Duisenberg School of Finance
Measure Theory and Stochastic Processes 11
Old exam questions

1. Let W = {W(t) : t > 0} be a Brownian motion defined on some
probability space (2, F,P) and let " > 0 be fixed. As a possible
alternative to compute fOT W (s) dW (s) we use the approximating sums
S(T) = S W (ti1) (W (tisr) — W(t;)), where IT = {tg,...,t,} is a
partition of [0,7] with ¢y = 0 and ¢, = T". Split S(II) = C(II) + I(II),
where C(IT) = 3207 (W (ti—1) = W (t)) (W (ti41) — W (#:)) and I(IT) =
ST W) (W (ti41) — W (t))-

(a) What is the L2-limit of I(II) for a sequence of partitions II whose
mesh tend to zero?

(b) What is the expectation of C'(II)?

(¢) Write D; = W(t;—1) — W(t;) and

EC(I)? =Y E(D;D;11D;D;1).
1,J
Show that EC(I)2 = /' E (D?D?,,).

(d) Show that EC(IT)? = S0t — ti1) (tiv1 — t).

(e) Show that EC(I)? — 0 as ||II]| — 0.

(f) What is limit of the S(II) as ||II|| — 07

2. Let W = {W(t) : t > 0} be a Brownian motion defined on some

probability space (€2, F,P) and let T' > 0 be fixed. We’d like to com-
pute the quadratic variation of the process X, defined by X(t) =
W ()2, over the interval [0, T]. Let S(IT) = S0 (X (tir1) — X (t:))? =
S (W (tig1)? — W(t:)?)?, where TI = {tg,...,t,} is a partition of
[0,7] with to =0 and ¢, =T

(a) Show that

=0

(b) Write, in order of appearance, S(II) = 14+ II+III. Show that
the term I converges (almost surely) to zero for a sequence of
partitions whose mesh tend to zero. Hint: (W (t;11) — W(t;))? <
max; (W (ti+1) — W (t:))%.



Show that the term II converges (almost surely) to zero (for the
same sequence of partitions).

Argue (relying on known results) that S(II) converges (in the L?
sense) to 4 fOT X (s)ds (for the same sequence of partitions).

Use the It6 formula to write X as in It6 process and verify the
expression for [X, X|(T).

Apply the It6 formula to X2 to get an alternative expression for
(X, X](T).

Combine the It formula for W* and the previous item to obtain
the expression for [X, X](T') as in item (d).

3. Let W = {W(t) : t > 0} be a Brownian motion defined on some
probability space (€, F,P) and let We(t) = LW (at) for a > 0.

(a)

(e)

va

Show that W4(¢) is also Brownian motion, i.e. show that all defin-
ing properties of a Brownian motion are satisfied.

Let X(t) = W(at), t > 0. What is [X*, X?](¢)?

) Determine ¢ > 0 such that X%(¢)? — ct is a martingale relative to

its own filtration.

Suppose Yj is a random variable with E Yy = 0 and EY02 =1 that
is independent of the Brownian motion W. Then Y (¢) = Yy +
W (t) does not define a martingale w.r.t. the filtration generated
by W. Why not?

Let G(t) be the smallest o-algebra such that Yy and W(s),s < ¢
are measurable. Show that {Y'(¢), ¢ > 0} is a martingale w.r.t.
the filtration {G(¢),t > 0}.

4. Let a : [0,00) — RT be a continuous function and A(t) = fg a(s) ds,
t > 0. Let N be a standard Poisson process, so with intensity A = 1.
Let Z(t) = exp(—A(t) +t + [;loga(s) AN (s)).

Show (use the It6 rule for jump processes) that Z is a solution to
dZ(t) = Z(t—)(a(t) — 1)(dN(t) — dt).
Show that d[N, Z|(t) = Z(t—)(a(t) — 1)dN(t).

) Show (use the product rule) that the product (N — A)Z is a

martingale.

Define a new probability measure P’ by P'(A) = E14Z(T). Show
that {N(¢t) — A(t),0 <t < T} is a martingale under P'.

Show that P/<N(t) — N(S) = ]) =FE [1{N(t)—N(s):j}Z(t)] for 0 S
s<t<T.

In the remainder of the exercise we assume that a is a constant func-
tion, a(t) = X > 0 for all ¢t > 0.



(f) Show directly from the definition of P’ that P'(N(¢)—N(s) = j) =
exp(=N(t—s))(N(t—s))/jl for j=0,1,...and 0 < s <t < T.

(g) Show that N(t) — N(s) and N(s) are independent random vari-
ables under P for 0 < s <t < T.

(h) What kind of process is N(t), 0 < ¢t < T under P'?

5. Let W be a Brownian motion on some probability space (€2, F,P)
and a some constant. Let 7' > 0 and put X (¢) = exp(2W(t) — at),

t > 0. Let {F(t),t > 0} be the filtration generated by W and g(¢,z) =
xe(a72)(t7T)'

(a) Give a stochastic differential equation for the process X. Is X a
martingale?

(b) Put Y(t) = g(t, X(t)),t > 0. Show that dY (¢) = 2Y (¢t) dW (¢).

(c) Show that {Y'(t),t > 0} is a martingale and that Y'(¢) = E [ X (T)|F(t)]
fort <T.

(d) Give a partial differential equation that the function g satisfies,
and explicitly the boundary condition on ¢g(7,x). Verify that g
indeed solves this equation.

(e) Let h be a function such that h(t, X(t)) = E [log X (T)|F(t)] for

0 <t <T. Give also a partial differential equation that the
function h satisfies. What is the boundary condition on h?

6. Consider a Brownian motion {W(¢) : ¢t € [0,T]} and let II = {0 ={; <
-+ <t, =T} be a partition of [0,T]. Let tJ = at; + (1 — a)tj+1 for
any a € [0,1], j =0,...,n — 1}. Define

(a) Show that

where
n—1
CHI) = » (W(tF) = W(t;))(W(tj41 — W(LF)),
=0
n—1
QYI) = Y (W(t5) — W(t)))*.

<.
Il
o

(b) Show that EQ*(II) = (1 — «)T and E C*(II) = 0.
(c) Show that Var C(IT) = a1 — o) 3200 (41 — £)*.



(d) Show that Var @*(IT) = 2(1 — &) 3200 (tj+1 — £;)*

(e) Let Q% be the L-limit of the Q¥(II) as we take a sequence of
partitions with ||IT|| — 0, i.e. Q is such that E (Q*(IT) — Q%)% —
0. Identify Q and show that it is indeed the L2-limit.

(f) What is the L%limit C® of the C*(II) for partitions with ||II|| —
0? Show that indeed E (C*(II) — C%)? — 0

(g) Show (use the deﬁnition of the It6-integral) that J(II) converges

(in L?) to f? W(s) + (1 — a)T and that this is equal to

SW(T ) +(G - )T-
7. Consider a Brownian motion W = {W(¢) : ¢t > 0} and {F(¢) : t > 0}
a filtration for W. Fix some T' > 0 and put M(t) = E [W(T)3 ] ( )]s

t>0.

(a) Show that M is a martingale. What are M (0) and M (T)?

(b) Show by direct computation, using properties of Brownian mo-
tion, that M(t) = 3(T — )W (t) + W (t)3 for t € [0,T].

(c) What is M(t) for t > T.

(d) Give an expression for dM(t) for ¢t < T. The result should again
reveal that M is a martingale

(e) Find O(s) such that W (T fo W(s).
(f) What is O(s) for s > T such that M( ) = fot ©(s)dW (s) for
t>1T7?

8. Consider the process X given by X(t) = X(0) + W(t), with W =
{W(t) : t > 0} a Brownian motion and X (0) a random variable in-
dependent of W. Let F(t) be the smallest o-algebra such that W(s)
is F(t) -measurable for s < ¢t and such that X (0) is F(¢)-measurable.
Let h(z) = 2%, T > 0 and g(t,7) = EX*h(X(T)) for t < T.

(a) Show that E[X(T)2|F(t)] =T —t+ X(t)? for t <T.
(b) What is g(t,z)?

(c) Give a partial differential equation to which g is a solution. What
is the terminal condition g(7’, x)?

9. Let N = {N(t),t > 0} be a Poisson process with intensity A defined
on a probability space (2, F,P) and let {F(t),t > 0} be the filtration
generated by N. Let Z(t) = (%)N(t) exp(—(A = \)t), t > 0. Let T > 0
and define a new probability measure P on Fr by P(A) = E (1,4Z(T)).
It is known that the process Z = {Z(t),t > T} is a martingale.



10.

(a) Let ko > k1 be nonnegative integers and ¢t > ¢; > 0. Show that

(t2 o tl)k2_k1tlf1
(ks — k)l

P(N(tQ) = ko, N(tl) = kl) — o~ M2 )\ k2

(b) Show that for t; <ty <T

P(N(t2) = k2, N(t1) = k1) = E (1N (t2)mko,N(t:1)=k1} Z (£2))-

(¢) Compute explicitly for 0 <y <3 <T and integers k2 > k1 > 0
the probability P(N (t2) = ka, N(t1) = k1).

(d) Guess a formula for P(N(ty,) = km,...,N(t1) = kp), for T >
tym > - >1t1 > 0 and integers ky, > --- > k1 > 0.

(e) What kind of process should {N(t) : t < T} be under the measure
P?

Let Ni and Ny be independent Poisson processes with intensities
A1 and Ao respectively. It is known that Ni; and N have no com-
mon jumps. Let {.7:} : t > 0} be the smallest filtration to which
both N; and Ny are adapted. Put Z(t) = Z1(t)Zy(t), with Z;(t) =
(%)Ni(t) exp(—(Ai—Ai)t), fori = 1,2 and t > 0. Let T > 0 and define a
new probability measure P on Fr by P(A) = E (14Z(T)). It is known
that both processes 71 and Zy are martingales w.r.t. {.7:} it >0}

(f) Show that Z is a martingale.

(g) Let t <T. Show that Ni(¢) and N(t) are independent random
variables under the probability measure P.

Let W = {W(¢t) : t > 0} be a Brownian motion defined on some
probability space (€2, F,P). Consider the process X = {X(t) : ¢t > 0}
that solves the stochastic differential equation (SDE)

AX(t) = (6 — 3X (1)) dt + 6 dW (1),

and assume that X (0) is some given random variable, independent of
W. Let Y(t) = 3 X (¢).

(a) Give an SDE that Y(¢) satisfies and write Y (¢) as the sum of an
1t6 integral and ‘smooth’ terms.

(b) Compute X (¢) from Y (¢) explicitly in an expression that con-
tains an It6 integral, recognize that X (¢) is of the form X (t) =
f(t,Z(t)) for some function f(t,z) and use this to verify that
X (t) is indeed the solution to the given SDE.

(c) Let pu(t) =EX(t) and )N((tN) = X(t) — p(t). Show that $pu(t) =
6 — 3u(t) and dX (t) = —3X(¢) dt + 6 dW (¢).



(d) Let v(t) = Var X(¢). Show that Sv(t) = —6v(t) + 36. What is
v(t) if v(0) = 67

11. Let W = {W(t) : t > 0} be a Brownian motion defined on some

12.

13.

probability space (€2, F,P). You know that [W, W](T") = T and in this
exercise you are going to (re)prove this. We need partitions IT = {0 =
toy.-stn =T} and V(II) = Y0 (W (t;) — W(ti—1))2

(a) Show that for any such II one has EV(II) = T.

(b) Show that for any such IT one has Var V(IT) = 23" (t; —t;—1)>.

You may use that Var (X?) = 20* if X has a normal distribution

with zero mean and variance o2.

(c¢) Show that Var V(II) — 0 if the II come from a sequence of par-
titions whose mesh tend to zero.

(d) Show that E (V(IT) — T)? — 0 if the II come from a sequence of
partitions whose mesh tend to zero and conclude that [W, W|(T) =
T.

Let W = {W(t) : t > 0} be a Brownian motion defined on some
probability space (2, F,P). We use the filtration generated by W.
Let v € R and consider Z(t) = exp(yW (t) — 37%t) for t > 0. Let
T > 0 be fixed. We define a new probability measure P on F(T') by
P(A) = E[14Z(T)] for A € F(T). Note that under P the process W
is not a Brownian motion anymore.

(a) Show that the process Z = {Z(t),t > 0} is a martingale under P.
What is E Z(¢)?
(b) Show that for ¢ > s one has

W) Z(H)—W () Z(s) = / (AW () 1) Z () AW ()4 / Z(u) du.

(c) Show that E [f; Z(u)du|F(s)] = (t —s)Z(s).

(d) Compute the conditional expectations E [W (t)Z(t)|.F(s)] and (un-
der PI) E[W(t)|F(s)] for s <t <T.

(e) Let Y(t) = W(t) — bt (t € [0,77]), for some b € R. What is the
quadratic variation [Y,Y](T) under the new measure P?

(f) Show that Y (t) is a Brownian motion under P iff b = .

Let N = {N(t) : t > 0} be a Poisson process with intensity A > 0. We
use the filtration defined by F(t) = o(N(s),s < t), t > 0. From the
theory it is known that for all t > 0

E exp(uN (t) = exp((e" — 1)At).



(a) Show that for 0 <¢ < T' it holds that
Mr(t) := Elexp(ulN (T))[F(t)] = exp((e"=1)A(T—1)) exp(uN(t)).

(b) Show (from the definition of Myp(t)) that {Mp(t),t > 0} is a

martingale.

In the remainder of this exercise we keep T fixed and consider ¢t € [0, T
as the time parameter.
(¢) Write Mp(t) = exp((e* — 1)AT)Mp(t) with

Mr(t) = exp(ulN(t) — (e — 1)At).

Show that AMz(t) = (e* — 1) Mg (t—)AN(t).
(d) Between jump times of N we can differentiate MT(}) w.r.t. t.
Show that in this case one has %MT(t) = —(e" = 1)Mp(t)\

(e) Show the integral representation
~ t ~
Nip(t) = 1+ (" — 1)/ Nip(s—)(dN(s) — Ads).
0

(f) Explain why {Mr(t) : t € [0,T]} is a martingale.
(g) Give an integral representation for Mr(t).
14. Let W = {W(t) : t > 0} be a Brownian motion defined on some

probability space (2, F,P). Consider the process X = {X(¢) : ¢t > 0}
that solves the stochastic differential equation (SDE)

dX(t) = (2—-2X(t))dt +2dW (¢),
and assume that X (0) = x¢ for some g € R. Let Y (¢) = e* X (2).
(a) Give an SDE that Y (¢) satisfies and write Y (¢) as the sum of an
1t6 integral and ‘smooth’ terms.
(b) Compute the quadratic variations [X, X](¢) and [Y,Y](?).

(¢) Compute X (¢) from Y (¢) explicitly in an expression that contains
an Ito integral.

(d) Recognize that X(t) is of the form X(t) = f(¢,Z(t)) for some
function f(t,z) and use this to verify that X(t) is indeed the
solution to the given SDE.

15. Let W = {W(t) : t > 0} be a Brownian motion defined on some
probability space (2, F,P) and let F(t) = o(W(s) : s < t), t > 0.



Consider the process S = {S(t) : t > 0} that solves the stochastic
differential equation (SDE) of Black-Scholes type

dS(t) = S()u(t) dt + S(t)o(t) AW (t),

where p and o are suitable ordinary (non-random) functions, all oper-
ations further needed are well defined, and assume that S(0) = sg for
some sop € R. In addition, we are given a functlon r (the short rate)
that we use to define D(t) = exp(—R(t)) for R(t fo s)ds, t > 0.

Let S(t) = D(t)S(t).
(a) Show that dS(t) = S(t)(u(t) — r(t)) dt + S(t)o(t ()dW( ).

(b) Let ©(t) = "L A0 and Z(t) = exp(fy O(s) AW (s)—3 [y O(s)* ds),
t > 0. Show that {Z( ) :t > 0} is a martingale.

(c) Let W (t) fo s)ds, t > 0. Give a SDE for S(t) in
terms of W.
(d) Show that S(t) = sgexp(fy o(s)dW(s) — & [ o(s)? ds).

(e) Fix T' > 0 and define a new probablhty measure P on F(T) by
P(A) = E[14Z(T)] for A € F(T). Theory guarantees that P is a
measure. Why is it a probability measure?

(f) It is known that {W(t) : 0 <t < T} is a martingale under P.
Show that {W(¢)Z(t) : 0 < ¢ < T} is a martingale under P.

16. Let N = {N(¢t) : t > 0} be a Poisson process with intensity A > 0, and
let, for u € R and ¢t > 0,

Z(t) = exp(uN (t) — Mt(e" — 1)) = exp(ulN(t)) exp(—At(e” — 1)).
We use the filtration defined by F(t) = o(N(s),s <t), t > 0.

(a) Show E [exp(uN (t))|F(s)] = exp(uN(s))exp ((e* — L)A(t — s)).
Hint: use the independent increment property of N as well as the
MGTF of the Poisson distribution or an explicit computation.

(b) Show, use the previous item, that {Z(¢) : t > 0} is a martingale.

(c) Let X(t) = exp(uN(t)). Show that dX (t) = (e*—1)X (t—)dN(t),
for t > s.

(d) Show, apply the rule d(X(£)Y (t)) = X (t—)dY (t) + Y (¢t—) dX(t)
for X a function that may jump and Y a differentiable function,
that

dZ(t) = Z(t—)(e* — 1)dM (t),

for some process (which one?) M (t).

(e) Argue from the previous item that {Z(¢) : ¢ > 0} is a martingale.
What is E Z(¢)?



17. Let W = {W(¢t) : t > 0} be a Brownian motion defined on some

18.

probability space (2, F,P). Consider the process X = {X(t) : t > 0}
that solves the stochastic differential equation (SDE)

dX(t) = (1—X(t))dt +2dW (1),
and assume that X (0) = xo for some o € R. Let Y (t) = ! X (¢).
(a) Give an SDE that Y (¢) satisfies and write Y (¢) as the sum of an
1t6 integral and ‘smooth’ terms.

(b) Compute the quadratic variations [X, X](¢) and [Y,Y](¢t).

(c) Compute X (t) from Y (¢) explicitly in an expression that contains
an Ito integral.

(d) Recognize that X(t) is of the form X (t) = f(¢, Z;) for some func-
tion f(x, z) and use this to verify that X (¢) is indeed the solution
to the given SDE.

(e) What is the distribution of X (¢)?

(f) Suppose we replace zy with a random variable X (0), independent
of the process W, having a N (u,0?) distribution. What is now
the distribution of X (¢).

(g) How to choose, in addition to the above, 4 and o2 such that the
distributions of the X (¢) are all the same?

Let W = {W(t) : t > 0} be a Brownian motion defined on some
probability space (2, F,P). Let

1 1

2(1) = exp(W (1) ~ /0 (W(s)? +1)ds),

for t € [0,T7.

(a) Show that the quadratic variation process of W (t)? is equal to
fot W(s)?

(b) Z(t) is of the form f(X(t)). Show that dZ(t) = a(t)Z(t)dW (t)
for some adapted process a(t) and identify it. What is E Z(T)?

Define a new probability measure Iﬁ on F(T) by P(F) = E[1pZ(T)]
and put W (¢) fo

(¢) Show that the product W(t)Z(t), for t € [0,T], is a martingale
under P.

(d) Compute E[ (t)|F(s)] for 0 <s<t<T.
(¢) What is the distribution of W (T) — W (t) under P?



19.

20.

Let N = {N(t) : t > 0} be a Poisson process with intensity A > 0, and
let @ be the compound Poisson process with Q(t) = Zfi(f) Y;. The
usual independence assumptions are in force.

Assume that P(Y; = 1) = p and P(Y; = —1) = 1 — p. Let N (t) =

SN 1y, No() = S 15— ). Note that Ny () + N_(#)
N(t).

(a) Ny and N_ are independent Poisson processes according to the
theory. What are their intensities?

(b) Show that for integers k,m >0

k+m

P(N,(t) = k, N_(t) = m) = < ;

>pk(1p)m P(N(t) = k+m).

(c) Give an alternative expression for Q(t) involving N, (¢) and N_(t).
. . 1
(d) Suppose that the process @ is a martingale. Show that p = 3.

(e) Let Y be a process such that Y (S™) =Y,,, where the S,, are the
arrival times of N. Show that fot Y (s)dQ(s) = N(t).

(f) Show that Y(s) := AQ(s) is an example of such a process. Even
when @ is a martingale, the integral in the previous item (for this
choice of Y (s)) item is not. Explain.

Consider the function f(t) = t2 for t € [—1,1]. Let II4 = {to,...,t}
be a partition of [0,1] with 0 < ¢; < -+ < ¢, = 1 and let II_ =
{s1,...,8m} be a partition of [-1,0) with —1 = 51 < -+ < s, < 0.
Then IT := 111 UII_ is a partition of [—1, 1], whose negative elements
are the s; and the positive elements are the ;.

(a) Let Vi(f,II) be the first order variation of f over the interval
[~1,1] for the partition II. Show that Vi(f,II) = 2 — s2, — t? +
|s2, —t2|. What is the limit of V4 (f,II) if one considers a sequence
of such partitions I, whose mesh tend to zero?

(b) Let Va(f,II1) be the quadratic variation of f over the interval
[0,1] with respect to the partition II.. Show that Vo(f,I1;) =
Skt (b —te—1)? (b +te—1)? and Vo(f, TLy) <4370 (b —tg—1)*.
What is the limit of Va(f,I1}) if one considers a sequence of such
partitions I, whose mesh tend to zero?

(c) Replace the function f above by a Brownian motion W on [0, 1],
so f(t) = W(t) fort € [0, 1], and put f(t) = W(—t) fort € [-1,0).
What are the limits of Vi (W,II) and Vo(W,II) if one considers a
sequence of such partitions II, whose mesh tend to zero? No
computations need to be given for this question; a short answer
suffices!

10



21.

22.

23.

Let W be a Brownian motion, defined on some underlying probability
space (Q, F,P).

(a) Put X(t) = W(t)%, ¢t > 0. Then X is an Ito process. Write X (¢)
as the sum of an It6 integral I(¢) and a ‘smooth’ process R(t).

(b) Compute the quadratic variation process [X, X].

(c) Put Y(t) = W(t)*. Then also Y is an It6 process. Use this to
compute E W (t)* = 3t2.

(d) Use the two previous items to compute Var (W (t)?).

Let W be a Brownian motion, defined on some underlying probability
space (€2, F,P). Consider a Black-Scholes model for the price S(t) of

some asset,
dS(t) = S(t)(Bdt +odW(t)), S(0) = 1.

Let r > 0 be the interest rate and let D(t) = e " be the discount
factor at time ¢t. Put S(t) = D(¢)S(¢) for t > 0.

(a) Show that the process S satisfies the SDE
dS = S((B —r)dt + o dW(t)).

(b) Let
B—r
Z(t) =exp (- — W(t) —at), t > 0.
Use the [t6 formula to give an SDE that Z satisfies and determine
the value of o that makes Z a martingale. This value will be kept
in the questions below.

(¢) Show that the process M defined by M (t) = S(t)Z(t) is a mar-
tingale.
(d) Let T'> 0. What is EZ(T")?

We will use Z(T') to define a new probability measure Q on F(7T') =
o(W(s), s <T) by Q(F)=E1pZ(T)).

(e) Compute EgS(T).

(f) Compute Eo[S(T)|F(t)] for t < T.
Let N1 and Ny be two independent Poisson processes, with intensities
A1 and Ag respectively. Consider the process @ given by Q(t) = Ny (t)—
Ny(t).

11



(a) Sketch a typical trajectory of @, say with 5 jumps of N7 and 3
jumps of Ny before some time 7' > 0 (or choose different numbers
of jumps, if you prefer).

(b) What is EQ(t)?

One may view @ as a compound Poisson process. With N(t) = Ny(t)+
Ny(t), @ can be represented by

N(t)
= Z Yk)
k=1
where the Y form an iid sequence of random variables, assuming the
values —1 and +1, which is also independent of N (t). Let f = EYj.
(c) Compute S in terms of A\; and Ag.
(d) Compute P(Y; = 1) and P(Yy = —1) in terms of A\; and As.

Let 11,15, ... be the jump times of N and define the process Y by
Y(8) =2 po1 Yelir,_, 1)(8), s0 Y(s) =Yy if s € [Thp—1,T).

(e) Argue that s € [Ty_1,T)) iff N(s) = k — 1 and, exploiting the
independence of the Y3 and N(s), show that EY (s ) = ﬁ

(f) Show Y (s—) =Y} if s € (Tj—1,Tx] and Q(t) fo N(s).

(g) Compute, using the previous two questions, E Q(¢ ) again.

24. Let W = {W(t) : ¢ > 0} be a Brownian motion defined on some
probabﬂity space (2, F,P) and let ' > 0 be fixed. We are interested in

JTW (AW (). Let ST) = S0 W (1)2(W(t541) — W (1), where
II = {to, ..., tn} is a partition of [0, 7] with ¢t =0 and ¢, = T.

(a) Show that

- 32 (tie1) — W ()W (1)

- Z (tiv1) — W (t:))*.

(b) Write, in order of appearance, S(II) = I —II —III. Show that
the term III converges (almost surely) to zero for a sequence of
partitions whose mesh tend to zero. Hint: |W(t;11) — W (t;)| <
max; |W(ti+1) - W(tl)’
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(¢) The term I has a trivial limit. Which one?

(d) Argue (relying on known results) that II converges (in the L?
sense) to a Lebesgue integral (for the same sequence of parti-
tions). Which integral is it?

(e) Apply the Itd formula to W (T')? and verify your answers above.

(f) Compute the quadratic variation of W3 over the interval [0, 77,

(i.e. write it as an integral).

25. Let N = {N(t),t > 0} be a Poisson process with intensity A. Let
a,f > 0 and let Z = {Z(t) = exp(aN(t) — pt), t > 0}. We use
F(t)=0(N(s):s<t).

(a) Derive for t > 0, using properties of the Poisson distribution,
E [exp(aN(t)) = exp((e* — 1)At).
(b) Show, using properties of the Poisson process, for t > s
E lexp(aN (1)) F(s)] = exp(aN(s)) exp((e” — D)A(t = 5)).

(c) If « is given, show that Z is a martingale if § = (e® — 1)\. Show
that in this case EZ(t) =1 for all t > 0.

In the case that Z is a martingale we use Z(T') to define a new prob-
ability measure P on F(T) by P(F) = E[1pZ(T)]. Let E denote
the corresponding expectation. Then for every random variable Y
that is F(T")-measurable and for which the expectations exist, one has
EY =RE[YZ(T)].

(d) Show by direct computation that EN(T) = e®A\T. You may use
S i kb /Kl = ze®.

(e) Deduce from the previous item and a property of the process Z
that EN(t) = e*At.

(f) Show

Z(t)
217

E[N(t)|F(s)] = N(s) + E[(N(t) = N(s))

(8) Show E[(N(t) = N(s)) 75| F(s)] = e*A(t — 5).
(h) Show that M (t) = N(t) — e*t defines a martingale under P for
t<T.

() What kind of a process is N under P?



26. Let W = {W(t) : t > 0} be a Brownian motion defined on some prob-
ability space (£, F,P). Below we work with the filtration generated
by W. Fix T > 0. Consider the martingale M = {M(t),0 <t < T},
defined by M (t) = E [sin(W(T))|F ()], t <T.

(a) Show that M is indeed a martingale.

(b) Show that M (t) = exp(—5(T—t))sin(W (t)). Hint: You may need
three facts, the formula sin(x + y) = sinz cosy + coszsiny, the
relation E [cos(W (u))] = exp(—3u) and the fact that Eg(Z) =0
if the function g is bounded and satisfies g(—x) = —g(x) and the
random variable Z has a density f that satisfies f(—x) = f(z).

(c) Write M as an It6 process and verify the martingale property
again.

27. Let N = {N; :t > 0} be a Poisson process with intensity A > 0.

(a) Show that [) N(s—)dN(s) = SN(t)(N(t) — 1). Hint: Y3 gk =
1
sn(n—1).

(b) Show directly, using the distribution of N (¢), that E N (¢)(N(t) —
1) = \%2.

(c) It is easier to compute the above expectation from (a) using
N(s) = As+ M(s). Compute the expectation by exploiting this
decomposition.

28. Let N = {N(t) : t > 0} be a Poisson process with intensity A > 0, and
let @ be the compound Poisson process with Q(t) = Zfi(f) Y;. The
usual independence assumptions are in force.

Assume that P(Y; = 1) = p and P(Y; = —1) = 1 — p. Let N (t) =
SO 1y, No() = SN 14—y Note that Ny () + N_(t) =
N(t).

(a) N4 and N_ are independent Poisson processes according to the
theory. What are their intensities?
(b) Show that for integers k,m >0

k+m

P(N(t) =k, N_(t) = m) = < .

)P A-p)" BV = k),
(c) Give an alternative expression for Q(¢) involving N4 (t) and N_(t).
(d) Suppose that the process @ is a martingale. Show that p = %

(e) Let Y be a process such that Y (S™) =Y,,, where the S,, are the
arrival times of N. Show that f(f Y (s)dQ(s) = N(t).
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(f) Show that Y(s) := AQ(s) is an example of such a process. Even
when @ is a martingale, the integral in the previous item (for this
choice of Y (s)) item is not. Explain.

29. Let N = {N(¢),t > 0} be a Poisson process with intensity .

(a) Derive for any ‘good’ function (¢, k) — g(t, k) (i.e. the expressions
below are assumed to make sense) the Ito-formula

o(t, N(1)) = 9(0,0) + /0 ge(s, N(s)) ds

+/ (g(s, N(s—=)+1)—g(s, N(s—))) dN(s),
0

where g; stands for the ‘first’ partial derivative %.

Let h: N=1{0,1,2,...} = R be a function such that Eh(N(t)) is well
defined for every t. Fix T'> 0 and let g(t, k) = E[h(N(T) — N(t) + k)]
for t <T and k € N.

(b) Show that g(t, N(t)) = E[h(N(T))|F(t)] for t <T.

(c) Show that M (t) := g(t, N(t)) defines a martingale for t < T w.r.t.
filtration generated by N.

(d) Show that it follows that
gi(t, k) + Ag(t, k +1) — g(t,k)) =0 (1)

forallt >0 and k € {0,1,2,...}.
(e) Compute g(t, k) for the case (i) h(m)

(f) Compute g(t, k) for the case (ii) h(m) =
E X2 = Var X + (E X)2)

(g) Verify Equation (1) for both cases (i) and (ii).

(h) What is in both cases (i) and (ii) the boundary condition g(7T', k)?
Give an explicit answer!

m.
m=.

2. (Recall the formula

30. Let W = {W(t) : t > 0} be a Brownian motion defined on some
probability space (2, F,P). Below we work with the filtration gen-
erated by W. Let a be an adapted process and let Z be a positive
process with Z(0) = 1 satisfying the stochastic differential equation
dZ(t) = a(t)Z(t)dW (t). We assume that a is such that Z is well
defined for all ¢ > 0. Put U(t) = log Z(t).

(a) Use the Ito-formula to derive a stochastic differential equation for
Ul(t).

15



(b) Show that U(t) = [; a(s) AW (s) — 3 [ a(s)? ds.

Suppose that for some 7" > 0 it holds that EZ(T) = 1. Define a
probability measure P on F(T') by P(F) = E[1rZ(T)]. Let b be
some adapted process satisfying fOT\b(s)\ds < oo and put W(t) =
W (t) — [y b(s)ds for t € [0,T].
(¢) Use the product rule to characterize that process b for which the
process W Z becomes a martingale under P.

(d) Show, use the formula for computing a conditional expectation
under a change of measure, that for the choice of b as in item (c),
W becomes a martingale under P.

(e) Why can we conclude that W is a Brownian motion under P if b
is taken as in item (c)?
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