
Duisenberg School of Finance
Measure Theory and Stochastic Processes II

Old exam questions

1. Let W = {W (t) : t ≥ 0} be a Brownian motion defined on some
probability space (Ω,F ,P) and let T > 0 be fixed. As a possible

alternative to compute
∫ T
0 W (s) dW (s) we use the approximating sums

S(Π) =
∑n−1

i=1 W (ti−1)(W (ti+1) −W (ti)), where Π = {t0, . . . , tn} is a
partition of [0, T ] with t0 = 0 and tn = T . Split S(Π) = C(Π) + I(Π),
where C(Π) =

∑n−1
i=1 (W (ti−1)−W (ti))(W (ti+1)−W (ti)) and I(Π) =∑n−1

i=1 W (ti)(W (ti+1)−W (ti)).

(a) What is the L2-limit of I(Π) for a sequence of partitions Π whose
mesh tend to zero?

(b) What is the expectation of C(Π)?

(c) Write Di = W (ti−1)−W (ti) and

EC(Π)2 =
∑
i,j

E (DiDi+1DjDj+1).

Show that EC(Π)2 =
∑n−1

i=1 E (D2
iD

2
i+1).

(d) Show that EC(Π)2 =
∑n−1

i=1 (ti − ti−1)(ti+1 − ti).
(e) Show that EC(Π)2 → 0 as ||Π|| → 0.

(f) What is limit of the S(Π) as ||Π|| → 0?

2. Let W = {W (t) : t ≥ 0} be a Brownian motion defined on some
probability space (Ω,F ,P) and let T > 0 be fixed. We’d like to com-
pute the quadratic variation of the process X, defined by X(t) =
W (t)2, over the interval [0, T ]. Let S(Π) =

∑n−1
i=0 (X(ti+1)−X(ti))

2 =∑n−1
i=0 (W (ti+1)

2 −W (ti)
2)2, where Π = {t0, . . . , tn} is a partition of

[0, T ] with t0 = 0 and tn = T .

(a) Show that

S(Π) =
n−1∑
i=0

(W (ti+1)−W (ti))
4

+ 4
n−1∑
i=0

(W (ti+1)−W (ti))
3W (ti)

+ 4
n−1∑
i=0

(W (ti+1)−W (ti))
2W (ti)

2.

(b) Write, in order of appearance, S(Π) = I + II + III. Show that
the term I converges (almost surely) to zero for a sequence of
partitions whose mesh tend to zero. Hint: (W (ti+1)−W (ti))

2 ≤
maxi(W (ti+1)−W (ti))

2.
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(c) Show that the term II converges (almost surely) to zero (for the
same sequence of partitions).

(d) Argue (relying on known results) that S(Π) converges (in the L2

sense) to 4
∫ T
0 X(s) ds (for the same sequence of partitions).

(e) Use the Itô formula to write X as in Itô process and verify the
expression for [X,X](T ).

(f) Apply the Itô formula to X2 to get an alternative expression for
[X,X](T ).

(g) Combine the Itô formula for W 4 and the previous item to obtain
the expression for [X,X](T ) as in item (d).

3. Let W = {W (t) : t ≥ 0} be a Brownian motion defined on some
probability space (Ω,F ,P) and let W a(t) = 1√

a
W (at) for a > 0.

(a) Show that W a(t) is also Brownian motion, i.e. show that all defin-
ing properties of a Brownian motion are satisfied.

(b) Let Xa(t) = W (at), t ≥ 0. What is [Xa, Xa](t)?

(c) Determine c > 0 such that Xa(t)2− ct is a martingale relative to
its own filtration.

(d) Suppose Y0 is a random variable with EY0 = 0 and EY 2
0 = 1 that

is independent of the Brownian motion W . Then Y (t) = Y0 +
W (t) does not define a martingale w.r.t. the filtration generated
by W . Why not?

(e) Let G(t) be the smallest σ-algebra such that Y0 and W (s), s ≤ t
are measurable. Show that {Y (t), t ≥ 0} is a martingale w.r.t.
the filtration {G(t), t ≥ 0}.

4. Let a : [0,∞) → R+ be a continuous function and A(t) =
∫ t
0 a(s) ds,

t ≥ 0. Let N be a standard Poisson process, so with intensity λ = 1.
Let Z(t) = exp(−A(t) + t+

∫ t
0 log a(s) dN(s)).

(a) Show (use the Itô rule for jump processes) that Z is a solution to
dZ(t) = Z(t−)(a(t)− 1)(dN(t)− dt).

(b) Show that d[N,Z](t) = Z(t−)(a(t)− 1)dN(t).

(c) Show (use the product rule) that the product (N − A)Z is a
martingale.

(d) Define a new probability measure P′ by P′(A) = E1AZ(T ). Show
that {N(t)−A(t), 0 ≤ t ≤ T} is a martingale under P′.

(e) Show that P′(N(t) −N(s) = j) = E [1{N(t)−N(s)=j}Z(t)] for 0 ≤
s ≤ t ≤ T .

In the remainder of the exercise we assume that a is a constant func-
tion, a(t) = λ′ > 0 for all t ≥ 0.
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(f) Show directly from the definition of P′ that P′(N(t)−N(s) = j) =
exp(−λ′(t− s))(λ′(t− s))j/j! for j = 0, 1, . . . and 0 ≤ s ≤ t ≤ T .

(g) Show that N(t) −N(s) and N(s) are independent random vari-
ables under P′ for 0 ≤ s ≤ t ≤ T .

(h) What kind of process is N(t), 0 ≤ t ≤ T under P′?

5. Let W be a Brownian motion on some probability space (Ω,F ,P)
and a some constant. Let T > 0 and put X(t) = exp(2W (t) − at),
t ≥ 0. Let {F(t), t ≥ 0} be the filtration generated by W and g(t, x) =
xe(a−2)(t−T ).

(a) Give a stochastic differential equation for the process X. Is X a
martingale?

(b) Put Y (t) = g(t,X(t)), t ≥ 0. Show that dY (t) = 2Y (t) dW (t).

(c) Show that {Y (t), t ≥ 0} is a martingale and that Y (t) = E [X(T )|F(t)]
for t ≤ T .

(d) Give a partial differential equation that the function g satisfies,
and explicitly the boundary condition on g(T, x). Verify that g
indeed solves this equation.

(e) Let h be a function such that h(t,X(t)) = E [logX(T )|F(t)] for
0 ≤ t ≤ T . Give also a partial differential equation that the
function h satisfies. What is the boundary condition on h?

6. Consider a Brownian motion {W (t) : t ∈ [0, T ]} and let Π = {0 = t0 <
· · · < tn = T} be a partition of [0, T ]. Let tαj = αtj + (1 − α)tj+1 for
any α ∈ [0, 1], j = 0, . . . , n− 1}. Define

Jα(Π) =
n−1∑
j=0

W (tαj )(W (tj+1)−W (tj)).

(a) Show that
Jα(Π) = J1(Π) +Qα(Π) + Cα(Π),

where

Cα(Π) =

n−1∑
j=0

(W (tαj )−W (tj))(W (tj+1 −W (tαj )),

Qα(Π) =

n−1∑
j=0

(W (tαj )−W (tj))
2.

(b) Show that EQα(Π) = (1− α)T and ECα(Π) = 0.

(c) Show that VarCα(Π) = α(1− α)
∑n−1

j=0 (tj+1 − tj)2.
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(d) Show that VarQα(Π) = 2(1− α)2
∑n−1

j=0 (tj+1 − tj)2.

(e) Let Qα be the L2-limit of the Qα(Π) as we take a sequence of
partitions with ||Π|| → 0, i.e. Qα is such that E (Qα(Π)−Qα)2 →
0. Identify Qα and show that it is indeed the L2-limit.

(f) What is the L2-limit Cα of the Cα(Π) for partitions with ||Π|| →
0? Show that indeed E (Cα(Π)− Cα)2 → 0.

(g) Show (use the definition of the Itô-integral) that Jα(Π) converges

(in L2) to
∫ T
0 W (s)dW (s) + (1 − α)T and that this is equal to

1
2W (T )2 + (12 − α)T .

7. Consider a Brownian motion W = {W (t) : t ≥ 0} and {F(t) : t ≥ 0}
a filtration for W . Fix some T > 0 and put M(t) = E [W (T )3|F(t)],
t ≥ 0.

(a) Show that M is a martingale. What are M(0) and M(T )?

(b) Show by direct computation, using properties of Brownian mo-
tion, that M(t) = 3(T − t)W (t) +W (t)3 for t ∈ [0, T ].

(c) What is M(t) for t ≥ T .

(d) Give an expression for dM(t) for t ≤ T . The result should again
reveal that M is a martingale.

(e) Find Θ(s) such that W (T )3 =
∫ T
0 Θ(s)dW (s).

(f) What is Θ(s) for s > T such that M(t) =
∫ t
0 Θ(s)dW (s) for

t > T?

8. Consider the process X given by X(t) = X(0) + W (t), with W =
{W (t) : t ≥ 0} a Brownian motion and X(0) a random variable in-
dependent of W . Let F(t) be the smallest σ-algebra such that W (s)
is F(t) -measurable for s ≤ t and such that X(0) is F(t)-measurable.
Let h(x) = x2, T > 0 and g(t, x) = Et,xh(X(T )) for t ≤ T .

(a) Show that E [X(T )2|F(t)] = T − t+X(t)2 for t ≤ T .

(b) What is g(t, x)?

(c) Give a partial differential equation to which g is a solution. What
is the terminal condition g(T, x)?

9. Let N = {N(t), t ≥ 0} be a Poisson process with intensity λ defined
on a probability space (Ω,F ,P) and let {F(t), t ≥ 0} be the filtration

generated by N . Let Z(t) = ( λ̃λ)N(t) exp(−(λ̃− λ)t), t ≥ 0. Let T > 0

and define a new probability measure P̃ on FT by P̃(A) = E (1AZ(T )).
It is known that the process Z = {Z(t), t ≥ T} is a martingale.
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(a) Let k2 ≥ k1 be nonnegative integers and t2 ≥ t1 ≥ 0. Show that

P(N(t2) = k2, N(t1) = k1) = e−λt2λk2
(t2 − t1)k2−k1tk11

(k2 − k1)!k1!
.

(b) Show that for t1 ≤ t2 ≤ T

P̃(N(t2) = k2, N(t1) = k1) = E (1{N(t2)=k2,N(t1)=k1}Z(t2)).

(c) Compute explicitly for 0 ≤ t1 ≤ t2 ≤ T and integers k2 ≥ k1 ≥ 0
the probability P̃(N(t2) = k2, N(t1) = k1).

(d) Guess a formula for P̃(N(tm) = km, . . . , N(t1) = k1), for T ≥
tm ≥ · · · ≥ t1 ≥ 0 and integers km ≥ · · · ≥ k1 ≥ 0.

(e) What kind of process should {N(t) : t ≤ T} be under the measure
P̃?

Let N1 and N2 be independent Poisson processes with intensities
λ1 and λ2 respectively. It is known that N1 and N2 have no com-
mon jumps. Let {F̂t : t ≥ 0} be the smallest filtration to which
both N1 and N2 are adapted. Put Ẑ(t) = Z1(t)Z2(t), with Zi(t) =

( λ̃λ)Ni(t) exp(−(λ̃i−λi)t), for i = 1, 2 and t ≥ 0. Let T > 0 and define a

new probability measure P̂ on F̂T by P̂(A) = E (1AẐ(T )). It is known
that both processes Ẑ1 and Ẑ2 are martingales w.r.t. {F̂t : t ≥ 0}.

(f) Show that Ẑ is a martingale.

(g) Let t ≤ T . Show that N1(t) and N2(t) are independent random
variables under the probability measure P̂.

10. Let W = {W (t) : t ≥ 0} be a Brownian motion defined on some
probability space (Ω,F ,P). Consider the process X = {X(t) : t ≥ 0}
that solves the stochastic differential equation (SDE)

dX(t) = (6− 3X(t)) dt+ 6 dW (t),

and assume that X(0) is some given random variable, independent of
W . Let Y (t) = e3tX(t).

(a) Give an SDE that Y (t) satisfies and write Y (t) as the sum of an
Itô integral and ‘smooth’ terms.

(b) Compute X(t) from Y (t) explicitly in an expression that con-
tains an Itô integral, recognize that X(t) is of the form X(t) =
f(t, Z(t)) for some function f(t, z) and use this to verify that
X(t) is indeed the solution to the given SDE.

(c) Let µ(t) = EX(t) and X̃(t) = X(t) − µ(t). Show that d
dtµ(t) =

6− 3µ(t) and dX̃(t) = −3X̃(t) dt+ 6 dW (t).
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(d) Let v(t) = VarX(t). Show that d
dtv(t) = −6v(t) + 36. What is

v(t) if v(0) = 6?

11. Let W = {W (t) : t ≥ 0} be a Brownian motion defined on some
probability space (Ω,F ,P). You know that [W,W ](T ) = T and in this
exercise you are going to (re)prove this. We need partitions Π = {0 =
t0, . . . , tn = T} and V (Π) =

∑n
i=1(W (ti)−W (ti−1))

2.

(a) Show that for any such Π one has EV (Π) = T .

(b) Show that for any such Π one has VarV (Π) = 2
∑n

i=1(ti− ti−1)2.
You may use that Var (X2) = 2σ4 if X has a normal distribution
with zero mean and variance σ2.

(c) Show that VarV (Π) → 0 if the Π come from a sequence of par-
titions whose mesh tend to zero.

(d) Show that E (V (Π)− T )2 → 0 if the Π come from a sequence of
partitions whose mesh tend to zero and conclude that [W,W ](T ) =
T .

12. Let W = {W (t) : t ≥ 0} be a Brownian motion defined on some
probability space (Ω,F ,P). We use the filtration generated by W .
Let γ ∈ R and consider Z(t) = exp(γW (t) − 1

2γ
2t) for t ≥ 0. Let

T > 0 be fixed. We define a new probability measure P̃ on F(T ) by
P̃(A) = E [1AZ(T )] for A ∈ F(T ). Note that under P̃ the process W
is not a Brownian motion anymore.

(a) Show that the process Z = {Z(t), t ≥ 0} is a martingale under P.
What is EZ(t)?

(b) Show that for t > s one has

W (t)Z(t)−W (s)Z(s) =

∫ t

s
(γW (u)+1)Z(u) dW (u)+γ

∫ t

s
Z(u) du.

(c) Show that E [
∫ t
s Z(u) du|F(s)] = (t− s)Z(s).

(d) Compute the conditional expectations E [W (t)Z(t)|F(s)] and (un-
der P̃ !!) Ẽ [W (t)|F(s)] for s < t < T .

(e) Let Y (t) = W (t) − bt (t ∈ [0, T ]), for some b ∈ R. What is the
quadratic variation [Y, Y ](T ) under the new measure P̃?

(f) Show that Y (t) is a Brownian motion under P̃ iff b = γ.

13. Let N = {N(t) : t ≥ 0} be a Poisson process with intensity λ > 0. We
use the filtration defined by F(t) = σ(N(s), s ≤ t), t ≥ 0. From the
theory it is known that for all t ≥ 0

E exp(uN(t) = exp((eu − 1)λt).
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(a) Show that for 0 ≤ t ≤ T it holds that

MT (t) := E [exp(uN(T ))|F(t)] = exp((eu−1)λ(T−t)) exp(uN(t)).

(b) Show (from the definition of MT (t)) that {MT (t), t ≥ 0} is a
martingale.

In the remainder of this exercise we keep T fixed and consider t ∈ [0, T ]
as the time parameter.

(c) Write MT (t) = exp((eu − 1)λT )M̂T (t) with

M̂T (t) = exp(uN(t)− (eu − 1)λt).

Show that ∆M̂T (t) = (eu − 1)M̂T (t−)∆N(t).

(d) Between jump times of N we can differentiate M̂T (t) w.r.t. t.
Show that in this case one has d

dtM̂T (t) = −(eu − 1)M̂T (t)λ.

(e) Show the integral representation

M̂T (t) = 1 + (eu − 1)

∫ t

0
M̂T (s−)(dN(s)− λ ds).

(f) Explain why {M̂T (t) : t ∈ [0, T ]} is a martingale.

(g) Give an integral representation for MT (t).

14. Let W = {W (t) : t ≥ 0} be a Brownian motion defined on some
probability space (Ω,F ,P). Consider the process X = {X(t) : t ≥ 0}
that solves the stochastic differential equation (SDE)

dX(t) = (2− 2X(t)) dt+ 2 dW (t),

and assume that X(0) = x0 for some x0 ∈ R. Let Y (t) = e2tX(t).

(a) Give an SDE that Y (t) satisfies and write Y (t) as the sum of an
Itô integral and ‘smooth’ terms.

(b) Compute the quadratic variations [X,X](t) and [Y, Y ](t).

(c) Compute X(t) from Y (t) explicitly in an expression that contains
an Itô integral.

(d) Recognize that X(t) is of the form X(t) = f(t, Z(t)) for some
function f(t, z) and use this to verify that X(t) is indeed the
solution to the given SDE.

15. Let W = {W (t) : t ≥ 0} be a Brownian motion defined on some
probability space (Ω,F ,P) and let F(t) = σ(W (s) : s ≤ t), t ≥ 0.
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Consider the process S = {S(t) : t ≥ 0} that solves the stochastic
differential equation (SDE) of Black-Scholes type

dS(t) = S(t)µ(t) dt+ S(t)σ(t) dW (t),

where µ and σ are suitable ordinary (non-random) functions, all oper-
ations further needed are well defined, and assume that S(0) = s0 for
some s0 ∈ R. In addition, we are given a function r (the short rate)
that we use to define D(t) = exp(−R(t)) for R(t) =

∫ t
0 r(s) ds, t ≥ 0.

Let S̃(t) = D(t)S(t).

(a) Show that dS̃(t) = S̃(t)(µ(t)− r(t)) dt+ S̃(t)σ(t) dW (t).

(b) Let Θ(t) = r(t)−µ(t)
σ(t) and Z(t) = exp(

∫ t
0 Θ(s) dW (s)−1

2

∫ t
0 Θ(s)2 ds),

t ≥ 0. Show that {Z(t) : t ≥ 0} is a martingale.

(c) Let W̃ (t) = W (t) −
∫ t
0 Θ(s) ds, t ≥ 0. Give a SDE for S̃(t) in

terms of W̃ .

(d) Show that S̃(t) = s0 exp(
∫ t
0 σ(s) dW̃ (s)− 1

2

∫ t
0 σ(s)2 ds).

(e) Fix T > 0 and define a new probability measure P̃ on F(T ) by
P̃(A) = E [1AZ(T )] for A ∈ F(T ). Theory guarantees that P̃ is a
measure. Why is it a probability measure?

(f) It is known that {W̃ (t) : 0 ≤ t ≤ T} is a martingale under P̃.
Show that {W̃ (t)Z(t) : 0 ≤ t ≤ T} is a martingale under P.

16. Let N = {N(t) : t ≥ 0} be a Poisson process with intensity λ > 0, and
let, for u ∈ R and t ≥ 0,

Z(t) = exp(uN(t)− λt(eu − 1)) = exp(uN(t)) exp(−λt(eu − 1)).

We use the filtration defined by F(t) = σ(N(s), s ≤ t), t ≥ 0.

(a) Show E [exp(uN(t))|F(s)] = exp(uN(s)) exp
(
(eu − 1)λ(t − s)

)
.

Hint: use the independent increment property of N as well as the
MGF of the Poisson distribution or an explicit computation.

(b) Show, use the previous item, that {Z(t) : t ≥ 0} is a martingale.

(c) Let X(t) = exp(uN(t)). Show that dX(t) = (eu−1)X(t−)dN(t),
for t ≥ s.

(d) Show, apply the rule d
(
X(t)Y (t)

)
= X(t−) dY (t) +Y (t−) dX(t)

for X a function that may jump and Y a differentiable function,
that

dZ(t) = Z(t−)(eu − 1)dM(t),

for some process (which one?) M(t).

(e) Argue from the previous item that {Z(t) : t ≥ 0} is a martingale.
What is EZ(t)?
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17. Let W = {W (t) : t ≥ 0} be a Brownian motion defined on some
probability space (Ω,F ,P). Consider the process X = {X(t) : t ≥ 0}
that solves the stochastic differential equation (SDE)

dX(t) = (1−X(t)) dt+ 2 dW (t),

and assume that X(0) = x0 for some x0 ∈ R. Let Y (t) = etX(t).

(a) Give an SDE that Y (t) satisfies and write Y (t) as the sum of an
Itô integral and ‘smooth’ terms.

(b) Compute the quadratic variations [X,X](t) and [Y, Y ](t).

(c) Compute X(t) from Y (t) explicitly in an expression that contains
an Itô integral.

(d) Recognize that X(t) is of the form X(t) = f(t, Zt) for some func-
tion f(x, z) and use this to verify that X(t) is indeed the solution
to the given SDE.

(e) What is the distribution of X(t)?

(f) Suppose we replace x0 with a random variable X(0), independent
of the process W , having a N(µ, σ2) distribution. What is now
the distribution of X(t).

(g) How to choose, in addition to the above, µ and σ2 such that the
distributions of the X(t) are all the same?

18. Let W = {W (t) : t ≥ 0} be a Brownian motion defined on some
probability space (Ω,F ,P). Let

Z(t) = exp(
1

2
W (t)2 − 1

2

∫ t

0
(W (s)2 + 1) ds),

for t ∈ [0, T ].

(a) Show that the quadratic variation process of 1
2W (t)2 is equal to∫ t

0 W (s)2 ds.

(b) Z(t) is of the form f(X(t)). Show that dZ(t) = a(t)Z(t)dW (t)
for some adapted process a(t) and identify it. What is EZ(T )?

Define a new probability measure P̃ on F(T ) by P̃(F ) = E [1FZ(T )]

and put W̃ (t) = W (t)−
∫ t
0 a(s) ds.

(c) Show that the product W̃ (t)Z(t), for t ∈ [0, T ], is a martingale
under P.

(d) Compute Ẽ [W̃ (t)|F(s)] for 0 ≤ s ≤ t ≤ T .

(e) What is the distribution of W̃ (T )− W̃ (t) under P̃?
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19. Let N = {N(t) : t ≥ 0} be a Poisson process with intensity λ > 0, and

let Q be the compound Poisson process with Q(t) =
∑N(t)

i=1 Yi. The
usual independence assumptions are in force.

Assume that P(Yi = 1) = p and P(Yi = −1) = 1 − p. Let N+(t) =∑N(t)
i=1 1{Yi=1}, N−(t) =

∑N(t)
i=1 1{Yi=−1}. Note that N+(t) + N−(t) =

N(t).

(a) N+ and N− are independent Poisson processes according to the
theory. What are their intensities?

(b) Show that for integers k,m ≥ 0

P(N+(t) = k,N−(t) = m) =

(
k +m

k

)
pk(1−p)m P(N(t) = k+m).

(c) Give an alternative expression forQ(t) involvingN+(t) andN−(t).

(d) Suppose that the process Q is a martingale. Show that p = 1
2 .

(e) Let Y be a process such that Y (Sn) = Yn, where the Sn are the
arrival times of N . Show that

∫ t
0 Y (s) dQ(s) = N(t).

(f) Show that Y (s) := ∆Q(s) is an example of such a process. Even
when Q is a martingale, the integral in the previous item (for this
choice of Y (s)) item is not. Explain.

20. Consider the function f(t) = t2 for t ∈ [−1, 1]. Let Π+ = {t0, . . . , tn}
be a partition of [0, 1] with 0 ≤ t1 < · · · < tn = 1 and let Π− =
{s1, . . . , sm} be a partition of [−1, 0) with −1 = s1 < · · · < sm < 0.
Then Π := Π+ ∪Π− is a partition of [−1, 1], whose negative elements
are the si and the positive elements are the tj .

(a) Let V1(f,Π) be the first order variation of f over the interval
[−1, 1] for the partition Π. Show that V1(f,Π) = 2 − s2m − t21 +
|s2m−t21|. What is the limit of V1(f,Π) if one considers a sequence
of such partitions Π, whose mesh tend to zero?

(b) Let V2(f,Π+) be the quadratic variation of f over the interval
[0, 1] with respect to the partition Π+. Show that V2(f,Π+) =∑n

k=1(tk−tk−1)2(tk+tk−1)
2 and V2(f,Π+) ≤ 4

∑n
k=1(tk−tk−1)2.

What is the limit of V2(f,Π+) if one considers a sequence of such
partitions Π+, whose mesh tend to zero?

(c) Replace the function f above by a Brownian motion W on [0, 1],
so f(t) = W (t) for t ∈ [0, 1], and put f(t) = W (−t) for t ∈ [−1, 0).
What are the limits of V1(W,Π) and V2(W,Π) if one considers a
sequence of such partitions Π, whose mesh tend to zero? No
computations need to be given for this question; a short answer
suffices!
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21. Let W be a Brownian motion, defined on some underlying probability
space (Ω,F ,P).

(a) Put X(t) = W (t)2, t ≥ 0. Then X is an Itô process. Write X(t)
as the sum of an Itô integral I(t) and a ‘smooth’ process R(t).

(b) Compute the quadratic variation process [X,X].

(c) Put Y (t) = W (t)4. Then also Y is an Itô process. Use this to
compute EW (t)4 = 3t2.

(d) Use the two previous items to compute Var (W (t)2).

22. Let W be a Brownian motion, defined on some underlying probability
space (Ω,F ,P). Consider a Black-Scholes model for the price S(t) of
some asset,

dS(t) = S(t)
(
β dt+ σ dW (t)

)
, S(0) = 1.

Let r > 0 be the interest rate and let D(t) = e−rt be the discount
factor at time t. Put Ŝ(t) = D(t)S(t) for t ≥ 0.

(a) Show that the process Ŝ satisfies the SDE

dŜ = Ŝ
(
(β − r) dt+ σ dW (t)

)
.

(b) Let

Z(t) = exp
(
− β − r

σ
W (t)− αt

)
, t ≥ 0.

Use the Itô formula to give an SDE that Z satisfies and determine
the value of α that makes Z a martingale. This value will be kept
in the questions below.

(c) Show that the process M defined by M(t) = Ŝ(t)Z(t) is a mar-
tingale.

(d) Let T > 0. What is EZ(T )?

We will use Z(T ) to define a new probability measure Q on F(T ) =
σ
(
W (s), s ≤ T

)
by Q(F ) = E (1FZ(T )).

(e) Compute EQŜ(T ).

(f) Compute EQ[Ŝ(T )|F(t)] for t ≤ T .

23. Let N1 and N2 be two independent Poisson processes, with intensities
λ1 and λ2 respectively. Consider the processQ given byQ(t) = N1(t)−
N2(t).

11



(a) Sketch a typical trajectory of Q, say with 5 jumps of N1 and 3
jumps of N2 before some time T > 0 (or choose different numbers
of jumps, if you prefer).

(b) What is EQ(t)?

One may view Q as a compound Poisson process. With N(t) = N1(t)+
N2(t), Q can be represented by

Q(t) =

N(t)∑
k=1

Yk,

where the Yk form an iid sequence of random variables, assuming the
values −1 and +1, which is also independent of N(t). Let β = EYk.

(c) Compute β in terms of λ1 and λ2.

(d) Compute P(Yk = 1) and P(Yk = −1) in terms of λ1 and λ2.

Let T1, T2, . . . be the jump times of N and define the process Y by
Y (s) =

∑
k≥1 Yk1[Tk−1,Tk)(s), so Y (s) = Yk if s ∈ [Tk−1, Tk).

(e) Argue that s ∈ [Tk−1, Tk) iff N(s) = k − 1 and, exploiting the
independence of the Yk and N(s), show that EY (s) = β.

(f) Show Y (s−) = Yk if s ∈ (Tk−1, Tk] and Q(t) =
∫ t
0 Y (s−) dN(s).

(g) Compute, using the previous two questions, EQ(t) again.

24. Let W = {W (t) : t ≥ 0} be a Brownian motion defined on some
probability space (Ω,F ,P) and let T > 0 be fixed. We are interested in∫ T
0 W (t)2 dW (t). Let S(Π) =

∑n−1
i=0 W (ti)

2(W (ti+1) −W (ti)), where
Π = {t0, . . . , tn} is a partition of [0, T ] with t0 = 0 and tn = T .

(a) Show that

3S(Π) =
n−1∑
i=0

(W (ti+1)
3 −W (ti)

3)

− 3

n−1∑
i=0

(W (ti+1)−W (ti))
2W (ti)

−
n−1∑
i=0

(W (ti+1)−W (ti))
3.

(b) Write, in order of appearance, S(Π) = I− II− III. Show that
the term III converges (almost surely) to zero for a sequence of
partitions whose mesh tend to zero. Hint: |W (ti+1) −W (ti)| ≤
maxi |W (ti+1)−W (ti)|.

12



(c) The term I has a trivial limit. Which one?

(d) Argue (relying on known results) that II converges (in the L2

sense) to a Lebesgue integral (for the same sequence of parti-
tions). Which integral is it?

(e) Apply the Itô formula to W (T )3 and verify your answers above.

(f) Compute the quadratic variation of W 3 over the interval [0, T ],
(i.e. write it as an integral).

25. Let N = {N(t), t ≥ 0} be a Poisson process with intensity λ. Let
α, β > 0 and let Z = {Z(t) = exp(αN(t) − βt), t ≥ 0}. We use
F(t) = σ(N(s) : s ≤ t).

(a) Derive for t ≥ 0, using properties of the Poisson distribution,

E [exp(αN(t)) = exp((eα − 1)λt).

(b) Show, using properties of the Poisson process, for t > s

E [exp(αN(t))|F(s)] = exp(αN(s)) exp((eα − 1)λ(t− s)).

(c) If α is given, show that Z is a martingale if β = (eα − 1)λ. Show
that in this case EZ(t) = 1 for all t ≥ 0.

In the case that Z is a martingale we use Z(T ) to define a new prob-
ability measure P̃ on F(T ) by P̃(F ) = E [1FZ(T )]. Let Ẽ denote
the corresponding expectation. Then for every random variable Y
that is F(T )-measurable and for which the expectations exist, one has
ẼY = E [Y Z(T )].

(d) Show by direct computation that ẼN(T ) = eαλT . You may use∑
k=0 kx

k/k! = xex.

(e) Deduce from the previous item and a property of the process Z
that ẼN(t) = eαλt.

(f) Show

Ẽ [N(t)|F(s)] = N(s) + E [(N(t)−N(s))
Z(t)

Z(s)
|F(s)].

(g) Show E [(N(t)−N(s))Z(t)Z(s) |F(s)] = eαλ(t− s).

(h) Show that M̃(t) = N(t)− eαλt defines a martingale under P̃ for
t ≤ T .

(i) What kind of a process is N under P̃?

13



26. Let W = {W (t) : t ≥ 0} be a Brownian motion defined on some prob-
ability space (Ω,F ,P). Below we work with the filtration generated
by W . Fix T > 0. Consider the martingale M = {M(t), 0 ≤ t ≤ T},
defined by M(t) = E [sin(W (T ))|F(t)], t ≤ T .

(a) Show that M is indeed a martingale.

(b) Show thatM(t) = exp(−1
2(T−t)) sin(W (t)). Hint: You may need

three facts, the formula sin(x + y) = sinx cos y + cosx sin y, the
relation E [cos(W (u))] = exp(−1

2u) and the fact that E g(Z) = 0
if the function g is bounded and satisfies g(−x) = −g(x) and the
random variable Z has a density f that satisfies f(−x) = f(x).

(c) Write M as an Itô process and verify the martingale property
again.

27. Let N = {Nt : t ≥ 0} be a Poisson process with intensity λ ≥ 0.

(a) Show that
∫ t
0 N(s−) dN(s) = 1

2N(t)(N(t)− 1). Hint:
∑n−1

k=0 k =
1
2n(n− 1).

(b) Show directly, using the distribution of N(t), that E N(t)(N(t)−
1) = λ2t2.

(c) It is easier to compute the above expectation from (a) using
N(s) = λs + M(s). Compute the expectation by exploiting this
decomposition.

28. Let N = {N(t) : t ≥ 0} be a Poisson process with intensity λ > 0, and

let Q be the compound Poisson process with Q(t) =
∑N(t)

i=1 Yi. The
usual independence assumptions are in force.

Assume that P(Yi = 1) = p and P(Yi = −1) = 1 − p. Let N+(t) =∑N(t)
i=1 1{Yi=1}, N−(t) =

∑N(t)
i=1 1{Yi=−1}. Note that N+(t) + N−(t) =

N(t).

(a) N+ and N− are independent Poisson processes according to the
theory. What are their intensities?

(b) Show that for integers k,m ≥ 0

P(N+(t) = k,N−(t) = m) =

(
k +m

k

)
pk(1−p)m P(N(t) = k+m).

(c) Give an alternative expression forQ(t) involvingN+(t) andN−(t).

(d) Suppose that the process Q is a martingale. Show that p = 1
2 .

(e) Let Y be a process such that Y (Sn) = Yn, where the Sn are the
arrival times of N . Show that

∫ t
0 Y (s) dQ(s) = N(t).
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(f) Show that Y (s) := ∆Q(s) is an example of such a process. Even
when Q is a martingale, the integral in the previous item (for this
choice of Y (s)) item is not. Explain.

29. Let N = {N(t), t ≥ 0} be a Poisson process with intensity λ.

(a) Derive for any ‘good’ function (t, k) 7→ g(t, k) (i.e. the expressions
below are assumed to make sense) the Itô-formula

g(t,N(t)) = g(0, 0) +

∫ t

0
gt(s,N(s)) ds

+

∫ t

0

(
g(s,N(s−) + 1)− g(s,N(s−))

)
dN(s),

where gt stands for the ‘first’ partial derivative ∂g
∂t .

Let h : N = {0, 1, 2, . . .} → R be a function such that Eh(N(t)) is well
defined for every t. Fix T > 0 and let g(t, k) = E [h(N(T )−N(t) +k)]
for t ≤ T and k ∈ N.

(b) Show that g(t,N(t)) = E [h(N(T ))|F(t)] for t ≤ T .

(c) Show that M(t) := g(t,N(t)) defines a martingale for t ≤ T w.r.t.
filtration generated by N .

(d) Show that it follows that

gt(t, k) + λ(g(t, k + 1)− g(t, k)) = 0 (1)

for all t ≥ 0 and k ∈ {0, 1, 2, . . .}.
(e) Compute g(t, k) for the case (i) h(m) = m.

(f) Compute g(t, k) for the case (ii) h(m) = m2. (Recall the formula
EX2 = VarX + (EX)2.)

(g) Verify Equation (1) for both cases (i) and (ii).

(h) What is in both cases (i) and (ii) the boundary condition g(T, k)?
Give an explicit answer!

30. Let W = {W (t) : t ≥ 0} be a Brownian motion defined on some
probability space (Ω,F ,P). Below we work with the filtration gen-
erated by W . Let a be an adapted process and let Z be a positive
process with Z(0) = 1 satisfying the stochastic differential equation
dZ(t) = a(t)Z(t) dW (t). We assume that a is such that Z is well
defined for all t ≥ 0. Put U(t) = logZ(t).

(a) Use the Itô-formula to derive a stochastic differential equation for
U(t).
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(b) Show that U(t) =
∫ t
0 a(s) dW (s)− 1

2

∫ t
0 a(s)2 ds.

Suppose that for some T > 0 it holds that EZ(T ) = 1. Define a
probability measure P̃ on F(T ) by P̃(F ) = E [1FZ(T )]. Let b be

some adapted process satisfying
∫ T
0 |b(s)|ds < ∞ and put W̃ (t) =

W (t)−
∫ t
0 b(s) ds for t ∈ [0, T ].

(c) Use the product rule to characterize that process b for which the
process W̃Z becomes a martingale under P.

(d) Show, use the formula for computing a conditional expectation
under a change of measure, that for the choice of b as in item (c),
W̃ becomes a martingale under P̃.

(e) Why can we conclude that W̃ is a Brownian motion under P̃ if b
is taken as in item (c)?
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