Q with q > x
such that `(q) < F (x) + ε. Pick y ∈ (x, q). Then F (y) < `(q) and we have
F (y)−F (x) < ε. Note that it may happen that for instance limx→∞ F (x) < 1,
F can be defective.

The function F is of course the one we are aiming at. Having verified that
F is a (possibly defective) distribution function, we show that Fnk(x) → F (x)
if x ∈ CF . Take such an x and let ε > 0 and q as above. By left-continuity of F
at x, there is y < x such that F (x) < F (y) + ε. Take now r ∈ (y, x) ∩Q, then
F (y) ≤ `(r), hence F (x) < `(r) + ε. So we have the inequalities

`(q)− ε < F (x) < `(r) + ε.

Then lim supFnk(x) ≤ limFnk(q) = `(q) < F (x) + ε and lim inf Fnk(x) ≥
lim inf Fnk(r) = `(r) > F (x)− ε. The result follows since ε is arbitrary. �

Here is an example for which the limit is not a true distribution function. Let
µn be the Dirac measure concentrated on {n}. Then its distribution function
is given by Fn(x) = 1[n,∞)(x) and hence limn→∞ Fn(x) = 0. Hence any limit
function F in Proposition 11.7 has to be the zero function, which is clearly
defective,

Translated into terms concerning probability measures on (R,B), the propo-
sition seems to say that every sequence of probability measures has a weakly
converging subsequence whose limit µ is a subprobability measure, µ(R) ≤ 1.
In topological terms this would mean that the family of probability measure
is relatively sequentially compact (w.r.t. topology generated by weak conver-
gence). But look again at the example with the Dirac measures. The integral
µn(f) is equal to f(n), which has in general no limit for n→∞, if f ∈ Cb(R),
although the zero measure is the only possible limit. There are a number of
ways to circumvent the problem. One of them is to replace in the definition of
weak convergence the space Cb(R) with the smaller set C0(R). Another way-
out is to look at probability measures on the Borel sets of [−∞,∞]. The space
C([−∞,∞]) can be identified with C[0, 1] and in this space every continuous
function automatically has limits at the boundary points. For the sequence of
Dirac measures, we would then have the Dirac measure concentrated on {∞}
as the limit and weak convergence holds again.

The example with the Dirac measures also provides another insight why the
limit is only a defective distribution function, the point masses at n ‘disappear’
from R as n tends to infinity. A possible way out to prevent this phenomenon
is by requiring that all probability measure involved have probability one on
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a fixed bounded set. This is to stringent, because it rules out many useful
distributions. Fortunately, a considerably weaker assumption suffices. For any
probability measure µ on (R,B) it holds that limM→∞ µ([−M,M ]) = 1. If F is
the distribution function of µ, we equivalently have limM→∞(F (M)−F (−M)) =
1. Note that F (M) − F (−M) = µ((−M,M ]). The next condition, tightness,
gives a uniform version of this.

Definition 11.8 A sequence of probability measures (µn) on (R,B) is called
tight, if limM→∞ infn µn([−M,M ]) = 1.

Remark 11.9 Note that a sequence (µn) is tight iff if every ‘tail sequence’
(µn)n≥N is tight. In order to show that a sequence is tight it is thus sufficient to
show tightness from a certain suitably chosen index on. Tightness of a sequence
is also a necessary condition for weak convergence, as we shall see later. Recall
that a distribution function F has at most countably points of discontinuity and
that µ({x}) > 0 iff x is a discontinuity point of F . In this case {x} is called an
atom of µ.

Proposition 11.10 (i) Let (µn) be sequence of probability measures that weakly
converges to a probability measure µ on (R,B). Then (µn) is tight.
(ii) Let (Fn) be the distribution functions of a tight sequence of probability mea-
sures (µn) on (R,B). Then there exists a distribution function F and a subse-
quence (Fnk) such that Fnk(x)→ F (x), for all x ∈ CF .

Proof (i) Fix ε > 0 and choose M > 0 such that µ([−M,M ]) > 1 − ε. Since
the collection of all atoms of all µn is at most countable, we can choose M such
that it is not an atom of any µn and not of µ. If F and Fn are the corresponding
distribution functions, we thus have that Fn(±M) → F (±M). Hence, there is
N > 0 such that |Fn(±M) − F (±M)| < ε for n > N . For these n we then
have by the triangle inequality that µn([−M,M ]) > 1−3ε. Hence the sequence
(µn)n>N is tight.
(ii) The tightness condition means that for all ε > 0 we can find M > 0 such that
µn([−M,M ]) > 1−ε for all n. Again we may assume that the singletons M and
−M are no atoms of all the probability measures involved. Take a subsequence
as in Proposition 11.7 and choose N such that |Fnk(±M)−F (±M)| < ε. Then
F (M) = (F (M) − Fnk(M)) + Fnk(M) > 1 − 2ε and likewise F (−M) < 2ε. It
follows that F is not defective. �

All definitions and results so far generalize without difficulties to (weak) con-
vergence of sequences of random vectors with values in Rn, although some care
must be taken in formulating the statements about convergence of distribution
functions at points where the limit is continuous. Take this for granted or verify
it, if you want. Here is a useful warning. If you know of two sequence of random
variables that Xn

w→ X and Yn
w→ Y , it tells you a priori nothing about weak

convergence of the random vectors (Xn, Yn), simply because basically nothing is
known of the joint distribution of (Xn, Yn). Under extra conditions something
can be said though.
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Proposition 11.11 Assume for simplicity that all random variables below are
defined on the same space.
(i) If (Xn) and (Yn) are independent sequences with Xn

w→ X and Yn
w→ Y ,

then also (Xn, Yn) w→ (X,Y ).
(ii) If (Xn) and (Yn) are sequences of random variables with Xn

w→ X and
Yn

w→ y, where y ∈ R a constant, then also (Xn, Yn) w→ (X, y).
(iii) In any of the previous cases, we also have weak convergence of (g(Xn, Yn))
for a continuous g : R2 → R. In particular there holds weak convergence for
Xn + Yn.

Proof Exercise 11.2 �

We close this section with presenting some results that apply to a rather general
setting, probability measure defined on separable metric spaces (S, d) endowed
with the Borel σ-algebra.

Weak convergence can be characterized by a great variety of properties, we
present some of them in the next theorem, known as the Portmanteau theorem.
Recall that the boundary ∂E of a set E in a topological space is ∂E = ClE \
IntE.

Theorem 11.12 Let µ, µ1, µ2, . . . be probability measures on some metric space
(S, d). The following statements are equivalent.
(i) µn

w→ µ.
(ii) lim supn→∞ µn(F ) ≤ µ(F ) for all closed sets F .
(iii) lim infn→∞ µn(G) ≥ µ(G) for all open sets G.
(iv) limn→∞ µn(E) = µ(E) for all sets E with µ(∂E) = 0.

Proof We start with (i)⇒(ii), the proof of which is similar to the one of Propo-
sition 11.3. We construct a function that is one on F , and zero just a bit away
from it. Let δ > 0. If x /∈ F , then d(x, F ) > 0. Define g by

g(x) =
{

0 if d(x, F ) > δ
1− d(x, F )/δ if d(x, F ) ≤ δ.

The key observation is that 1F ≤ g ≤ 1F δ , where F δ = {x ∈ S : d(x, F ) < δ}
and so the rest of the proof is basically as before. (ii)⇔(iii) is almost trivial.
Knowing this, the implication (iii)⇒(iv) is easy. The proof of (iv)⇒(i) roughly
follows a pattern needed in Exercise 11.5. Let ε > 0, g ∈ Cb(S) and assume
that 0 < g < B for some B > 0. Let D = {x ∈ R : µ({g = x}) > 0}. So,
D is the set of atoms of g and hence it is at most countable. Let 0 = x0 <
. . . < xm = B be a finite set of points not in D such that max{xk − xk−1 :
k = 1, . . . ,m} < ε. Let Ik = (xk−1, xk]. The continuity of g implies that
∂g−1[Ik] ⊂ {xk−1, xk}. Hence µ(∂g−1[Ik]) = 0. Let g̃ =

∑m
k=1 xk1Ik . Then

|µn(g̃)−µ(g̃)| ≤
∑m
k=1 xk|µn(Ik)−µ(Ik)|, which tends to zero as n→∞. Since

0 ≤ g̃ − g < ε, we have 0 ≤ µ(g̃) − µ(g) ≤ ε and 0 ≤ µn(g̃) − µn(g) ≤ ε for all
n. Use the triangle inequality twice to obtain that

lim sup
n→∞

|µn(g)− µ(g)| ≤ 2ε.
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This finishes the proof. �

11.2 The Central Limit Theorem

Let (Ω,F ,P) be a probability space. We will assume that all random vari-
ables that we encounter below are defined on this space and real valued. Let
X,X1, X2, . . . be random variables and recall that Xn

w→ X can be cast as

E f(Xn)→ E f(X), ∀f ∈ Cb(R). (11.4)

As a matter of fact one can show that weak convergence takes place, if (11.4)
holds for all bounded uniformly continuous functions (Exercise 11.4). In the
present section we take this as our characterization of weak convergence.

Our goal is to prove Theorem 11.16 for which we need a couple of prepara-
tory results. The approach followed in this section is based on smoothing by
convolution and small disturbances. In the sequel ||f || denotes the sup norm of
a function f .

Lemma 11.13 Let X and Y be random variables and f a bounded uniformly
continuous function. Then, for all ε > 0, there exists δ > 0 such that

|E f(X)− E f(X + Y )| ≤ ε+ 2||f ||P(|Y | ≥ δ). (11.5)

Proof Let ε > 0 be given and choose δ > 0 such that |f(x)−f(y)| < ε whenever
|x− y| < δ. Then

|E f(X)− E f(X + Y )| ≤ E (1{|Y |<δ}|f(X)− f(X + Y )|)
+ E (1{|Y |≥δ}(|f(X)|+ |f(X + Y )|))

≤ ε+ 2||f ||P(|Y | ≥ δ).

�

Lemma 11.14 Let Y,X,X1, X2, . . . be random variables such that for all σ > 0
it holds that Xn + σY

w→ X + σY . Then also Xn
w→ X (the σ = 0 case).

Proof Let f be a bounded uniformly continuous function, ε > 0 be given and
choose δ > 0 as in the previous lemma. From (11.5) it follows that

|E f(X)− E f(X + σY )| ≤ ε+ 2||f ||P(|Y | ≥ δ

σ
)

and

|E f(Xn)− E f(Xn + σY )| ≤ ε+ 2||f ||P(|Y | ≥ δ

σ
).
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Now we consider

|E f(Xn)− E f(X)| ≤ |E f(Xn)− E f(Xn + σY )|
+ |E f(Xn + σY )− E f(X + σY )|
+ |E f(X)− E f(X + σY )|

≤ 2ε+ 4||f ||P(|Y | ≥ δ

σ
)

+ |E f(Xn + σY )− E f(X + σY )|.

By assumption, the last term tends to zero for n → ∞. Letting then σ ↓ 0,
we obtain lim supn |E f(Xn)−E f(X)| ≤ 2ε, which finishes the proof, since ε is
arbitrary. �

For small σ, we view X + σY as a perturbation of X. Let us take a standard
normally distributed random variable Y , independent of X and the Xn. Notice
that Z := X + σY given X = x has a N(x, σ2) distribution. Let f be bounded
and uniformly continuous. Then E f(X + σY ) = E E [f(Z)|X] and

E [f(Z)|X = x] =
∫ ∞
−∞

f(z)
1

σ
√

2π
exp(− 1

2σ2
(z − x)2) dz =: fσ(x).

Hence

E f(X + σY ) = E fσ(X). (11.6)

Let pσ(x) = 1√
2πσ2 exp(− 1

2σ2x
2), the density of a N(0, σ2) distributed random

variable. The function fσ is obtained by convolution of f with the normal den-
sity pσ. By the Dominated Convergence Theorem, one can show (Exercise 11.3)
that f has derivatives of all orders given by

f (k)
σ (x) =

∫ ∞
−∞

f(z)p(k)
σ (z − x) dz. (11.7)

Hence fσ is a smooth function. Write C∞ for the class of bounded functions
that have bounded derivatives of all orders. Examples of such function are pσ
and fσ. We have already weakened the requirement for weak convergence that
convergence is assumed to hold for expectations involving uniformly continuous
functions. The next step is to drastically reduce this class of functions.

Theorem 11.15 Let X,X1, X2, . . . be random variables. The weak convergence
Xn

w→ X takes place iff E f(Xn)→ E f(X), for all f ∈ C∞.

Proof Suppose that E f(Xn) → E f(X), for all f ∈ C∞, then it holds in par-
ticular for any fσ. In view of (11.6), this means that Xn + σY

w→ X + σY for
all σ > 0. Now Lemma 11.14 applies. �
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As a final preparation for the proof of the Central Limit Theorem we proceed
with some analytic technicalities that eventually lead to the crucial inequal-
ity (11.11). Let f ∈ C∞ and put

R(x, y) = f(x+ y)− f(x)− yf ′(x)− 1
2
y2f ′′(x).

Replacing x and y above by independent random variables X and Y and taking
expectations, then yields

E f(X + Y )− E f(X)− EY E f ′(X)− 1
2

EY 2 E f ′′(X) = ER(X,Y ).

Let W be another random variable, independent of X, and assume that EW =
EY and EW 2 = EY 2. Then a similar equality is valid and we then obtain by
taking the difference the inequality

|E f(X + Y )− E f(X +W )| ≤ E |R(X,Y )|+ E |R(X,W )|. (11.8)

We are now going to find bounds on the remainder terms in this equation. The
mean value theorem yields for any x and y that R(x, y) = 1

6y
3f ′′′(θ1(x, y)) for

some θ1(x, y) between x and x + y. Alternatively, we can express R(x, y) by
another application of the mean value theorem as

R(x, y) = f(x+y)−f(x)−yf ′(x))− 1
2
y2f ′′(x) =

1
2
y2(f ′′(θ2(x, y))−f ′′(x)),

for some θ2(x, y) between x and x+ y. Let C = max{||f ′′||, 1
6 ||f

′′′||}. Then we
have the estimate |R(x, y)| ≤ C|y|3, as well as for every ε > 0 the estimate

|R(x, y)| ≤ C(|y|31{|y|≤ε} + y21{|y|>ε}) ≤ Cy2(ε+ 1{|y|>ε}).

Hence we have the following bounds on E |R(X,Y )|:

E |R(X,Y )| ≤ CE |Y |3 (11.9)

and

E |R(X,Y )| ≤ C(εEY 2 + EY 21{|Y |>ε}). (11.10)

The proof of the Central Limit Theorem is based on the following idea. Consider
a sum of independent random variables S =

∑n
j=1 ξj , where n is ‘big’. If we

replace one of the ξj by another random variable, then we can think of a small
perturbation of S and the expectation of f(S) will hardly change. This idea will
be repeatedly used, all the ξj that sum up to S will be step by step replaced
with other, normally distributed, random variables. We assume that the ξj have
finite second moments and expectation zero. Let η1, . . . , ηn be independent
normal random variables, also independent of the ξj , with expectation zero and
E η2

j = E ξ2
j . Put Z =

∑n
j=1 ηj and notice that also Z has a normal distribution

with variance equal to
∑n
j=1 E ξ2

j . We are interested in E f(S) − E f(Z). The
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following notation is convenient. Put Xj =
∑j−1
i=1 ξi +

∑n
i=j+1 ηi. Notice that

S = Xn + ξn and Z = X1 + η1. Repetitive use of the triangle inequality and
application of (11.8) gives

|E f(S)− E f(Z)| ≤
n∑
j=1

|E f(Xj + ξj)− E f(Xj + ηj)|

≤
n∑
j=1

E |R(Xj , ξj)|+ E |R(Xj , ηj)|. (11.11)

Theorem 11.16 (Central Limit Theorem) Let for each n ∈ N be given
a sequence ξn1, . . . , ξnkn of independent random variables with E ξnj = 0 and∑kn
j=1 Var ξnj = 1. Let for every ε > 0

Ln(ε) =
kn∑
j=1

E|ξnj |21{|ξnj |>ε}.

Suppose that the Lindeberg condition holds: Ln(ε) → 0 as n → ∞ for every
ε > 0. Then Sn :=

∑kn
j=1 ξnj

w→ Z, where Z has a N(0,1) distribution.

Proof Let Sn =
∑kn
j=1 ξnj and let ηnj (j = 1, . . . , kn, n ∈ N) be a double array

of zero mean normal random variables, independent of all the ξnj , such that also
for every n the ηnj (j = 1, . . . , kn) are independent and such that E η2

nj = E ξ2
nj .

Let Zn =
∑kn
j=1 ηnj . Notice that the distributions of the Zn are all standard

normal and thus E f(Zn) = E f(Z) for every f in C∞. Recall Theorem 11.15.
Take such f ∈ C∞ and apply (11.11) to get

|E f(Sn)− E f(Z)| = |E f(Sn)− E f(Zn)|

≤
kn∑
j=1

E |R(Xnj , ξnj)|+ E |R(Xnj , ηnj)|, (11.12)

with an obvious meaning of the Xnj . For the first error terms in (11.12) we use
the estimate of (11.10) which yields E

∑kn
j=1 E |R(Xnj , ξnj)| ≤ C(ε+Ln(ε)). In

view of the Lindeberg condition, this term can be made arbitrarily small. We
now focus on the second error term in (11.12). Let σ2

nj = E ξ2
nj = E η2

nj and
use (11.9) to obtain

kn∑
j=1

E |R(Xnj , ηnj)| ≤ C
kn∑
j=1

E |ηnj |3 = C

kn∑
j=1

σ3
njE |N(0, 1)|3.

To finish the proof, we first observe that

max
j
σ2
nj = max

j
E ξ2

nj = max
j

E ξ2
nj(1{|ξnj |≤ε} + 1{|ξnj |>ε}) ≤ ε

2 + Ln(ε).
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Hence (use
∑kn
j=1 σ

2
nj = 1)

kn∑
j=1

σ3
nj ≤ max

j
σnj

kn∑
j=1

σ2
nj ≤ (ε2 + Ln(ε))1/2.

And, again, this term can be made arbitrarily small, because of the Lindeberg
condition. �

11.3 Exercises

11.1 Prove the remaining assertions of Proposition 11.2.

11.2 Prove Proposition 11.11.

11.3 Show, using the Dominated Convergence Theorem, that (11.7) holds.
Show also that all the derivatives are bounded functions.

11.4 Show that Xn
w→ X iff Ef(Xn) → Ef(X) for all bounded uniformly con-

tinuous functions f . Hint: for one implication the proof of Proposition 11.3 is
instructive.

11.5 Show the implication Fn(x) → F (x) for all x ∈ CF ⇒ µn
w→ µ of Corol-

lary 11.5 without referring to the Skorohod representation. First you take for
given ε > 0 a K > 0 such that F (K) − F (−K) > 1 − ε. Approximate a
function f ∈ Cb(R) on the interval [−K,K] by a piecewise constant function,
compute the integrals of this approximating function and use the convergence
of the Fn(x) at continuity points of F etc.

11.6 Suppose that Xn
w→ X and that the collection {Xn, n ≥ 1} is uniformly

integrable (you make a minor change in the definition of this notion if the Xn

are defined on different probability spaces). Use the Skorohod representation to
show that Xn

w→ X implies EXn → EX.

11.7 Show the following variation on Fatou’s lemma: if Xn
w→ X, then E|X| ≤

lim infn→∞ E|Xn|.

11.8 Show that the weak limit of a sequence of probability measures is unique.

11.9 Consider the N(µn, σ2
n) distributions, where the µn are real numbers and

the σ2
n nonnegative. Show that this family is tight iff the sequences (µn) and (σ2

n)
are bounded. Under what condition do we have that the N(µn, σ2

n) distributions
converge to a (weak) limit? What is this limit?

11.10 For each n we have a sequence ξn1, . . . , ξnkn of independent random vari-
ables with Eξnj = 0 and

∑kn
j=1 Var ξnj = 1. If

∑kn
j=1 E|ξnj |2+δ → 0 as n → ∞

for some δ > 0, then
∑kn
j=1 ξnj

w→ N(0, 1). Show that this follows from the
Lindeberg Central Limit Theorem.
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11.11 The classical central limit theorem says that 1
σ
√
n

∑n
j=1(Xj − µ) w→

N(0, 1), if the Xj are iid with EXj = µ and 0 < VarXj = σ2 < ∞. Show
that this follows from the Lindeberg Central Limit Theorem.

112



12 Characteristic functions

‘Characteristic functions are characteristic’. In this chapter we will explain
what this statement means and why it is true. We develop some theory for
characteristic functions, primarily with the goal to apply it to prove by other
means a Central Limit Theorem.

12.1 Definition and first properties

Let X be a random variable defined on (Ω,F ,P). As we have seen in Chapter 3,
X induces a probability measure on (R,B), the law or distribution of X, denoted
e.g. by PX or by µ. This probability measure in turn, determines the distribu-
tion function F of X. We have seen in Theorem 3.10 that, conversely, F also
determines PX . Hence distribution functions on R and probability measures on
(R,B) are in bijective correspondence. In this chapter we develop another such
correspondence. We start with a definition.

Definition 12.1 Let µ be a probability measure on (R,B). Its characteristic
function φ : R→ C is defined by

φ(u) =
∫
eiuxµ(dx). (12.1)

Whenever needed, we write φµ instead of φ to express the dependence on µ.

Note that in this definition we integrate a complex valued function. By splitting
a complex valued function f = g + ih into its real part g and imaginary part h,
we define

∫
f dµ :=

∫
g dµ+ i

∫
hdµ. For integrals of complex valued functions,

previously shown theorem are, mutatis mutandis, true. For instance, one has
|
∫
f dµ| ≤

∫
|f |dµ, where | · | denotes the norm of a complex number.

If X is a random variable with distribution µ, then it follows from Proposi-
tion 4.24 applied to h(x) = exp(iux), that φµ can alternatively be expressed by
φ(u) = E exp(iuX). There are many random variables sharing the same distri-
bution µ, they can even be defined on different underlying probability spaces.
We also adopt the notation φX to indicate that we are dealing with the charac-
teristic function of the random variable X.

Before we give some elementary properties of characteristic functions, we look
at a special case. Suppose that X admits a density f with respect to Lebesgue
measure. Then

φX(u) =
∫
eiuxf(x) dx. (12.2)

Analysts define for f ∈ L1(R,B, λ) (λ Lebesgue measure) the Fourier transform
f̂ by

f̂(u) =
∫
e−iuxf(x) dx,
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sometimes also by dividing this expression by
√

2π. What we thus see, is the
equality φX(u) = f̂(−u).

Proposition 12.2 Let φ = φX be the characteristic function of some random
variable X. The following hold true.
(i) φ(0) = 1, |φ(u)| ≤ 1, for all u ∈ R
(ii) φ is uniformly continuous on R.
(iii) φaX+b(u) = φX(au)eiub.
(iv) φ is real valued and symmetric around zero, if X and −X have the same
distribution.
(v) If X and Y are independent random variables, then φX+Y (u) = φX(u)φY (u).
(vi) If E |X|k <∞, then φ ∈ Ck(R) and φ(k)(0) = ikEXk.

Proof Properties (i), (iii) and (iv) are trivial. Consider (ii). Fixing u ∈ R,
we consider φ(u + t) − φ(u) for t = tn → 0. We have |φ(u + tn) − φ(u)| =
|E exp(iuX)(exp(itnX)− 1)| ≤ E | exp(itnX)− 1|. The random variables Yn =
| exp(itnX)− 1| converge to zero and are bounded by 2. The result thus follows
from dominated convergence. Property (v) follows from the product rule for ex-
pectations of independent random variables, Proposition 4.30. Finally, property
(vi) for k = 1 follows by an application of the Dominated Convergence Theorem
and the inequality |eix − 1| ≤ |x|, for x ∈ R. The other cases can be treated
similarly. �

For a distribution function F we define F̃ by F̃ (x) = 1
2 (F (x) + F (x−), where

F (x−) = limy↑x F (y). Note that F̃ coincides at those x where F is continuous.
At the points where F is not (left-)continuous, F̃ is neither left- nor right-
continuous. The following theorem is similar to Fourier inversion. Note that
the integration interval in (12.3) is symmetric around zero. This is essential.

Theorem 12.3 Let F be a distribution function and φ its characteristic func-
tion. Then, for all a < b

lim
T→∞

1
2π

∫ T

−T

e−iua − e−iub

iu
φ(u) du = F̃ (b)− F̃ (a). (12.3)

Proof Let a < b. We compute, using Fubini’s theorem which we will justify
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below,

ΦT =
1

2π

∫ T

−T

e−iua − e−iub

iu
φ(u) du (12.4)

=
1

2π

∫ T

−T

e−iua − e−iub

iu

∫
eiux µ(dx) du

=
1

2π

∫ ∫ T

−T

e−iua − e−iub

iu
eiux duµ(dx)

=
1

2π

∫ ∫ T

−T

ei(x−a)u − ei(x−b)u

iu
duµ(dx) (12.5)

=:
∫
ET (x)µ(dx)

Application of Fubini’s theorem is justified as follows. First, the integrand
in (12.5) is bounded by b − a, because |eix − eiy| ≤ |x − y| for all x, y ∈ R.
Second, the product measure λ× µ on [−T, T ]× R is finite.

By splitting the integrand of ET (x) into its real and imaginary part, we see
that the imaginary part vanishes and we are left with the real expression

ET (x) =
1

2π

∫ T

−T

sin(x− a)u− sin(x− b)u
u

du

=
1

2π

∫ T

−T

sin(x− a)u
u

du− 1
2π

∫ T

−T

sin(x− b)u
u

du

=
1

2π

∫ T (x−a)

−T (x−a)

sin v
v

dv − 1
2π

∫ T (x−b)

−T (x−b)

sin v
v

dv.

The function g given by g(s, t) =
∫ t
s

sin y
y dy is continuous in (s, t). Hence it is

bounded on any compact subset of R2. Moreover, g(s, t) → π as s → −∞ and
t → ∞. Hence g, as a function on R2, is bounded in s, t. We conclude that
also ET (x) is bounded, as a function of T and x, a first ingredient to apply the
Dominated Convergence Theorem to (12.5), since µ is a finite measure. The
second ingredient is E(x) := limT→∞ET (x). From Exercise 5.10 we deduce
that ∫ ∞

0

sinαx
x

dx = sgn(α)
π

2
.

By comparing the location of x relative to a and b, we use the value of the latter
integral to obtain

E(x) =

 1 if a < x < b,
1
2 if x = a or x = b,
0 else.

We thus get

ΦT → µ(a, b) +
1
2
µ({a, b}) = F̃ (b)− F̃ (a).
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Corollary 12.4 If µ and ν are two probability measures on (R,B) whose char-
acteristic functions are the same, then they coincide.

Proof Exercise 12.1. �

The content of Corollary 12.4 explains why characteristic functions are called
characteristic.

Theorem 12.5 If the characteristic function φ of a probability measure µ on
(R,B) belongs to L1(R,B, λ), then µ admits a density f w.r.t. the Lebesgue
measure λ. Moreover, f is continuous.

Proof Define

f(x) =
1

2π

∫
e−iuxφ(u) du. (12.6)

Since |φ| has a finite integral, f is well defined for every x. Observe that f is real
valued, because φ(u) = φ(−u). An easy application of the Dominated Conver-
gence Theorem shows that f is continuous. Note first that the limit of the inte-
gral expression in (12.3) is equal to the (Lebesgue) integral

∫
e−iua−e−iub

iu φ(u) du,
again because of dominated convergence. We use Fubini’s theorem to compute
for a < b∫ b

a

f(x) dx =
1

2π

∫ b

a

∫
e−iuxφ(u) dudx

=
1

2π

∫
φ(u)

∫ b

a

e−iux dxdu

=
1

2π

∫
φ(u)

e−iua − e−iub

iu
du

= F (b)− F (a),

for every a and b, because of Theorem 12.3 and because
∫ b
a
f(x) dx is continuous

in a and b. It also follows that f must be nonnegative and so it is a density. �

Remark 12.6 Note the duality between the expressions (12.2) and (12.6).
Apart from the presence of the minus sign in the integral and the factor 2π
in the denominator in (12.6), the transformations f 7→ φ and φ 7→ f are similar.

The characteristic function φ of a probability measure µ on (Rk,B(Rk)) is de-
fined by the k-dimensional analogue of (12.1). We have with u, x ∈ Rk, 〈·, ·〉 the
standard inner product,

φ(u) =
∫
ei〈u,x〉µ(dx).
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Like in the real case, also here probability measures are uniquely determined
by their characteristic functions. The proof of this statement can be given as
a multi-dimensional version of Exercise 12.2. As a consequence we have the
following characterization of independent random variables.

Proposition 12.7 Let X = (X1, . . . , Xk) be a k-dimensional random vector.
Then X1, . . . , Xk are independent random variables iff φX(u) =

∏k
i=1 φXi(ui),

∀u = (u1, . . . , uk) ∈ Rk.

Proof If the Xi are independent, the statement about the characteristic func-
tions is proved in the same way as Proposition 12.2 (v). If the characteristic
function φX factorizes as stated, the result follows by the uniqueness property
of characteristic functions. �

12.2 Characteristic functions and weak convergence

The first result says that weak convergence of probability measures implies
pointwise convergence of their characteristic functions.

Proposition 12.8 Let µ, µ1, µ2, . . . be probability measures on (R,B) and let
φ, φ1, φ2, . . . be their characteristic functions. If µn

w→ µ, then φn(u) → φ(u)
for every u ∈ R.

Proof Consider for fixed u the function f(x) = eiux. It is obviously bounded
and continuous and we obtain straight from Definition 11.1 that µn(f)→ µ(f).
But µn(f) = φn(u). �

Proposition 12.9 Let µ1, µ2 be probability measures on (R,B). Let φ1, φ2, . . .
be the corresponding characteristic functions. Assume that the sequence (µn) is
tight and that for all u ∈ R the limit φ(u) := limn→∞ φn(u) exists. Then there
exists a probability measure µ on (R,B) such that φ = φµ and µn

w→ µ.

Proof Since (µn) is tight we use Proposition 11.10 to deduce that there exists a
weakly converging subsequence (µnk) with a probability measure as limit. Call
this limit µ. From Proposition 12.8 we know that φnk(u) → φµ(u) for all u.
Hence we must have φµ = φ. We will now show that any convergent subsequence
of (µn) has µ as a limit. Suppose that there exists a subsequence (µn′k) with limit
µ′. Then φn′k(u) converges to φµ′(u) for all u. But, since (µn′k) is a subsequence
of the original sequence, by assumption the corresponding φn′k(u) must converge
to φ(u) for all u. Hence we conclude that φµ′ = φµ and then µ′ = µ.

Suppose that the whole sequence (µn) does not converge to µ. Then there
must exist a function f ∈ Cb(R) such that µn(f) does not converge to µ(f). So,
there is ε > 0 such that for some subsequence (n′k) we have

|µn′k(f)− µ(f)| > ε. (12.7)

Using Proposition 11.10, the sequence (µn′k) has a further subsequence (µn′′k )
that has a limit probability measure µ′′. By the same argument as above (con-
vergence of the characteristic functions) we conclude that µ′′(f) = µ(f). There-
fore µn′′k (f)→ µ(f), which contradicts (12.7). �
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Characteristic functions are a tool to give a rough estimate of the tail prob-
abilities of a random variable, useful to establish tightness of a sequence of
probability measures. To that end we will use the following lemma. Check first
that

∫ a
−a(1− φ(u)) du ∈ R for every a > 0.

Lemma 12.10 Let a random variable X have distribution µ and characteristic
function φ. Then for every K > 0

P (|X| > 2K) ≤ K
∫ 1/K

−1/K

(1− φ(u)) du. (12.8)

Proof It follows from Fubini’s theorem and
∫ a
−a e

iux du = 2 sin ax
x that

K

∫ 1/K

−1/K

(1− φ(u)) du = K

∫ 1/K

−1/K

∫
(1− eiux)µ(dx) du

=
∫
K

∫ 1/K

−1/K

(1− eiux) duµ(dx)

= 2
∫

(1− sinx/K
x/K

)µ(dx)

≥ 2
∫
|x/K|>2

(1− sinx/K
x/K

)µ(dx)

≥ µ([−2K, 2K]c).

since sin x
x ≤ 1

2 for x > 2. �

The following theorem is known as Lévy’s continuity theorem.

Theorem 12.11 Let µ1, µ2 be probability measures on (R,B) and φ1, φ2, . . . be
the corresponding characteristic functions. Assume that for all u ∈ R the limit
φ(u) := limn→∞ φn(u) exists. If φ is continuous at zero, then there exists a
probability measure µ on (R,B) such that φ = φµ and µn

w→ µ.

Proof We will show that under the present assumptions, the sequence (µn) is
tight. We will use Lemma 12.10. Let ε > 0. Since φ is continuous at zero, the
same holds for φ, and there is δ > 0 such that |φ(u) + φ(−u)− 2| < ε if |u| < δ.
Notice that φ(u) + φ(−u) is real-valued and bounded from above by 2. Hence
0 ≤

∫ δ
−δ(2− φ(u)− φ(−u)) du < 2δε.

By the convergence of the characteristic functions (which are bounded), the
Dominated Convergence Theorem implies that for big enough n, n ≥ N say,∫ δ

−δ
(2− φn(u)− φn(−u)) du <

∫ δ

−δ
(2− φ(u)− φ(−u)) du+ 2δε.

Hence, by taking n ≥ N we have∫ δ

−δ
(2− φn(u)− φn(−u)) du < 4δε.

118



Since
∫ δ
−δ(φn(u) + φn(−u)) du = 2

∫ δ
−δ φn(u) du, it follows from Lemma 12.10

that for n ≥ N and K = 1/δ

P (|Xn| > 2K) ≤ 1
δ

∫ δ

−δ
(1− φn(u)) du

≤ 1
2δ

∫ δ

−δ
(2− φn(u)− φn(−u)) du

< 2ε.

We conclude that (µn)n≥N is tight. Apply now Proposition 12.8. �

Corollary 12.12 Let µ, µ1, µ2 be probability measures on (R,B) and φ, φ1, φ2, . . .

be their corresponding characteristic functions. Then µn
w→ µ if and only if

φn(u)→ φ(u) for all u ∈ R.

Proof If φn(u) → φ(u) for all u ∈ R, then we can apply Theorem 12.11.
Because φ, being a characteristic function, is continuous at zero. Hence there is
a probability to which the µn weakly converge. But since the φn(u) converge to
φ(u), the limiting probability measure must be µ. The converse statement we
have encountered as Proposition 12.8. �

12.3 The Central Limit Theorem revisited

The proof of the Theorem 11.16 that we present in this section is based on an
application of Lévy’s continuity theorem and additional properties of character-
istic functions, the first ones are contained in the following lemma.

Lemma 12.13 Let X be a random variable with EX2 < ∞ and with charac-
teristic function φ. Then

|φ(u)− 1| ≤ E min{2, |uX|},

|φ(u)− 1− iuEX| ≤ E min{2|u||X|, 1
2
u2X2}

and

|φ(u)− 1− iuEX +
1
2
u2EX2| ≤ E min{u2X2,

1
6
|u|3|X|3}.

Proof Let x ∈ R. Then |eix − 1| ≤ 2 and |eix − 1| = |
∫ x

0
ieiy dy| ≤ |x|. Hence

|eix − 1| ≤ min{2, |x|}. Since

eix − 1− ix =
∫ x

0

(eiy − 1) dy,

and

eix − 1− ix+
1
2
x2 = −

∫ x

0

∫ y

0

(eit − 1) dtdy,

we arrive at |eix−1−ix| ≤ min{2|x|, 1
2x

2} and |eix−1−ix+ 1
2x

2| ≤ min{x2, |x|3/6}.
Replacing x with uX and taking expectations yields the assertions. �
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We are now ready to give the announced alternative proof of theorem 11.16.

Proof of Theorem 11.16 Let φnj(u) = E exp(iuξnj) and φn(u) = E exp(iuSn).
Because of independence we have

φn(u) =
kn∏
j=1

φnj(u).

First we show that

kn∑
j=1

(φnj(u)− 1)→ −1
2
u2. (12.9)

We write

kn∑
j=1

(φnj(u)− 1) =
kn∑
j=1

(φnj(u)− 1 +
1
2
u2E ξ2

nj)−
kn∑
j=1

1
2
u2E ξ2

nj .

The last term gives the desired limit, so it suffices to show that the first term
converges to zero. By virtue of lemma 12.13, we can bound its absolute value
by

kn∑
j=1

E min{u2ξ2
nj ,

1
6
|u|3|ξnj |3}. (12.10)

But

E min{u2ξ2
nj ,

1
6
|u|3|ξnj |3} ≤

1
6
|u|3εE ξ2

nj1{|ξnj |≤ε} + u2E ξ2
nj1{|ξnj |>ε}.

Hence we get that the expression in (12.10) is majorized by

1
6
|u|3ε

kn∑
j=1

E ξ2
nj + u2Ln(ε) =

1
6
|u|3ε+ u2Ln(ε),

which tends to 1
6 |u|

3ε. Since ε is arbitrary, we have proved (12.9). It then also
follows that

exp(
kn∑
j=1

(φnj(u)− 1))→ exp(−1
2
u2). (12.11)

Recall that u 7→ exp(− 1
2u

2) is the characteristic function of N(0, 1). Hence, by
application of Lévy’s continuity theorem and (12.11), we are finished as soon as
we have shown that

kn∏
j=1

φnj(u)− exp(
kn∑
j=1

(φnj(u)− 1))→ 0. (12.12)
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The displayed difference is in absolute value less than

kn∑
j=1

|φnj(u)− exp(φnj(u)− 1)|, (12.13)

because of the following elementary result: if ai and bi are complex numbers
with norm less than or equal to one, then

|
n∏
i=1

ai −
n∏
i=1

bi| ≤
n∑
i=1

|ai − bi|.

To apply this result we have to understand that the complex numbers involved
indeed have norm less than or equal to one. For the φnj(u) this is one of the
basic properties of characteristic functions. But it turns out that exp(φnj(·)−1)
is a characteristic function as well (see Exercise 12.3).
Let Mn(u) = maxj |φnj(u) − 1|. Now we use the inequality |ez − 1 − z| ≤
|z|2e|z| (which easily follows from a Taylor expansion) with z = φnj(u) − 1 to
bound (12.13) by

kn∑
j=1

|φnj(u)− 1|2 exp(|φnj(u)− 1|) ≤Mn(u)eMn(u)
kn∑
j=1

|φnj(u)− 1|.

From Lemma 12.13, second assertion, we get
∑kn
j=1 |φnj(u)−1| ≤ 1

2u
2
∑kn
j=1 E ξ2

nj =
1
2u

2. On the other hand, we have maxj E ξ2
nj ≤ ε2 + Ln(ε). Hence

max
j

E ξ2
nj → 0 (12.14)

and then by Lemma 12.13 and Jensen’s inequality

Mn(u) = max
j
|φnj(u)− 1| ≤ max

j
|u|E |ξnj | ≤ |u|(max

j
E ξ2

nj)
1/2 → 0.

This proves (12.12) and hence it completes the proof of the theorem. �

Remark 12.14 The Lindeberg condition in the theorem is almost necessary.
One can show that if (12.14) holds and if the weak convergence as in the theorem
takes place, then also the Lindeberg condition is satisfied.

12.4 Exercises

12.1 Prove Corollary 12.4

12.2 Let µ and ν be probability measures on (R,B) with corresponding char-
acteristic functions φ and ψ.

(a) Show that
∫

R exp(−iuy)φ(y) ν(dy) =
∫

R ψ(x− u)µ(dx).
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(b) Assume that ν is the law of a random variable Y with a N(0, 1
σ2 ) distribu-

tion, then ψ(u) = exp(− 1
2u

2/σ2). Let fσ2 be the density of the N(0, σ2)
distribution. Show that

1
2π

∫
R

exp(−iuy)φ(y) exp(−1
2
σ2y2) dy =

∫
R
fσ2(u− x)µ(dx),

and show that the right hand side gives the density of X + Y (see Exer-
cise 5.6).

(c) Write Y = σZ, with Z having the standard normal distribution. It follows
that φ determines the distribution of X + σZ for all σ ∈ R. Show that φ
uniquely determines µ. (This gives an alternative proof of the assertion of
Corollary 12.4).

12.3 Let X1, X2, . . . be a sequence of iid random variables and N a Poisson(λ)
distributed random variable, independent of the Xn. Put Y =

∑N
n=1Xn. Let

φ be the characteristic function of the Xn and ψ the characteristic function of
Y . Show that ψ = exp(λφ− λ).

12.4 Verify the formulas for the characteristic functions in each of the following
cases.

(a) φN(0,1)(u) = exp(− 1
2u

2). Hint: Show that φN(0,1) is a solution to φ̇(u) =
−uφ(u).

(b) φN(µ,σ2)(u) = exp(iuµ− 1
2σ

2u2).

(c) If X has an exponential distribution with parameter λ, then φX(u) =
λ/(λ− iu).

(d) If X has a Cauchy distribution, then φX(u) = exp(−|u|). Show also that
1
n

∑n
k=1Xk has a Cauchy distribution, if the Xk are iid and Cauchy dis-

tributed.

12.5 Let Xn have a Bin(n, λ/n) distribution (for n > λ). Show that Xn
w→ X,

where X has a Poisson(λ) distribution.

12.6 Let X and Y be independent, assume that Y has a N(0, 1) distribution.
Let σ > 0. Let φ be the characteristic function of X: φ(u) = E exp(iuX).

(a) Show that Z = X + σY has density p(z) = 1
σ
√

2π
E exp(− 1

2σ2 (z −X)2).

(b) Show that p(z) = 1
2πσ

∫
φ(−y/σ) exp(iyz/σ − 1

2y
2) dy.

12.7 Let X,X1, X2, . . . be a sequence of random variables and Y a N(0, 1)-
distributed random variable independent of that sequence. Let φn be the char-
acteristic function of Xn and φ that of X. Let pn be the density of Xn + σY
and p the density of X + σY .

(a) If φn → φ pointwise, then pn → p pointwise. Invoke Exercise 12.6 and the
dominated convergence theorem to show this.
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(b) Let f ∈ Cb(R) be bounded by B. Show that |Ef(Xn+σY )−Ef(X+σY )| ≤
2B
∫

(p(z)− pn(z))+ dz.

(c) Show that |Ef(Xn + σY )− Ef(X + σY )| → 0 if φn → φ pointwise.

(d) Prove Corollary 12.12: Xn
w→ X iff φn → φ pointwise.

12.8 Let X1, X2, . . . , Xn be an iid sequence having a distribution function F , a
continuous density (w.r.t. Lebesgue measure) f . Let m be such that F (m) = 1

2 .
Assume that f(m) > 0 and that n is odd, n = 2k − 1, say (k = 1

2 (n+ 1)).

(a) Show that m is the unique solution of the equation F (x) = 1
2 . We call m

the median of the distribution of X1.

(b) Let X(1) = min{X1, . . . , Xn}, X(2) = min{X1, . . . , Xn} \ {X(1)}, etc. The
resulting X(1), X(2), . . . , X(n) is called the ordered sample. The sample
median Mn of X1, . . . , Xn is by definition X(k). Show that with Unj =
1{Xj≤m+n−1/2x} we have

P(n1/2(Mn −m) ≤ x) = P(
∑
j

Unj ≥ k).

(c) Let pn = PUnj , bn = (npn(1−pn))1/2, ξnj = (Unj−pn)/bn, Zn =
∑n
j=1 ξnj ,

tn = (k − npn)/bn. Rewrite the probabilities in part (b) as P(Zn ≥ tn)
and show that tn → t := −2xf(m).

(d) Show that P(Zn ≥ t) → 1 − Φ(t), where Φ is the standard normal distri-
bution.

(e) Show that P(Zn ≥ tn)→ Φ(2f(m)x) and conclude that the Central Limit
Theorem for the sample median holds:

2f(m)n1/2(Mn −m) w→ N(0, 1).

12.9 Let Y be a random variable with a Gamma(t, 1) distribution, so it has
density 1

Γ(t)y
t−1e−y1{y>0}, where Γ(t) =

∫∞
0
yt−1e−y dy for t > 0. Put Xt =

Y−t√
t

.

(a) Show that Xt has a density on (−
√
t,∞) given by

ft(x) =
√
t

Γ(t)
(x
√
t+ t)t−1e−(x

√
t+t).

(b) Show that the characteristic function φt(u) = E eiuXt of Xt is given by

φt(u) = e−iu
√
t 1
(1− iu√

t
)t

and conclude that φt(u)→ e−
1
2u

2
as t→∞.
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(c) Show that

tt−
1
2 e−t

Γ(t)
=

1
2π

∫ ∞
−∞

φt(u) du.

(d) Prove Stirling’s formula

lim
t→∞

Γ(t)√
2πe−ttt−

1
2

= 1.

12.10 Let X be a random variable defined on some probability space (Ω,F ,P)
and let G be a sub-σ-algebra of F . Let for u ∈ R the random variable φ̂(u) be
a version of E [eiuX |G]. Note that we actually have a map (u, ω) 7→ φ̂(u, ω).

(a) Show that the map u 7→ φ̂(u) is continuous in L1 (E |φ̂(u+ h)− φ̂(u)| → 0
for h→ 0).

(b) Show that we can take the φ̂(u) such that u 7→ φ̂(u, ω) is continuous on a
set of probability one.

(c) Suppose that there exists a function φ : R→ C such that φ(u) is a version
of E [eiuX |G] for each u ∈ R. Show that φ is the characteristic function of
X and that G and σ(X) are independent.
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13 Brownian motion

This chapter is devoted to showing the existence of Brownian motion as a well
defined mathematical well defined object. Brownian motion is perhaps the
most fundamental stochastic process with a continuous time set. The style of
this chapter is to some extent expository. Some results that we have proved in
previous chapters for finite dimensional spaces have a generalization to infinite
dimensional spaces. In the present chapter these generalizations are sometimes
presented without proof.

13.1 The space C[0,∞)

In this section we summarize some facts concerning the space C[0,∞) of real
valued continuous functions defined on [0,∞). For x1, x2 ∈ C[0,∞) we define

ρ(x1, x2) =
∑
n≥1

2−n(max{|x1(t)− x2(t)| : 0 ≤ t ≤ n} ∧ 1). (13.1)

Then ρ defines a metric on C[0,∞) (which we use throughout these notes) and
we have

Proposition 13.1 The metric space (C[0,∞), ρ) is complete and separable.

Later on we need the relatively compact subsets of C[0,∞). To describe these
we introduce the modulus of continuity mT . For each x ∈ C[0,∞), T, δ > 0 we
define

mT (x, δ) = max{|x(t)− x(s)| : s, t ∈ [0, T ], |s− t| ≤ δ}. (13.2)

It holds that mT (·, δ) is continuous and limδ↓0m
T (x, δ) = 0 for each x and T .

The following characterization is known as the Arzelà-Ascoli theorem.

Theorem 13.2 A set A in C[0,∞) is relatively compact (has compact closure)
iff (i) sup{|x(0)| : x ∈ A} <∞ and (ii) for all T > 0 limδ↓0 sup{mT (x, δ) : x ∈
A} = 0.

Under requirement (ii) in this proposition, the functions in A are uniformly
equicontinuous.

Cylinder sets of C[0,∞) have the typical form {x : (x(t1), . . . , x(tk)) ∈ A},
where A ∈ B(Rk) for some k ≥ 1 and t1, . . . , tk ∈ [0,∞). A finite dimensional
projection on (C[0,∞), ρ) is by definition of the following type: πt1,...,tk(x) =
(x(t1), . . . , x(tk)), where the ti are nonnegative real numbers. It is easy to
see that any finite dimensional projection is continuous (Rk is endowed with
the ordinary metric). Note that cylinder sets are inverse images under finite
dimensional projections of Borel sets of Rk (k ≥ 1). Let C be the collection of
all cylinder sets and B the Borel σ-algebra on C[0,∞) induced by the metric
ρ. Let (Ω,F) be a measurable space. A map X : Ω → C[0,∞) is called a
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random element of C[0,∞) if it is F/B-measurable. It follows that πt1,...,tk ◦X
is random vector in Rk, for any finite dimensional projection πt1,...,tk , and it is
usually denoted by (Xt1 , . . . , Xtk). One can prove that B = σ(C) and thus that
X is a random element of C[0,∞), if all Xt are real random variables. Moreover,
if P is a probability measure on (Ω,F) and X a random element of C[0,∞),
then the distribution PX of X on (C[0,∞),B) is completely determined by the
distributions of all k-tuples (Xt1 , . . . , Xtk) on Rk (k ≥ 1, ti ∈ [0,∞)).

13.2 Weak convergence on metric spaces

Let (S, ρ) be a metric space and P, P 1, P 2, . . . be probability measures on the
Borel σ-algebra B(S). Like in the real case we say that Pn converges weakly
to P (notation Pn

w→ P ) iff for all f ∈ Cb(S) one has limPnf = Pf . If
X,X1, X2, . . . are random variables defined on probability spaces (Ω,F , P ) and
(Ωn,Fn,Pn) (n ≥ 1) with values in one and the same (S, ρ), we say that Xn

converges in distribution to X (Xn w→ X) if the laws Pn of Xn converge weakly
to the law P of X, equivalently, iff Pnf(Xn)→ Pf(X) for all f ∈ Cb(S).

We need a generalization of tightness as given in Definition 11.8 that is
applicable in the present context. Since any interval [−M,M ] ⊂ R is compact,
the following is reasonable. A family of probability measures Π on B(S) is
called tight if for every ε > 0, there is a compact subset K of S such that
inf{P (K) : P ∈ Π} > 1− ε. One can show that any single probability measure
on B(S) is tight if (S, ρ) is a separable and complete metric space (a Polish
space). A family of random variables with values in a metric space is called
tight if the family of their distributions is tight. Like in the real case (but much
harder to prove here) there is equivalence between relative compactness (in this
context it means that every sequence in a set of probability measures has a
weakly converging subsequence) and tightness, known as Prohorov’s theorem.

Theorem 13.3 A family Π of probability measures on a complete separable
metric space is tight iff it is relatively compact.

We will also need the following perturbation result.

Proposition 13.4 Let X1, X2, . . . and Y 1, Y 2, . . . be random sequences in a
metric space (S, ρ) and defined on a single probability space. If Xn w→ X and
ρ(Y n, Xn) P→ 0, then Y n

w→ X.

If we take S = C[0,∞) with the metric ρ of the previous section, we get the
following ‘stochastic version’ of the Arzelà-Ascoli theorem.

Theorem 13.5 Let P 1, P 2, . . . be a sequence of probability measures on the
space (C[0,∞),B). This sequence is tight iff

lim
λ↑∞

sup{Pn(x : |x(0)| > λ) : n ≥ 1} = 0 (13.3)
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and

lim
δ↓0

sup{Pn(x : mT (x, δ) > ε) : n ≥ 1} = 0,∀T, ε > 0. (13.4)

Proof If the sequence is tight, the result is a straightforward application of
Theorem 13.2. For every ε > 0 we can find a compact K such that infn Pn(K) >
1 − ε. But then we can find λ > 0 such that for all x ∈ K we have |x(0)| < λ
and we can similarly find for given T > 0 and η > 0 a δ0 > 0 such that for all
0 < δ < δ0 we have on K that mT (x, δ) < η.

Conversely, assume (13.3) and (13.4) and let ε, T > 0, T integer, be given.
Choose λT such that supn Pn(x : |x(0)| > λT ) ≤ ε2−T−1. For each k ≥ 1 we
can also find δk such that supn Pn(x : mT (x, δk) > 1/k) ≤ ε2−T−k−1. Notice
that the sets AT,k = {x : mT (x, δk) ≤ 1/k} and AT,0 = {x : |x(0)| ≤ λT } are
closed and so is their intersection over both k and (integer) T , call it K. From
Theorem 13.2 we obtain that K has compact closure and it is thus compact
itself. Finally we compute Pn(Kc) ≤

∑
T≥1 P(AcT,0) +

∑
k≥1 P(AcT,k) ≤ ε. �

We have seen that any finite dimensional projection is continuous. Hence, if
X,X1, X2, . . . are random elements of (C[0,∞),B) and if we assume that Xn

w→
X, then also (Xn

t1 , . . . , X
n
tk

) considered as random elements in Rk converge in
distribution to (Xt1 , . . . , Xtk). This is then true for any finite set of ti’s and we
say that all finite dimensional distributions converge weakly. The converse does
not hold in general, unless one assumes tightness.

Theorem 13.6 Let X1, X2, . . . be random elements of C[0,∞). Assume that
their collection {P 1, P 2, . . .} of distributions is tight and that all finite dimen-
sional distributions of the Xn converge weakly. Then there exists a probability
measure P on (C[0,∞),B) such that Pn w→ P .

Proof Every subsequence of (Pn) is tight as well and thus has a convergent
subsequence. Different subsequences have to converge to the same limit, call it
P , since the finite dimensional distributions corresponding to these sequences
converge. Hence, if (Pn) has a limit, it must be P . Suppose therefore that the
Pn don’t converge. Then there is bounded and continuous f and an ε > 0 such
that |Pnkf − Pf | > ε along a subsequence (Pnk). No further subsequence of
this can have P as a limit which contradicts what we just showed. �

13.3 An invariance principle

Throughout this section we work with a real valued iid sequence ξ1, ξ2, . . . with
zero mean and variance σ2 ∈ (0,∞) defined on a probability space (Ω,F ,P).
Let Sk =

∑k
i=1 ξi and for each integer n and t ≥ 0

Xn
t =

1
σ
√
n

(S[nt] + (nt− [nt])ξ[nt]+1. (13.5)

The processes Xn have continuous paths and can be considered as random
elements of C[0,∞). Notice that the increments Xn

t − Xn
s of each Xn over
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intervals (s, t) with s = k
n , t = l

n , k < l integers, are independent. Since for
these values of t and s we have Var (Xn

t −Xn
s ) = t−s, the central limit theorem

should be helpful to understand the limit behavior.

Theorem 13.7 Let 0 = t0 < t1 < · · · < tk. Then the k-vector of increments
Xn
tj −X

n
tj−1

with j = 1, . . . , k converges in distribution to a random vector with
independent elements Nj, where each Nj has a N(0, tj − tj−1) distribution.

Proof Since the term in (13.5) with the ξ[nt] tends to zero in probability, we
can ignore it as a consequence of proposition 13.4. But then the conclusion
follows from the ordinary Central Limit Theorem. �

Denote by Pn the law of Xn. We have the following important result, whose
proof is deferred to the next section.

Theorem 13.8 The sequence of probability measures Pn is tight.

Combined with Theorems 13.6 and 13.7 one obtains

Theorem 13.9 There exists a probability measure P ∗ on (C[0,∞),B) such that
Pn

w→ P ∗.

Any process defined on some probability space that has continuous paths, that
starts in zero and that has independent increments over non-overlapping in-
tervals (s, t) with a N(0, t − s) distribution is called a Wiener process, also
called a Brownian motion. Let W denotes the coordinate mapping process on
Ω = C[0,∞), i.e. W is defined by Wt(ω) = ω(t) for all t ≥ 0. Under the measure
P ∗ this process has independent increments over non-overlapping intervals (s, t)
and these increments have a N(0, t− s) distribution. Since by definition W is a
random element of (C[0,∞),B), W is thus a Wiener process and the measure
P ∗ is called Wiener measure. Notice that P ∗ is also the law of W .

We can rephrase Theorem 13.9 as

Theorem 13.10 The processes Xn of this section converge in distribution to
a Wiener process W .

Both Theorems 13.9 and 13.10 are known as Donsker’s invariance principle.
What we have done in this section can be summarized by saying that we have
shown the existence of a Wiener process and we have given a Functional Central
Limit Theorem.

13.4 The proof of Theorem 13.8

Consider the process Sn of section 13.3. To prove Theorem 13.8 we use the
following results.
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Lemma 13.11 Let γ > 0, n ≥ 1, N ≥ n and η ≥ σ
√

2(n− 1). The following
inequalities are valid.

P(max
j≤n
|Sj | > γ) ≤ 2P(|Sn| > γ − η) (13.6)

P( max
1≤j≤n
0≤k≤N

|Sj+k − Sk| > γ) ≤ (
N

n
+ 2)P(max

j≤n
|Sj | > γ/3). (13.7)

Proof Assume η < γ. Let τ = min{j : |Sj | > γ}. Then we have to consider
P(τ ≤ n). Split this probability up as

P(τ ≤ n, |Sn| > γ − η) + P(τ ≤ n, |Sn| ≤ γ − η) (13.8)

and work on the second probability. It can be written as
∑n−1
j=1 P(τ = j, |Sn| ≤

γ − η) and each of the probabilities in the sum is less than or equal to P(τ =
j, |Sn − Sj | > η) = P(τ = j)P(|Sn − Sj | > η). The second factor is by Cheby-
chev’s inequality less than 1

η2 (n − 1)σ2 ≤ 1
2 , by the assumption on η. There-

fore P(τ ≤ n, |Sn| ≤ γ − η) ≤ 1
2P(τ ≤ n − 1). From (13.8), we then get

P(τ ≤ n) ≤ P(|Sn| > γ − η) + 1
2P(τ ≤ n) and the inequality (13.6) follows.

To prove (13.7) we argue as follows. Let m = [Nn ] and consider the ‘inter-
vals’ {pn, . . . , (p + 1)n − 1}, for p = 0, . . . ,m. N belongs to the last one.
Consider j and k for which the maximum is bigger than γ. If k + j belongs
to the same interval as k, the one starting with pn, say, we certainly have
|Snp − Sk| > γ/3 or |Snp − Sk+j | > γ/3 and so in this case there is p ≤ m such
that maxj≤n |Snp−Sj | > γ/3. If k+ j lies in the interval starting with (p+1)n,
we must have |Snp−Sk| > γ/3 or |Sn(p+1)−Sk+j | > γ/3 or |Sn(p+1)−Snp| > γ/3.
Both cases are contained in the event

⋃
0≤p≤m+1{maxj≤n |Snp−Snp+j | > γ/3},

whose probability is less than or equal to
∑m+1
p=0 P(maxj≤n |Snp−Snp+j | > γ/3).

By the iid assumption all probabilities in this sum are equal to the first one and
thus the sum is equal to (m+ 2)P(maxj≤n |Sj | > γ/3), which yields the result.

�

With this lemma we prove 13.8 as follows. According to Theorem 13.5 it is
sufficient to show that

lim
δ↓0

sup
n≥1

P( max
|s−t|≤δ
0≤t,s≤T

|Xn
t −Xn

s | > ε) = 0 for all T, ε > 0. (13.9)

But since we only need tightness for all but finitely many n, we can as well
replace the ‘sup’ by a ‘lim sup’. Let Yt = σ

√
nXn

t/n. Each of the probabilities
in (13.9) is less than

P( max
|s−t|≤[nδ]+1
0≤t,s≤[nT ]+1

|Yt − Ys| > εσ
√
n).

But, since Y is piecewise linear between the integer values of its arguments, the
max is attained at integer numbers. Hence we consider

P( max
0≤j≤[nδ]+1
0≤k≤[nT ]+1

|Sj+k − Sk| > εσ
√
n).
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Now we apply inequality (13.7) and bound this probability by

(
[nT ] + 1
[nδ] + 1

+ 2)P( max
j≤[nδ]+1

|Sj | > εσ
√
n/3). (13.10)

In view of (13.6) (take η = σ
√

2[nδ]) the probability in (13.10) is less than

P(|S[nδ]+1| > εσ
√
n/3− σ

√
2[nδ]).

Now we apply the central limit theorem: 1

σ
√

[nδ]
S[nδ]+1

w→ Z, where Z has

a N(0, 1) distribution. So for n → ∞ the last probability tends to P(|Z| >
ε

3
√
δ
−
√

2) which is less than δ2

(ε/3−
√

2δ)4
EZ4. Hence the lim sup in (13.10) for

n→∞ is less than Tδ+2δ2

(ε/3−
√

2δ)4
EZ4, from which we obtain (13.9). �

.

13.5 Exercises

13.1 Consider the sequence of ‘tents’ (Xn), where Xn
t = nt for t ∈ [0, 1

2n ],
Xn
t = 1 − nt for t ∈ [ 1

2n ,
1
n ], and zero elsewhere (there is no randomness here).

Show that all finite dimensional distributions of the Xn converge, but Xn does
not converge in distribution.

13.2 Show that ρ as in (1.1) defines a metric.

13.3 Suppose that the ξi of section 4 of the lecture notes are iid normally
distributed random variables. Use Doob’s inequality to obtain P(maxj≤n |Sj | >
γ) ≤ 3γ−4n2.

13.4 Show that a finite dimensional projection on C[0,∞) (with the metric ρ)
is continuous.

13.5 Consider C[0,∞) with the Borel σ-algebra B induced by ρ and some prob-
ability space (Ω,F ,P). If X : (Ω,F) → (C[0,∞),B) is measurable, then all
maps ω 7→ Xt(ω) are random variables. Show this, as well as its converse. For
the latter you need separability that allows you to say that the Borel σ-algebra
B is a product σ-algebra. See also Remark 5.7.

13.6 Prove Proposition 13.4.
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