Duisenberg School of Finance Measure Theory and Stochastic Processes II Old exam questions

- 1. Let $W = \{W(t) : t \ge 0\}$ be a Brownian motion defined on some probability space $(\Omega, \mathcal{F}, \mathbb{P})$ and let T > 0 be fixed. As a possible alternative to compute $\int_0^T W(s) \, dW(s)$ we use the approximating sums $S(\Pi) = \sum_{i=1}^{n-1} W(t_{i-1})(W(t_{i+1}) - W(t_i))$, where $\Pi = \{t_0, \ldots, t_n\}$ is a partition of [0, T] with $t_0 = 0$ and $t_n = T$. Split $S(\Pi) = C(\Pi) + I(\Pi)$, where $C(\Pi) = \sum_{i=1}^{n-1} (W(t_{i-1}) - W(t_i))(W(t_{i+1}) - W(t_i))$ and $I(\Pi) = \sum_{i=1}^{n-1} W(t_i)(W(t_{i+1}) - W(t_i))$.
 - (a) What is the L^2 -limit of $I(\Pi)$ for a sequence of partitions Π whose mesh tend to zero?
 - (b) What is the expectation of $C(\Pi)$?
 - (c) Write $D_i = W(t_{i-1}) W(t_i)$ and

$$\mathbb{E} C(\Pi)^2 = \sum_{i,j} \mathbb{E} \left(D_i D_{i+1} D_j D_{j+1} \right).$$

Show that $\mathbb{E} C(\Pi)^2 = \sum_{i=1}^{n-1} \mathbb{E} (D_i^2 D_{i+1}^2).$

- (d) Show that $\mathbb{E} C(\Pi)^2 = \sum_{i=1}^{n-1} (t_i t_{i-1})(t_{i+1} t_i).$
- (e) Show that $\mathbb{E} C(\Pi)^2 \to 0$ as $||\Pi|| \to 0$.
- (f) What is limit of the $S(\Pi)$ as $||\Pi|| \to 0$?
- 2. Let $W = \{W(t) : t \ge 0\}$ be a Brownian motion defined on some probability space $(\Omega, \mathcal{F}, \mathbb{P})$ and let T > 0 be fixed. We'd like to compute the quadratic variation of the process X, defined by X(t) = $W(t)^2$, over the interval [0, T]. Let $S(\Pi) = \sum_{i=0}^{n-1} (X(t_{i+1}) - X(t_i))^2 =$ $\sum_{i=0}^{n-1} (W(t_{i+1})^2 - W(t_i)^2)^2$, where $\Pi = \{t_0, \ldots, t_n\}$ is a partition of [0, T] with $t_0 = 0$ and $t_n = T$.
 - (a) Show that

$$S(\Pi) = \sum_{i=0}^{n-1} (W(t_{i+1}) - W(t_i))^4 + 4 \sum_{i=0}^{n-1} (W(t_{i+1}) - W(t_i))^3 W(t_i) + 4 \sum_{i=0}^{n-1} (W(t_{i+1}) - W(t_i))^2 W(t_i)^2$$

(b) Write, in order of appearance, $S(\Pi) = I + II + III$. Show that the term I converges (almost surely) to zero for a sequence of partitions whose mesh tend to zero. *Hint:* $(W(t_{i+1}) - W(t_i))^2 \leq \max_i (W(t_{i+1}) - W(t_i))^2$.

- (c) Show that the term II converges (almost surely) to zero (for the same sequence of partitions).
- (d) Argue (relying on known results) that $S(\Pi)$ converges (in the L^2 sense) to $4 \int_0^T X(s) ds$ (for the same sequence of partitions).
- (e) Use the Itô formula to write X as in Itô process and verify the expression for [X, X](T).
- (f) Apply the Itô formula to X^2 to get an alternative expression for [X, X](T).
- (g) Combine the Itô formula for W^4 and the previous item to obtain the expression for [X, X](T) as in item (d).
- 3. Let $W = \{W(t) : t \ge 0\}$ be a Brownian motion defined on some probability space $(\Omega, \mathcal{F}, \mathbb{P})$ and let $W^a(t) = \frac{1}{\sqrt{a}}W(at)$ for a > 0.
 - (a) Show that $W^{a}(t)$ is also Brownian motion, i.e. show that all defining properties of a Brownian motion are satisfied.
 - (b) Let $X^{a}(t) = W(at), t \ge 0$. What is $[X^{a}, X^{a}](t)$?
 - (c) Determine c > 0 such that $X^{a}(t)^{2} ct$ is a martingale relative to its own filtration.
 - (d) Suppose Y_0 is a random variable with $\mathbb{E} Y_0 = 0$ and $\mathbb{E} Y_0^2 = 1$ that is independent of the Brownian motion W. Then $Y(t) = Y_0 + W(t)$ does not define a martingale w.r.t. the filtration generated by W. Why not?
 - (e) Let $\mathcal{G}(t)$ be the smallest σ -algebra such that Y_0 and $W(s), s \leq t$ are measurable. Show that $\{Y(t), t \geq 0\}$ is a martingale w.r.t. the filtration $\{\mathcal{G}(t), t \geq 0\}$.
- 4. Let $a : [0, \infty) \to \mathbb{R}^+$ be a continuous function and $A(t) = \int_0^t a(s) \, \mathrm{d}s$, $t \ge 0$. Let N be a standard Poisson process, so with intensity $\lambda = 1$. Let $Z(t) = \exp(-A(t) + t + \int_0^t \log a(s) \, \mathrm{d}N(s))$.
 - (a) Show (use the Itô rule for jump processes) that Z is a solution to dZ(t) = Z(t-)(a(t)-1)(dN(t)-dt).
 - (b) Show that d[N, Z](t) = Z(t-)(a(t) 1)dN(t).
 - (c) Show (use the product rule) that the product (N A)Z is a martingale.
 - (d) Define a new probability measure \mathbb{P}' by $\mathbb{P}'(A) = \mathbb{E} \mathbf{1}_A Z(T)$. Show that $\{N(t) A(t), 0 \le t \le T\}$ is a martingale under \mathbb{P}' .
 - (e) Show that $\mathbb{P}'(N(t) N(s) = j) = \mathbb{E}\left[\mathbf{1}_{\{N(t) N(s) = j\}}Z(t)\right]$ for $0 \le s \le t \le T$.

In the remainder of the exercise we assume that a is a constant function, $a(t) = \lambda' > 0$ for all $t \ge 0$.

- (f) Show directly from the definition of \mathbb{P}' that $\mathbb{P}'(N(t)-N(s)=j) = \exp(-\lambda'(t-s))(\lambda'(t-s))^j/j!$ for $j=0,1,\ldots$ and $0 \le s \le t \le T$.
- (g) Show that N(t) N(s) and N(s) are independent random variables under \mathbb{P}' for $0 \le s \le t \le T$.
- (h) What kind of process is N(t), $0 \le t \le T$ under \mathbb{P}' ?
- 5. Let W be a Brownian motion on some probability space $(\Omega, \mathcal{F}, \mathbb{P})$ and a some constant. Let T > 0 and put $X(t) = \exp(2W(t) - at)$, $t \ge 0$. Let $\{\mathcal{F}(t), t \ge 0\}$ be the filtration generated by W and $g(t, x) = xe^{(a-2)(t-T)}$.
 - (a) Give a stochastic differential equation for the process X. Is X a martingale?
 - (b) Put $Y(t) = g(t, X(t)), t \ge 0$. Show that dY(t) = 2Y(t) dW(t).
 - (c) Show that $\{Y(t), t \ge 0\}$ is a martingale and that $Y(t) = \mathbb{E}[X(T)|\mathcal{F}(t)]$ for $t \le T$.
 - (d) Give a partial differential equation that the function g satisfies, and explicitly the boundary condition on g(T, x). Verify that gindeed solves this equation.
 - (e) Let h be a function such that $h(t, X(t)) = \mathbb{E}[\log X(T)|\mathcal{F}(t)]$ for $0 \le t \le T$. Give also a partial differential equation that the function h satisfies. What is the boundary condition on h?
- 6. Consider a Brownian motion $\{W(t) : t \in [0, T]\}$ and let $\Pi = \{0 = t_0 < \cdots < t_n = T\}$ be a partition of [0, T]. Let $t_j^{\alpha} = \alpha t_j + (1 \alpha)t_{j+1}$ for any $\alpha \in [0, 1], j = 0, \dots, n-1\}$. Define

$$J^{\alpha}(\Pi) = \sum_{j=0}^{n-1} W(t_j^{\alpha}) (W(t_{j+1}) - W(t_j)).$$

(a) Show that

$$J^{\alpha}(\Pi) = J^{1}(\Pi) + Q^{\alpha}(\Pi) + C^{\alpha}(\Pi),$$

where

$$C^{\alpha}(\Pi) = \sum_{j=0}^{n-1} (W(t_j^{\alpha}) - W(t_j))(W(t_{j+1} - W(t_j^{\alpha})),$$
$$Q^{\alpha}(\Pi) = \sum_{j=0}^{n-1} (W(t_j^{\alpha}) - W(t_j))^2.$$

- (b) Show that $\mathbb{E} Q^{\alpha}(\Pi) = (1 \alpha)T$ and $\mathbb{E} C^{\alpha}(\Pi) = 0$.
- (c) Show that $\operatorname{Var} C^{\alpha}(\Pi) = \alpha(1-\alpha) \sum_{j=0}^{n-1} (t_{j+1} t_j)^2$.

- (d) Show that $\operatorname{Var} Q^{\alpha}(\Pi) = 2(1-\alpha)^2 \sum_{j=0}^{n-1} (t_{j+1}-t_j)^2$.
- (e) Let Q^{α} be the L^2 -limit of the $Q^{\alpha}(\Pi)$ as we take a sequence of partitions with $||\Pi|| \to 0$, i.e. Q^{α} is such that $\mathbb{E} (Q^{\alpha}(\Pi) Q^{\alpha})^2 \to 0$. Identify Q^{α} and show that it is indeed the L^2 -limit.
- (f) What is the L^2 -limit C^{α} of the $C^{\alpha}(\Pi)$ for partitions with $||\Pi|| \rightarrow 0$? Show that indeed $\mathbb{E} (C^{\alpha}(\Pi) C^{\alpha})^2 \rightarrow 0$.
- (g) Show (use the definition of the Itô-integral) that $J^{\alpha}(\Pi)$ converges (in L^2) to $\int_0^T W(s) dW(s) + (1 \alpha)T$ and that this is equal to $\frac{1}{2}W(T)^2 + (\frac{1}{2} \alpha)T$.
- 7. Consider a Brownian motion $W = \{W(t) : t \ge 0\}$ and $\{\mathcal{F}(t) : t \ge 0\}$ a filtration for W. Fix some T > 0 and put $M(t) = \mathbb{E}[W(T)^3 | \mathcal{F}(t)], t \ge 0.$
 - (a) Show that M is a martingale. What are M(0) and M(T)?
 - (b) Show by direct computation, using properties of Brownian motion, that $M(t) = 3(T-t)W(t) + W(t)^3$ for $t \in [0, T]$.
 - (c) What is M(t) for $t \ge T$.
 - (d) Give an expression for dM(t) for $t \leq T$. The result should again reveal that M is a martingale.
 - (e) Find $\Theta(s)$ such that $W(T)^3 = \int_0^T \Theta(s) dW(s)$.
 - (f) What is $\Theta(s)$ for s > T such that $M(t) = \int_0^t \Theta(s) dW(s)$ for t > T?
- 8. Consider the process X given by X(t) = X(0) + W(t), with $W = \{W(t) : t \ge 0\}$ a Brownian motion and X(0) a random variable independent of W. Let $\mathcal{F}(t)$ be the smallest σ -algebra such that W(s) is $\mathcal{F}(t)$ -measurable for $s \le t$ and such that X(0) is $\mathcal{F}(t)$ -measurable. Let $h(x) = x^2$, T > 0 and $g(t, x) = \mathbb{E}^{t,x} h(X(T))$ for $t \le T$.
 - (a) Show that $\mathbb{E}[X(T)^2|\mathcal{F}(t)] = T t + X(t)^2$ for $t \leq T$.
 - (b) What is g(t, x)?
 - (c) Give a partial differential equation to which g is a solution. What is the terminal condition g(T, x)?
- 9. Let $N = \{N(t), t \ge 0\}$ be a Poisson process with intensity λ defined on a probability space $(\Omega, \mathcal{F}, \mathbb{P})$ and let $\{\mathcal{F}(t), t \ge 0\}$ be the filtration generated by N. Let $Z(t) = (\frac{\lambda}{\lambda})^{N(t)} \exp(-(\lambda - \lambda)t), t \ge 0$. Let T > 0and define a new probability measure $\tilde{\mathbb{P}}$ on \mathcal{F}_T by $\tilde{\mathbb{P}}(A) = \mathbb{E}(\mathbf{1}_A Z(T))$. It is known that the process $Z = \{Z(t), t \ge T\}$ is a martingale.

(a) Let $k_2 \ge k_1$ be nonnegative integers and $t_2 \ge t_1 \ge 0$. Show that

$$\mathbb{P}(N(t_2) = k_2, N(t_1) = k_1) = e^{-\lambda t_2} \lambda^{k_2} \frac{(t_2 - t_1)^{k_2 - k_1} t_1^{k_1}}{(k_2 - k_1)! k_1!}.$$

(b) Show that for $t_1 \leq t_2 \leq T$

$$\mathbb{P}(N(t_2) = k_2, N(t_1) = k_1) = \mathbb{E}\left(\mathbf{1}_{\{N(t_2) = k_2, N(t_1) = k_1\}} Z(t_2)\right).$$

- (c) Compute explicitly for $0 \le t_1 \le t_2 \le T$ and integers $k_2 \ge k_1 \ge 0$ the probability $\tilde{\mathbb{P}}(N(t_2) = k_2, N(t_1) = k_1)$.
- (d) Guess a formula for $\tilde{\mathbb{P}}(N(t_m) = k_m, \dots, N(t_1) = k_1)$, for $T \ge t_m \ge \dots \ge t_1 \ge 0$ and integers $k_m \ge \dots \ge k_1 \ge 0$.
- (e) What kind of process should $\{N(t) : t \leq T\}$ be under the measure $\tilde{\mathbb{P}}$?

Let N_1 and N_2 be independent Poisson processes with intensities λ_1 and λ_2 respectively. It is known that N_1 and N_2 have no common jumps. Let $\{\hat{\mathcal{F}}_t : t \geq 0\}$ be the smallest filtration to which both N_1 and N_2 are adapted. Put $\hat{Z}(t) = Z_1(t)Z_2(t)$, with $Z_i(t) = (\frac{\tilde{\lambda}}{\lambda})^{N_i(t)} \exp(-(\tilde{\lambda}_i - \lambda_i)t)$, for i = 1, 2 and $t \geq 0$. Let T > 0 and define a new probability measure $\hat{\mathbb{P}}$ on $\hat{\mathcal{F}}_T$ by $\hat{\mathbb{P}}(A) = \mathbb{E}(\mathbf{1}_A \hat{Z}(T))$. It is known that both processes \hat{Z}_1 and \hat{Z}_2 are martingales w.r.t. $\{\hat{\mathcal{F}}_t : t \geq 0\}$.

- (f) Show that \hat{Z} is a martingale.
- (g) Let $t \leq T$. Show that $N_1(t)$ and $N_2(t)$ are independent random variables under the probability measure $\hat{\mathbb{P}}$.
- 10. Let $W = \{W(t) : t \ge 0\}$ be a Brownian motion defined on some probability space $(\Omega, \mathcal{F}, \mathbb{P})$. Consider the process $X = \{X(t) : t \ge 0\}$ that solves the stochastic differential equation (SDE)

$$\mathrm{d}X(t) = (6 - 3X(t))\,\mathrm{d}t + 6\,\mathrm{d}W(t),$$

and assume that X(0) is some given random variable, independent of W. Let $Y(t) = e^{3t}X(t)$.

- (a) Give an SDE that Y(t) satisfies and write Y(t) as the sum of an Itô integral and 'smooth' terms.
- (b) Compute X(t) from Y(t) explicitly in an expression that contains an Itô integral, recognize that X(t) is of the form X(t) = f(t, Z(t)) for some function f(t, z) and use this to verify that X(t) is indeed the solution to the given SDE.
- (c) Let $\mu(t) = \mathbb{E} X(t)$ and $\tilde{X}(t) = X(t) \mu(t)$. Show that $\frac{d}{dt}\mu(t) = 6 3\mu(t)$ and $d\tilde{X}(t) = -3\tilde{X}(t) dt + 6 dW(t)$.

- (d) Let $v(t) = \operatorname{Var} X(t)$. Show that $\frac{d}{dt}v(t) = -6v(t) + 36$. What is v(t) if v(0) = 6?
- 11. Let $W = \{W(t) : t \ge 0\}$ be a Brownian motion defined on some probability space $(\Omega, \mathcal{F}, \mathbb{P})$. You know that [W, W](T) = T and in this exercise you are going to (re)prove this. We need partitions $\Pi = \{0 = t_0, \ldots, t_n = T\}$ and $V(\Pi) = \sum_{i=1}^n (W(t_i) - W(t_{i-1}))^2$.
 - (a) Show that for any such Π one has $\mathbb{E}V(\Pi) = T$.
 - (b) Show that for any such Π one has $\operatorname{Var} V(\Pi) = 2 \sum_{i=1}^{n} (t_i t_{i-1})^2$. You may use that $\operatorname{Var} (X^2) = 2\sigma^4$ if X has a normal distribution with zero mean and variance σ^2 .
 - (c) Show that $\operatorname{Var} V(\Pi) \to 0$ if the Π come from a sequence of partitions whose mesh tend to zero.
 - (d) Show that $\mathbb{E} (V(\Pi) T)^2 \to 0$ if the Π come from a sequence of partitions whose mesh tend to zero and conclude that [W, W](T) = T.
- 12. Let $W = \{W(t) : t \ge 0\}$ be a Brownian motion defined on some probability space $(\Omega, \mathcal{F}, \mathbb{P})$. We use the filtration generated by W. Let $\gamma \in \mathbb{R}$ and consider $Z(t) = \exp(\gamma W(t) - \frac{1}{2}\gamma^2 t)$ for $t \ge 0$. Let T > 0 be fixed. We define a new probability measure $\widetilde{\mathbb{P}}$ on $\mathcal{F}(T)$ by $\widetilde{\mathbb{P}}(A) = \mathbb{E}[\mathbf{1}_A Z(T)]$ for $A \in \mathcal{F}(T)$. Note that under $\widetilde{\mathbb{P}}$ the process Wis not a Brownian motion anymore.
 - (a) Show that the process $Z = \{Z(t), t \ge 0\}$ is a martingale under \mathbb{P} . What is $\mathbb{E} Z(t)$?
 - (b) Show that for t > s one has

$$W(t)Z(t) - W(s)Z(s) = \int_s^t (\gamma W(u) + 1)Z(u) \,\mathrm{d}W(u) + \gamma \int_s^t Z(u) \,\mathrm{d}u$$

- (c) Show that $\mathbb{E}\left[\int_{s}^{t} Z(u) du | \mathcal{F}(s)\right] = (t-s)Z(s).$
- (d) Compute the conditional expectations $\mathbb{E}[W(t)Z(t)|\mathcal{F}(s)]$ and (under $\widetilde{\mathbb{P}}$!!) $\widetilde{\mathbb{E}}[W(t)|\mathcal{F}(s)]$ for s < t < T.
- (e) Let Y(t) = W(t) bt $(t \in [0, T])$, for some $b \in \mathbb{R}$. What is the quadratic variation [Y, Y](T) under the new measure $\widetilde{\mathbb{P}}$?
- (f) Show that Y(t) is a Brownian motion under $\widetilde{\mathbb{P}}$ iff $b = \gamma$.
- 13. Let $N = \{N(t) : t \ge 0\}$ be a Poisson process with intensity $\lambda > 0$. We use the filtration defined by $\mathcal{F}(t) = \sigma(N(s), s \le t), t \ge 0$. From the theory it is known that for all $t \ge 0$

$$\mathbb{E} \exp(uN(t)) = \exp((e^u - 1)\lambda t).$$

(a) Show that for $0 \le t \le T$ it holds that

$$M_T(t) := \mathbb{E}\left[\exp(uN(T))|\mathcal{F}(t)\right] = \exp((e^u - 1)\lambda(T - t))\exp(uN(t)).$$

(b) Show (from the definition of $M_T(t)$) that $\{M_T(t), t \ge 0\}$ is a martingale.

In the remainder of this exercise we keep T fixed and consider $t \in [0, T]$ as the time parameter.

(c) Write $M_T(t) = \exp((e^u - 1)\lambda T)\hat{M}_T(t)$ with $\hat{M}_T(t) = \exp(uN(t) - (e^u - 1)\lambda t).$

Show that $\Delta \hat{M}_T(t) = (e^u - 1)\hat{M}_T(t) \Delta N(t).$

- (d) Between jump times of N we can differentiate $\hat{M}_T(t)$ w.r.t. t. Show that in this case one has $\frac{d}{dt}\hat{M}_T(t) = -(e^u - 1)\hat{M}_T(t)\lambda$.
- (e) Show the integral representation

$$\hat{M}_T(t) = 1 + (e^u - 1) \int_0^t \hat{M}_T(s -)(\mathrm{d}N(s) - \lambda \,\mathrm{d}s).$$

- (f) Explain why $\{\hat{M}_T(t) : t \in [0, T]\}$ is a martingale.
- (g) Give an integral representation for $M_T(t)$.
- 14. Let $W = \{W(t) : t \ge 0\}$ be a Brownian motion defined on some probability space $(\Omega, \mathcal{F}, \mathbb{P})$. Consider the process $X = \{X(t) : t \ge 0\}$ that solves the stochastic differential equation (SDE)

$$\mathrm{d}X(t) = (2 - 2X(t))\,\mathrm{d}t + 2\,\mathrm{d}W(t),$$

and assume that $X(0) = x_0$ for some $x_0 \in \mathbb{R}$. Let $Y(t) = e^{2t}X(t)$.

- (a) Give an SDE that Y(t) satisfies and write Y(t) as the sum of an Itô integral and 'smooth' terms.
- (b) Compute the quadratic variations [X, X](t) and [Y, Y](t).
- (c) Compute X(t) from Y(t) explicitly in an expression that contains an Itô integral.
- (d) Recognize that X(t) is of the form X(t) = f(t, Z(t)) for some function f(t, z) and use this to verify that X(t) is indeed the solution to the given SDE.
- 15. Let $W = \{W(t) : t \ge 0\}$ be a Brownian motion defined on some probability space $(\Omega, \mathcal{F}, \mathbb{P})$ and let $\mathcal{F}(t) = \sigma(W(s) : s \le t), t \ge 0$.

Consider the process $S = \{S(t) : t \ge 0\}$ that solves the stochastic differential equation (SDE) of Black-Scholes type

$$dS(t) = S(t)\mu(t) dt + S(t)\sigma(t) dW(t),$$

where μ and σ are suitable ordinary (non-random) functions, all operations further needed are well defined, and assume that $S(0) = s_0$ for some $s_0 \in \mathbb{R}$. In addition, we are given a function r (the short rate) that we use to define $D(t) = \exp(-R(t))$ for $R(t) = \int_0^t r(s) \, \mathrm{d}s, t \ge 0$. Let $\tilde{S}(t) = D(t)S(t)$.

- (a) Show that $d\tilde{S}(t) = \tilde{S}(t)(\mu(t) r(t)) dt + \tilde{S}(t)\sigma(t) dW(t)$.
- (b) Let $\Theta(t) = \frac{r(t) \mu(t)}{\sigma(t)}$ and $Z(t) = \exp(\int_0^t \Theta(s) \, \mathrm{d}W(s) \frac{1}{2} \int_0^t \Theta(s)^2 \, \mathrm{d}s)$, $t \ge 0$. Show that $\{Z(t) : t \ge 0\}$ is a martingale.
- (c) Let $\tilde{W}(t) = W(t) \int_0^t \Theta(s) \, ds, t \ge 0$. Give a SDE for $\tilde{S}(t)$ in terms of \tilde{W} .
- (d) Show that $\tilde{S}(t) = s_0 \exp(\int_0^t \sigma(s) d\tilde{W}(s) \frac{1}{2} \int_0^t \sigma(s)^2 ds).$
- (e) Fix T > 0 and define a new probability measure $\tilde{\mathbb{P}}$ on $\mathcal{F}(T)$ by $\tilde{\mathbb{P}}(A) = \mathbb{E}[\mathbf{1}_A Z(T)]$ for $A \in \mathcal{F}(T)$. Theory guarantees that $\tilde{\mathbb{P}}$ is a measure. Why is it a *probability* measure?
- (f) It is known that $\{\tilde{W}(t) : 0 \le t \le T\}$ is a martingale under \mathbb{P} . Show that $\{\tilde{W}(t)Z(t) : 0 \le t \le T\}$ is a martingale under \mathbb{P} .
- 16. Let $N = \{N(t) : t \ge 0\}$ be a Poisson process with intensity $\lambda > 0$, and let, for $u \in \mathbb{R}$ and $t \ge 0$,

$$Z(t) = \exp(uN(t) - \lambda t(e^u - 1)) = \exp(uN(t))\exp(-\lambda t(e^u - 1)).$$

We use the filtration defined by $\mathcal{F}(t) = \sigma(N(s), s \leq t), t \geq 0.$

- (a) Show $\mathbb{E}[\exp(uN(t))|\mathcal{F}(s)] = \exp(uN(s))\exp((e^u 1)\lambda(t s))$. Hint: use the independent increment property of N as well as the MGF of the Poisson distribution or an explicit computation.
- (b) Show, use the previous item, that $\{Z(t) : t \ge 0\}$ is a martingale.
- (c) Let $X(t) = \exp(uN(t))$. Show that $dX(t) = (e^u 1)X(t-)dN(t)$, for $t \ge s$.
- (d) Show, apply the rule d(X(t)Y(t)) = X(t-) dY(t) + Y(t-) dX(t)for X a function that may jump and Y a differentiable function, that

$$\mathrm{d}Z(t) = Z(t-)(e^u - 1)\mathrm{d}M(t),$$

for some process (which one?) M(t).

(e) Argue from the previous item that $\{Z(t) : t \ge 0\}$ is a martingale. What is $\mathbb{E} Z(t)$? 17. Let $W = \{W(t) : t \ge 0\}$ be a Brownian motion defined on some probability space $(\Omega, \mathcal{F}, \mathbb{P})$. Consider the process $X = \{X(t) : t \ge 0\}$ that solves the stochastic differential equation (SDE)

$$\mathrm{d}X(t) = (1 - X(t))\,\mathrm{d}t + 2\,\mathrm{d}W(t),$$

and assume that $X(0) = x_0$ for some $x_0 \in \mathbb{R}$. Let $Y(t) = e^t X(t)$.

- (a) Give an SDE that Y(t) satisfies and write Y(t) as the sum of an Itô integral and 'smooth' terms.
- (b) Compute the quadratic variations [X, X](t) and [Y, Y](t).
- (c) Compute X(t) from Y(t) explicitly in an expression that contains an Itô integral.
- (d) Recognize that X(t) is of the form $X(t) = f(t, Z_t)$ for some function f(x, z) and use this to verify that X(t) is indeed the solution to the given SDE.
- (e) What is the distribution of X(t)?
- (f) Suppose we replace x_0 with a random variable X(0), independent of the process W, having a $N(\mu, \sigma^2)$ distribution. What is now the distribution of X(t).
- (g) How to choose, in addition to the above, μ and σ^2 such that the distributions of the X(t) are all the same?
- 18. Let $W = \{W(t) : t \ge 0\}$ be a Brownian motion defined on some probability space $(\Omega, \mathcal{F}, \mathbb{P})$. Let

$$Z(t) = \exp(\frac{1}{2}W(t)^2 - \frac{1}{2}\int_0^t (W(s)^2 + 1) \,\mathrm{d}s),$$

for $t \in [0, T]$.

- (a) Show that the quadratic variation process of $\frac{1}{2}W(t)^2$ is equal to $\int_0^t W(s)^2 ds$.
- (b) Z(t) is of the form f(X(t)). Show that dZ(t) = a(t)Z(t)dW(t) for some adapted process a(t) and identify it. What is $\mathbb{E} Z(T)$?

Define a new probability measure $\widetilde{\mathbb{P}}$ on $\mathcal{F}(T)$ by $\widetilde{\mathbb{P}}(F) = \mathbb{E}[\mathbf{1}_F Z(T)]$ and put $\widetilde{W}(t) = W(t) - \int_0^t a(s) \, \mathrm{d}s$.

- (c) Show that the product $\widetilde{W}(t)Z(t)$, for $t \in [0,T]$, is a martingale under \mathbb{P} .
- (d) Compute $\widetilde{\mathbb{E}}[\widetilde{W}(t)|\mathcal{F}(s)]$ for $0 \leq s \leq t \leq T$.
- (e) What is the distribution of $\widetilde{W}(T) \widetilde{W}(t)$ under $\widetilde{\mathbb{P}}$?

19. Let $N = \{N(t) : t \ge 0\}$ be a Poisson process with intensity $\lambda > 0$, and let Q be the compound Poisson process with $Q(t) = \sum_{i=1}^{N(t)} Y_i$. The usual independence assumptions are in force.

Assume that $\mathbb{P}(Y_i = 1) = p$ and $\mathbb{P}(Y_i = -1) = 1 - p$. Let $N_+(t) = \sum_{i=1}^{N(t)} \mathbf{1}_{\{Y_i=1\}}, N_-(t) = \sum_{i=1}^{N(t)} \mathbf{1}_{\{Y_i=-1\}}$. Note that $N_+(t) + N_-(t) = N(t)$.

- (a) N_+ and N_- are independent Poisson processes according to the theory. What are their intensities?
- (b) Show that for integers $k, m \ge 0$

$$\mathbb{P}(N_{+}(t) = k, N_{-}(t) = m) = \binom{k+m}{k} p^{k} (1-p)^{m} \mathbb{P}(N(t) = k+m).$$

- (c) Give an alternative expression for Q(t) involving $N_{+}(t)$ and $N_{-}(t)$.
- (d) Suppose that the process Q is a martingale. Show that $p = \frac{1}{2}$.
- (e) Let Y be a process such that $Y(S^n) = Y_n$, where the S_n are the arrival times of N. Show that $\int_0^t Y(s) dQ(s) = N(t)$.
- (f) Show that $Y(s) := \Delta Q(s)$ is an example of such a process. Even when Q is a martingale, the integral in the previous item (for this choice of Y(s)) item is not. Explain.
- 20. Consider the function $f(t) = t^2$ for $t \in [-1, 1]$. Let $\Pi_+ = \{t_0, \ldots, t_n\}$ be a partition of [0, 1] with $0 \le t_1 < \cdots < t_n = 1$ and let $\Pi_- = \{s_1, \ldots, s_m\}$ be a partition of [-1, 0) with $-1 = s_1 < \cdots < s_m < 0$. Then $\Pi := \Pi_+ \cup \Pi_-$ is a partition of [-1, 1], whose negative elements are the s_i and the positive elements are the t_j .
 - (a) Let $V_1(f, \Pi)$ be the first order variation of f over the interval [-1,1] for the partition Π . Show that $V_1(f, \Pi) = 2 s_m^2 t_1^2 + |s_m^2 t_1^2|$. What is the limit of $V_1(f, \Pi)$ if one considers a sequence of such partitions Π , whose mesh tend to zero?
 - (b) Let $V_2(f, \Pi_+)$ be the quadratic variation of f over the interval [0, 1] with respect to the partition Π_+ . Show that $V_2(f, \Pi_+) = \sum_{k=1}^n (t_k t_{k-1})^2 (t_k + t_{k-1})^2$ and $V_2(f, \Pi_+) \leq 4 \sum_{k=1}^n (t_k t_{k-1})^2$. What is the limit of $V_2(f, \Pi_+)$ if one considers a sequence of such partitions Π_+ , whose mesh tend to zero?
 - (c) Replace the function f above by a Brownian motion W on [0, 1], so f(t) = W(t) for $t \in [0, 1]$, and put f(t) = W(-t) for $t \in [-1, 0)$. What are the limits of $V_1(W, \Pi)$ and $V_2(W, \Pi)$ if one considers a sequence of such partitions Π , whose mesh tend to zero? No computations need to be given for this question; a short answer suffices!

- 21. Let W be a Brownian motion, defined on some underlying probability space $(\Omega, \mathcal{F}, \mathbb{P})$.
 - (a) Put $X(t) = W(t)^2$, $t \ge 0$. Then X is an Itô process. Write X(t) as the sum of an Itô integral I(t) and a 'smooth' process R(t).
 - (b) Compute the quadratic variation process [X, X].
 - (c) Put $Y(t) = W(t)^4$. Then also Y is an Itô process. Use this to compute $\mathbb{E} W(t)^4 = 3t^2$.
 - (d) Use the two previous items to compute $\mathbb{V}ar(W(t)^2)$.
- 22. Let W be a Brownian motion, defined on some underlying probability space $(\Omega, \mathcal{F}, \mathbb{P})$. Consider a Black-Scholes model for the price S(t) of some asset,

$$dS(t) = S(t) (\beta dt + \sigma dW(t)), S(0) = 1.$$

Let r > 0 be the interest rate and let $D(t) = e^{-rt}$ be the discount factor at time t. Put $\hat{S}(t) = D(t)S(t)$ for $t \ge 0$.

(a) Show that the process \hat{S} satisfies the SDE

$$\mathrm{d}\hat{S} = \hat{S}\big((\beta - r)\,\mathrm{d}t + \sigma\,\mathrm{d}W(t)\big).$$

(b) Let

$$Z(t) = \exp\left(-\frac{\beta - r}{\sigma}W(t) - \alpha t\right), t \ge 0.$$

Use the Itô formula to give an SDE that Z satisfies and determine the value of α that makes Z a martingale. This value will be kept in the questions below.

- (c) Show that the process M defined by $M(t) = \hat{S}(t)Z(t)$ is a martingale.
- (d) Let T > 0. What is $\mathbb{E} Z(T)$?

We will use Z(T) to define a new probability measure \mathbb{Q} on $\mathcal{F}(T) = \sigma(W(s), s \leq T)$ by $\mathbb{Q}(F) = \mathbb{E}(\mathbf{1}_F Z(T)).$

- (e) Compute $\mathbb{E}_{\mathbb{O}}\hat{S}(T)$.
- (f) Compute $\mathbb{E}_{\mathbb{Q}}[\hat{S}(T)|\mathcal{F}(t)]$ for $t \leq T$.
- 23. Let N_1 and N_2 be two independent Poisson processes, with intensities λ_1 and λ_2 respectively. Consider the process Q given by $Q(t) = N_1(t) N_2(t)$.

- (a) Sketch a typical trajectory of Q, say with 5 jumps of N_1 and 3 jumps of N_2 before some time T > 0 (or choose different numbers of jumps, if you prefer).
- (b) What is $\mathbb{E}Q(t)$?

One may view Q as a compound Poisson process. With $N(t) = N_1(t) + N_2(t)$, Q can be represented by

$$Q(t) = \sum_{k=1}^{N(t)} Y_k,$$

where the Y_k form an *iid* sequence of random variables, assuming the values -1 and +1, which is also independent of N(t). Let $\beta = \mathbb{E} Y_k$.

- (c) Compute β in terms of λ_1 and λ_2 .
- (d) Compute $\mathbb{P}(Y_k = 1)$ and $\mathbb{P}(Y_k = -1)$ in terms of λ_1 and λ_2 .

Let T_1, T_2, \ldots be the jump times of N and define the process Y by $Y(s) = \sum_{k\geq 1} Y_k \mathbf{1}_{[T_{k-1},T_k)}(s)$, so $Y(s) = Y_k$ if $s \in [T_{k-1},T_k)$.

- (e) Argue that $s \in [T_{k-1}, T_k)$ iff N(s) = k 1 and, exploiting the independence of the Y_k and N(s), show that $\mathbb{E} Y(s) = \beta$.
- (f) Show $Y(s-) = Y_k$ if $s \in (T_{k-1}, T_k]$ and $Q(t) = \int_0^t Y(s-) dN(s)$.
- (g) Compute, using the previous two questions, $\mathbb{E}Q(t)$ again.
- 24. Let $W = \{W(t) : t \ge 0\}$ be a Brownian motion defined on some probability space $(\Omega, \mathcal{F}, \mathbb{P})$ and let T > 0 be fixed. We are interested in $\int_0^T W(t)^2 dW(t)$. Let $S(\Pi) = \sum_{i=0}^{n-1} W(t_i)^2 (W(t_{i+1}) - W(t_i))$, where $\Pi = \{t_0, \ldots, t_n\}$ is a partition of [0, T] with $t_0 = 0$ and $t_n = T$.
 - (a) Show that

$$3S(\Pi) = \sum_{i=0}^{n-1} (W(t_{i+1})^3 - W(t_i)^3) - 3\sum_{i=0}^{n-1} (W(t_{i+1}) - W(t_i))^2 W(t_i) - \sum_{i=0}^{n-1} (W(t_{i+1}) - W(t_i))^3.$$

(b) Write, in order of appearance, $S(\Pi) = I - II - III$. Show that the term III converges (almost surely) to zero for a sequence of partitions whose mesh tend to zero. *Hint:* $|W(t_{i+1}) - W(t_i)| \le \max_i |W(t_{i+1}) - W(t_i)|$.

- (c) The term I has a trivial limit. Which one?
- (d) Argue (relying on known results) that II converges (in the L^2 sense) to a Lebesgue integral (for the same sequence of partitions). Which integral is it?
- (e) Apply the Itô formula to $W(T)^3$ and verify your answers above.
- (f) Compute the quadratic variation of W^3 over the interval [0, T], (i.e. write it as an integral).
- 25. Let $N = \{N(t), t \ge 0\}$ be a Poisson process with intensity λ . Let $\alpha, \beta > 0$ and let $Z = \{Z(t) = \exp(\alpha N(t) \beta t), t \ge 0\}$. We use $\mathcal{F}(t) = \sigma(N(s) : s \le t)$.
 - (a) Derive for $t \ge 0$, using properties of the Poisson distribution,

$$\mathbb{E}\left[\exp(\alpha N(t)) = \exp((e^{\alpha} - 1)\lambda t)\right].$$

(b) Show, using properties of the Poisson process, for t > s

$$\mathbb{E}\left[\exp(\alpha N(t))|\mathcal{F}(s)\right] = \exp(\alpha N(s))\exp((e^{\alpha}-1)\lambda(t-s)).$$

(c) If α is given, show that Z is a martingale if $\beta = (e^{\alpha} - 1)\lambda$. Show that in this case $\mathbb{E} Z(t) = 1$ for all $t \ge 0$.

In the case that Z is a martingale we use Z(T) to define a new probability measure $\tilde{\mathbb{P}}$ on $\mathcal{F}(T)$ by $\tilde{\mathbb{P}}(F) = \mathbb{E}[\mathbf{1}_F Z(T)]$. Let $\tilde{\mathbb{E}}$ denote the corresponding expectation. Then for every random variable Y that is $\mathcal{F}(T)$ -measurable and for which the expectations exist, one has $\tilde{\mathbb{E}}Y = \mathbb{E}[YZ(T)]$.

- (d) Show by direct computation that $\tilde{\mathbb{E}} N(T) = e^{\alpha} \lambda T$. You may use $\sum_{k=0} kx^k/k! = xe^x$.
- (e) Deduce from the previous item and a property of the process Z that $\tilde{\mathbb{E}} N(t) = e^{\alpha} \lambda t$.
- (f) Show

$$\tilde{\mathbb{E}}[N(t)|\mathcal{F}(s)] = N(s) + \mathbb{E}[(N(t) - N(s))\frac{Z(t)}{Z(s)}|\mathcal{F}(s)].$$

- (g) Show $\mathbb{E}\left[\left(N(t) N(s)\right)\frac{Z(t)}{Z(s)}|\mathcal{F}(s)\right] = e^{\alpha}\lambda(t-s).$
- (h) Show that $\tilde{M}(t) = N(t) e^{\alpha} \lambda t$ defines a martingale under $\tilde{\mathbb{P}}$ for $t \leq T$.
- (i) What kind of a process is N under \mathbb{P} ?

- 26. Let $W = \{W(t) : t \ge 0\}$ be a Brownian motion defined on some probability space $(\Omega, \mathcal{F}, \mathbb{P})$. Below we work with the filtration generated by W. Fix T > 0. Consider the martingale $M = \{M(t), 0 \le t \le T\}$, defined by $M(t) = \mathbb{E}[\sin(W(T))|\mathcal{F}(t)], t \le T$.
 - (a) Show that M is indeed a martingale.
 - (b) Show that $M(t) = \exp(-\frac{1}{2}(T-t))\sin(W(t))$. Hint: You may need three facts, the formula $\sin(x+y) = \sin x \cos y + \cos x \sin y$, the relation $\mathbb{E}\left[\cos(W(u))\right] = \exp(-\frac{1}{2}u)$ and the fact that $\mathbb{E}g(Z) = 0$ if the function g is bounded and satisfies g(-x) = -g(x) and the random variable Z has a density f that satisfies f(-x) = f(x).
 - (c) Write M as an Itô process and verify the martingale property again.
- 27. Let $N = \{N_t : t \ge 0\}$ be a Poisson process with intensity $\lambda \ge 0$.
 - (a) Show that $\int_0^t N(s-) \, dN(s) = \frac{1}{2}N(t)(N(t)-1)$. Hint: $\sum_{k=0}^{n-1} k = \frac{1}{2}n(n-1)$.
 - (b) Show directly, using the distribution of N(t), that $\mathbb{E} N(t)(N(t) 1) = \lambda^2 t^2$.
 - (c) It is easier to compute the above expectation from (a) using $N(s) = \lambda s + M(s)$. Compute the expectation by exploiting this decomposition.
- 28. Let $N = \{N(t) : t \ge 0\}$ be a Poisson process with intensity $\lambda > 0$, and let Q be the compound Poisson process with $Q(t) = \sum_{i=1}^{N(t)} Y_i$. The usual independence assumptions are in force.

Assume that $\mathbb{P}(Y_i = 1) = p$ and $\mathbb{P}(Y_i = -1) = 1 - p$. Let $N_+(t) = \sum_{i=1}^{N(t)} \mathbf{1}_{\{Y_i = 1\}}, N_-(t) = \sum_{i=1}^{N(t)} \mathbf{1}_{\{Y_i = -1\}}$. Note that $N_+(t) + N_-(t) = N(t)$.

- (a) N_+ and N_- are independent Poisson processes according to the theory. What are their intensities?
- (b) Show that for integers $k, m \ge 0$

$$\mathbb{P}(N_{+}(t) = k, N_{-}(t) = m) = \binom{k+m}{k} p^{k} (1-p)^{m} \mathbb{P}(N(t) = k+m).$$

- (c) Give an alternative expression for Q(t) involving $N_+(t)$ and $N_-(t)$.
- (d) Suppose that the process Q is a martingale. Show that $p = \frac{1}{2}$.
- (e) Let Y be a process such that $Y(S^n) = Y_n$, where the S_n are the arrival times of N. Show that $\int_0^t Y(s) dQ(s) = N(t)$.

- (f) Show that $Y(s) := \Delta Q(s)$ is an example of such a process. Even when Q is a martingale, the integral in the previous item (for this choice of Y(s)) item is not. Explain.
- 29. Let $N = \{N(t), t \ge 0\}$ be a Poisson process with intensity λ .
 - (a) Derive for any 'good' function $(t, k) \mapsto g(t, k)$ (i.e. the expressions below are assumed to make sense) the Itô-formula

$$g(t, N(t)) = g(0, 0) + \int_0^t g_t(s, N(s)) \, \mathrm{d}s + \int_0^t \left(g(s, N(s-) + 1) - g(s, N(s-)) \right) \, \mathrm{d}N(s),$$

where g_t stands for the 'first' partial derivative $\frac{\partial g}{\partial t}$.

Let $h : \mathbb{N} = \{0, 1, 2, ...\} \to \mathbb{R}$ be a function such that $\mathbb{E} h(N(t))$ is well defined for every t. Fix T > 0 and let $g(t, k) = \mathbb{E} [h(N(T) - N(t) + k)]$ for $t \leq T$ and $k \in \mathbb{N}$.

- (b) Show that $g(t, N(t)) = \mathbb{E}[h(N(T))|\mathcal{F}(t)]$ for $t \leq T$.
- (c) Show that M(t) := g(t, N(t)) defines a martingale for $t \leq T$ w.r.t. filtration generated by N.
- (d) Show that it follows that

$$g_t(t,k) + \lambda(g(t,k+1) - g(t,k)) = 0$$
(1)

for all $t \ge 0$ and $k \in \{0, 1, 2, ...\}$.

- (e) Compute g(t, k) for the case (i) h(m) = m.
- (f) Compute g(t,k) for the case (ii) $h(m) = m^2$. (Recall the formula $\mathbb{E} X^2 = \mathbb{V} \text{ar } X + (\mathbb{E} X)^2$.)
- (g) Verify Equation (1) for both cases (i) and (ii).
- (h) What is in both cases (i) and (ii) the boundary condition g(T, k)? Give an explicit answer!
- 30. Let $W = \{W(t) : t \ge 0\}$ be a Brownian motion defined on some probability space $(\Omega, \mathcal{F}, \mathbb{P})$. Below we work with the filtration generated by W. Let a be an adapted process and let Z be a positive process with Z(0) = 1 satisfying the stochastic differential equation dZ(t) = a(t)Z(t) dW(t). We assume that a is such that Z is well defined for all $t \ge 0$. Put $U(t) = \log Z(t)$.
 - (a) Use the Itô-formula to derive a stochastic differential equation for U(t).

(b) Show that $U(t) = \int_0^t a(s) \, \mathrm{d}W(s) - \frac{1}{2} \int_0^t a(s)^2 \, \mathrm{d}s.$

Suppose that for some T > 0 it holds that $\mathbb{E}Z(T) = 1$. Define a probability measure $\tilde{\mathbb{P}}$ on $\mathcal{F}(T)$ by $\tilde{\mathbb{P}}(F) = \mathbb{E}[\mathbf{1}_F Z(T)]$. Let b be some adapted process satisfying $\int_0^T |b(s)| \, \mathrm{d}s < \infty$ and put $\tilde{W}(t) = W(t) - \int_0^t b(s) \, \mathrm{d}s$ for $t \in [0, T]$.

- (c) Use the product rule to characterize that process b for which the process $\tilde{W}Z$ becomes a martingale under \mathbb{P} .
- (d) Show, use the formula for computing a conditional expectation under a change of measure, that for the choice of b as in item (c), \tilde{W} becomes a martingale under $\tilde{\mathbb{P}}$.
- (e) Why can we conclude that \tilde{W} is a Brownian motion under $\tilde{\mathbb{P}}$ if b is taken as in item (c)?