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Abstract. In this paper, we propose a novel method for detecting and segment-
ing text layers in complex images. This method is robust against degradations
such as shadows, non-uniform illumination, low-contrast, large signal-
dependent noise, smear and strain. The proposed method first uses a geodesic
transform based on a morphological reconstruction technique to remove
dark/light structures connected to the borders of the image and to emphasize on
objects in center of the image. Next uses a method based on difference of gam-
ma functions approximated by the Generalized Extreme Value Distribution
(GEVD) to find a correct threshold for binarization. The main function of this
GEVD is to find the optimum threshold value for image binarization relatively
to a significance level. The significance levels are defined in function of the
background complexity. In this paper, we show that this method is much simp-
ler than other methods for text binarization and produces better text extraction
results on degraded documents and natural scene images.

Keywords: Text binarization, Contrast enhancement, Gamma function, Photo-
metric invariants, Color invariants.

1 Introduction

One of the most challenging tasks for any computer vision system is to recognize the
changes in an image which are due to a change in the underlying imaged surfaces
from changes which are due to the effects of the scene illumination. The interaction
between light and surface is complex and introduces unwanted artifacts into an image
[1]. For example, shading, shadows, specularities and inter-reflections, as well as
change to local variation in the intensity of color of the illumination all make it more
difficult to achieve basic visual tasks such as text extraction (see Fig. 1) or back-
ground extraction (see Fig. 2 and 3). Fig. 2 demonstrates that the colors distribution of
the background of image (c) of Fig. 1 is not homogeneous and that in the background
there is strong chrominance variations. Fig. 3 demonstrates that the colors distribution
of the background of image (d) of Fig. 1 is also not homogeneous and that in this
region there is greater chrominance variations than in Fig. 1 (c). In order to attenuate
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these effects illuminant-invariant models have been proposed. Several studies have
shown that these models greatly attenuate most of effects described above. In this
paper, in section 2, we show that these models suffer from limitations and do not
perform well when addressing complex illumination conditions, such as those illu-
strated by image of Fig. 1 (d).
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Fig. 1. Color changes due to shading (a), local variation in the intensity of the illumination (b),
specularities (c), and specularities and inter-reflections (d)

Another challenging task is to enhance the image so that result is more suitable
than original image for specific application such as segmentation. Several image en-
hancement techniques, often elementary or heuristic methods, have been proposed for
improving the visual quality of images. Appropriate choice is greatly influenced by
the imaging modality, task at hand and viewing conditions [2]. As example, power-
law transformations with a fractional exponent can be used to expand the gray scale
range of dark images. Log Transformation can be used for enhancing details in darker
regions but at the expense of details in higher-level values, i.e. brighter regions. His-
togram equalization can be used to stretch the contrast of an image by redistributing
the gray-level values uniformly. In section 3 we show that these models suffer also
from limitations and do not perform well when addressing complex illumination con-
ditions, such as those illustrated by image of Fig. 1 (d).
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(a) Windows analyzed (b) Saturation versus Hue  (c) Log(B/G) versus Log(R/G)

Fig. 2. Color space representation of different windows of image (c) in Fig. 1. Colors asso-
ciated with the points (in (b) and (c)) represent color of corresponding windows (in (a)). Each
window is represented by four points which corresponds to the lowest and highest values com-
puted in this window for the two dimensions considered.
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Color image segmentation is also a challenging task as solutions have to be effec-
tive against image shadows, illumination variations and highlights. Several ap-
proaches based on the computation of image invariants that are robust to photometric
effects have been proposed in the literature [3-5]. Unfortunately, there are too many
color invariant models in the literature, making the selection of the best model and its
combination with local image structures (e.g. color derivatives) quite difficult to pro-
duce optimal results [6]. In [7], Gevers et al. survey the possible solutions available to
the practitioner. In specific applications, shadow, shading, illumination and highlight
edges have to be identified and processed separately from geometrical edges such as
corners, and T-junctions. To address this issue, Gevers et al. proposed to compute
local differential structures and color invariants in a multidimensional feature space to
detect salient image structures (i.e. edges) on the basis of their physical nature in [7].
In [8] the authors proposed a classification of edges into five classes, namely object
edges, reflectance edges, illumination/shadow edges, specular edges, and occlusion
edges to enhance the performance of the segmentation solution utilized. Shadow seg-
mentation is of particular importance in applications such as video object extraction
and tracking. Several research proposals have been developed in an attempt to detect
a particular class of shadows in video images, namely moving cast shadows, based on
the shadow’s spectral and geometric properties [9]. The problem is that cast shadow
models cannot be effectively used to detect other classes of shadows, such as self
shadows or shadows in diffuse penumbra [9] suggesting that existing shadow segmen-
tations solutions could be further improved using invariant color features. The main
challenge in color image segmentation is since a decade the fusion of low level image
features so that image content would be better described and processed. Several re-
searches provided some solutions to combine color derivatives features and color
invariant features, color features and other low level features (e.g. color and texture,
color and shape [7]), low-level features and high-level features (e.g. from graph repre-
sentation [10]). However, none of the proposed solutions appear to provide the ex-
pected performance to segment complex color images unlike the human visual system
which is able to take into account the semantic contents of images. Of course if some
a priori information or knowledge about the segmentation task is incorporated in the
process that will optimise the algorithm results.
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(a) Windows analyzed (b) Saturation versus Hue (c) Log(B/G) versus Log(R/G)

Fig. 3. Color space representation of different areas of image of Fig. 1 (d). Colors associated
with the points (in (b) and (c)) represent color of corresponding windows (in (a)). Each window
is represented by several points computed by sampling of this window. The arrows represent
color changes from left to right in the corresponding windows in (a).
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Most of existing text segmentation approaches assume that text layers are of uni-
form color and fail when this is not the case. The background may also be multicolor
consequently the assumption according with it is the largest area of (almost) uniform
color in the image does not necessarily hold [11]. Lastly, most of existing text seg-
mentation approaches assume that there is a high contrast between text and back-
ground in the image this is unfortunately not always the case in real images. Many
approaches assume also that in segmenting the highest peak in the lightness histogram
we can deduce if text layers are of lower or a higher lightness than the background
region, this information may be helpful to segment text layers, but this is once again
not always the case in real images.

In this paper we demonstrate that none illuminant-invariant model is sufficiently
robust to complex photometric effects to solve the issue of text detection in complex
natural scenes. To solve this issue, in a second paper [12], we propose to use another
strategy, more robust to photometric effects, based on the computation of the differ-
ence of gamma functions to detect text layers in complex scenes.

2 Color Spaces Invariants to Photometric Effects

2.1 INluminant-Invariant Models

A first approach to compute illuminant-invariant consists to use reflection models
(e.g. Lambertian or dichromatic reflectance) but these reflection models are too re-
stricted to model real-world scenes, such as the scene illustrated by Fig. 3, in which
different reflectance mechanisms hold simultaneously. Different photometric inva-
riance models based on dichromatic reflection models have been proposed [13-14].
These models are invariant for different types of lighting variations, i.e. light intensity
(LI) or light color (LC) change and/or light intensity or light color shift (see Table 1)
but are not invariant to strong or complex lighting changes such as those illustrated by
image of Fig. 1 (d).

Table 1. Invariance of color models for different types of lighting changes [14]. Invariance is
indicated with ‘+’ and lack of invariance with ‘-’

Color space LI change LI shift

Value (V) -

LI change and shift LC change LC change and shift

Saturation (S)

+

+

Hue (H)

+

+

+

log(R/G), log(B/G)

+

+

+

Fig. 4 and Table 2 show the non-invariance of H, S and log(B/G) color descriptors
for a simple real-world scene. These “invariants” fail to attenuate a strong intensity
shift due to a smooth specular reflection. Likewise, Fig. 5 and Table 3 show the non-
invariance of H, S, log(B/G) and log(B/G) color descriptors for a more complex real-
world scene.

In order to attenuate photometric effects for text segmentation in natural images
Jim et al. proposed in [15] to decompose the image studied into chromatic and achro-
matic regions in the HSI color space using a decision function computed in RGB
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space. Since the HSI space and the decision function used are not invariant to photo-
metric effects this method is not relevant for complex images such as image of Fig. 1
(d). Furthermore, this method is based on the hypothesis that text layers have homo-
geneous values in the chromaticity image but this is not always the case for complex
images, such as in Fig. 6. In Fig. 6 there are two color changes, one from left to center
due to a white specular highlight, and a second from center to right due to a second
(orange) specular hightlight. Karatzas et al. proposed also to decompose the image
studied into chromatic and achromatic regions in the HLS color space using a deci-
sion function based on saturation and lightness values. The problem with this strategy
is that the exact levels of saturation and lightness for which color should be consi-
dered achromatic are not straightforward to set [11]. To simplify the problem either
empirical or heuristic methods are generally used.

H channel

_T _

W channel

LElB/G) e

(a)H,Sand V (b) log(R/G) and log(B/G) (c) colormap used

Fig. 4. Representation of H, S, V, log(R/G) and log(B/G) components computed for image of
Fig. 1 (c). The V channel shows a LI shift in the background from left to right (AV .., =0.71).
On each component, reddish colors and yellowish colors correspond to values closed to 0 and
1, respectively.

Table 2. Invariance of color models / LI change in image (c) of Fig. 1. Color component are
normalised in the interval [0, 1]. Invariance is indicated with ‘+” and lack of invariance with ‘-’.
AX and AX .« represents, respectively, the maximum of difference between two consecutive
areas of the background (from left to right) and the maximal difference between two areas of
the background, computed from mean values calculated for each letter for color component X.
AXmaxe and AX .3 Tepresents, respectively, the maximum of differences between two consecu-
tive letters (from left to right) and the maximum of differences between two letters, computed
from mean values calculated for each letter for color component X.

Color space Background Letters
Saturation (S) - ASe=0.16,  AS,01 = 0.61 - AS=0.04,  AS;u0=10.12
Hue (H) - AHe=0.25,  AHpp=0.30 - AHpo=0.10,  AH.u=0.13
log(R/G) +  Alog(R/G) o= 0.03,  Alog(R/G) oy = 0.04 +  Alog(R/G) mae=0.01, A l0og(R/G)maxz = 0.01
log(B/G) - Alog(B/G)e=0.19, A log(B/G) maxi = 0.20 - Alog(B/G) maa=0.01, A log(B/G)pac = 0.16
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H channel

S channel

Log(R/G) channel

V channel

Log(8/G) channel

(a) H,Sand V (b) log(R/G) and log(B/G) (c) colormap

Fig. 5. Representation of H, S, V, log(R/G) and log(B/G) components computed for image (d)
of Fig. 1. The V channel shows two LI shifts in the background (AV ,xo = 0.94, 0.92 resp.). The
first LI shift (i.e. at center) corresponds also to a LC shit on the H channel meanwhile the
second LI shift (i.e. at right) corresponds to a LC shift on the S channel. On each component,
reddish colors and yellowish colors correspond to values closed to 0 and 1, respectively.

Table 3. Invariance of color models / LI and LC change and shift in image (d) of Fig. 1.
Color component are normalized in the interval [0, 1]. Invariance is indicated with ‘+’ and
lack of invariance with ‘-’. AX,,, and AX,,,; represents, respectively, the maximum of differ-
ence between two consecutive areas of the background (from left to right) and the maximal
difference between two areas of the background, computed from mean values calculated for
each letter for color component X. AX .« and AX, .3 represents, respectively, the maximum
of differences between two consecutive letters (from left to right) and the maximum of dif-
ferences between two letters, computed from mean values calculated for each letter for color
component X.

Color space Background Letters
Saturation (S) - ASu=0.39,  AS,=0.60 - ASy=0.36, ASpmo=0.55
Hue (H) - AH,=025,  AHp, =032 - AHp0=024,  AHp,=0.32
log(R/G) - Alog(R/G) o= 026, A10g(R/G) a1 =042 | = A10g(R/G) puz=0.2, A l0g(R/G)pans = 0.31
log(B/G) - Alog(B/G) o= 040,  Alog(B/G) =077 | - Alog(B/G) yyr=0.49, A log(B/G)ys= 0.87
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(a) Text regions analyzed (b) Saturation versus Hue (c) log(B/G) versus log(R/G)

Fig. 6. Color space representation of several text regions of image (d) in Fig. 1. Colors asso-
ciated with the points (in (b) and (c)) represent color of corresponding windows (in (a)). Each
window is represented by four points which corresponds to the lowest and highest values com-
puted in this window for the two dimensions considered. The color distribution of the blue
window (at left on (a)), of the cyan window (at the center) and of the grey window (at right, on
the S) are bounded by ellipses in (b) and (c). The arrows represent color changes between these
ellipses that is to say from left to center and from center to right in (a).

2.2 Logvinenko's Model

In order to attenuate photometric effects such as shading, shadows, specularities and
inter-reflections, as well as change to local variation in the intensity of color of the
illumination a new approach has been recently proposed by Logvinenko in 2009 [16].
The main idea of this approach is to consider that the set of possible colors of reflect-
ing objects defines a volume called the object-color solid [17]. The object-color solid
depends on the spectral power distribution of the illuminant and the color space being
used. Logvinenko has therefore proposed a new object-color space that defines a
complete color atlas that is invariant to illumination [16] and describes all colors in
the object-color solid under any illuminant. However, Logvinenko's existing imple-
mentation for calculating the proposed color descriptors is computationally expensive
and does not work for all types of illuminants. Fig. 7 shows the calculated color de-
scriptors for a scene viewed under different lighting sources (images from the Bar-
nard's Database [18]) and illustrates the perceptual correlates of the descriptors (adA)
as described by Logvinenko. Purity (a) describes the grayness of a color, namely, the
relative distance to the gray center. Hence, both black and white have a high purity, so
for example the dark areas of the image show as white in Fig. 7 (b). The spectral
bandwidth (3) (see Fig. 7 (c¢)) correlates with blackness and whiteness, but becomes
meaningless for low purities (gray colors). Central wavelength (A) (see Fig. 7 (d)) is
correlated to hue.

A possible application of adA color descriptors is to predict the effect of an illu-
mination change. Since adA coordinates determine a metameric reflectance spec-
trum, the corresponding sensor response for any given illuminant can be calculated
according to Logvinenko’s model. Fig. 7 shows the result obtained by calculating
the adA color descriptors using different illuminants. Although the ad)A space is
invariant to illumination, the adA color descriptors themselves can change with the
illumination, since each adA triplet describes a class of metamers, and metamerism
depends on the illuminant. To analyze the effect of each illumination change on
adA color descriptors, we have computed the histogram of each component next



Detecting Text in Natural Scenes Based on a Reduction of Photometric Effects 221

computed distance histograms (see Tables 4 to 12) based on bin-by-bin dissimilarity
metrics such as the y* divergence, the Kullback-Leibner divergence and the Jeffrey
divergence [19]. Fig. 8 shows the descriptors for images book3 and Macbeth under

different intensities, further illustrating the perceptual correlates (images from the
Barnard's Database [18]).

Solux 3500 + 3202 Solux 4100 Solux 4700 Syl-50MR16Q+3202  lighting sources

purity

spectral bandwidth

central wavelength

(a) Image 1 (b) Image 2 (c) Image 3 (d) Image 4

Fig. 7. Image book3 under different lighting sources

Table 4. Dissimilarity distances (Ki2 norma- Table 6. Dissimilarity distances (Jeffrey)
lized) computed from histogram of Purity computed from histogram of Purity

component component

Images Im] Im2 Im3 Im4 Im5 Im7 Images Iml Im2 Im3 Im4 Im5 Im7
Iml 0.60 | 049 | 027 | 133 Iml 038 | 031 | 0.16 | 0.89

Im2 0.19 0.62 1.70 Im2 0.10 0.40 1.11

Im3 0.55 | 1.63 Im3 036 | 1.07

Im4 1.44 Im4 0.96

Im5 Im5

Im6 1.46 Im6 0.96
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Table 5. Dissimilarity distances (Kullback- Table 7. Dissimilarity distances (Ki2 norma-
Leibler) computed from histogram of Purity lized) computed from histogram of Band-

component width component

Images Iml Im2 Im3 Im4 Im5 Im7 Images Iml Im2 Im3 Im4 Im5 Im7
Im] 0.91 078 | 0.52 | 0.07 Iml 0.53 | 037 | 024 | 1.13

Im2 0.19 | 010 | 0.56 Im2 0.09 | 0.61 | 0.89

Im3 0.69 | 0.31 Im3 0.55 | 0.93

Im4 0.01 Im4 115

Im35 Im5

Im6 2.50 Im6 1.09

Table 8. Dissimilarity distances (Kullback- Table 9. Dissimilarity distances (Jeffrey)
Leibler) computed from histogram of Band- computed from histogram of Bandwidth

width component component

Images Iml Im2 Im3 Im4 Im5 Im7 Images Iml Im2 Im3 Im4 Im5 Im7
Im] 0.76 | 048 0.81 1.55 Iml 0.33 0.23 0.16 | 0.67

Im2 0.09 | 0.02 1.30 Im2 0.05 | 040 | 0.53

Im3 0.17 1.23 Im3 0.36 | 0.54

Im4 1.60 Im4 0.69

Im5 Im5

Im6 1.73 Im6 0.70

Table 10. Dissimilarity distances (Ki2 nor- Table 11. Dissimilarity distances (Kullback-
malized) computed from histogram of Central  Leibler) computed from histogram of Central

wavelength component wavelength component

Images | Iml Im2 Im3 Im4 Im5 Im7 Images | Iml Im2 Im3 Im4 ImS Im7
Iml 0.79 0.74 0.66 0.61 Iml 1.63 1.29 1.25 0.72

Im2 0.64 0.73 0.80 Im2 1.15 1.27 1.31

Im3 0.14 0.51 Im3 0.15 0.63

Im4 0.62 Im4 0.80

Im5 Im35

Im6 0.76 Im6 1.09

Table 12. Dissimilarity distances (Jeffrey) computed from histogram of Central wavelength
component

Images Iml Im2 Im3 Im4 Im5 Im7
Iml 0.49 045 | 041 0.35

Im2 0.40 | 045 | 049

Im3 0.07 | 0.28

Im4 0.35

Im5

Im6 0.49

The less images are dissimilar the lower the distance between these histograms is
(the three distances considered are bounded by the min value 0). To illustrate our
purpose, let us consider images of Fig. 8 and 9. The lowest dissimilarity distances (see
Tables 4 to 12) are between images of Fig. 7 (b) and Fig. 7 (c) and between images of



Detecting Text in Natural Scenes Based on a Reduction of Photometric Effects 223

Fig. 7 (c) and Fig. 7 (d). The lowest value for the purity, bandwidth and central wave-
length are respectively equal to 0.10, 0.04 and 0.40 for images of Fig. 7 (b) and Fig. 7
(c), and to 0.36, 0.17 and 0.13 for images of Fig. 7 (c) and Fig. 7 (d). These values are
not constant. Whatever the set of illuminants considered and the image studied (im-
ages of the Barnard's Database [18]) distance between histograms computed are also
not constant. This shows that purity, bandwidth and central wavelength components
are not invariant to visually perceptible light color changes (see also the first example
given in Fig. 7).

Let us now consider images of Fig. 8. The lowest dissimilarity distances (see
Tables 4 to 12) between images of Fig. 8 (a) and Fig. 8 (b) and between images of
Fig. 8 (c) and Fig. 8 (d) are respectively, for a, 6 and A color descriptors, equal to
0.31, 0.54 and 0.28 for images of Fig. 8 (a) and Fig. 8 (b), and to 0.96, 0.70 and 0.49
for images of Fig. 7 (c) and Fig. 7 (d). These values linked to light intensity changes
are not constant and are higher than for illumination changes. Whatever the image
studied (images of the Barnard's Database [18]) and light intensity changes, distance
between histograms computed are also not constant. This shows that purity, band-
width and central wavelength components are not invariant to visually perceptible
light intensity changes. Our results show that central wavelength (L) values are less
sensitive to light intensity changes than spectral bandwidth (8) and purity (o), as the
former descriptor is correlated to hue meanwhile spectral bandwidth correlates with
blackness and whiteness and purity correlates with grayness.

Solux 4700 (1y=70)  Solux 4700(j1y=78) D65 (1y=65) D65 (1y=70) lighting sources

.. purity

: ] |
. . - _ spectral bandwidth

; ﬂ '- " n_m

O  ww

Suleskse

central wavelength
(a) Image 3 (b) Image 5 (c) Image 6 (d) Image 7

Fig. 8. Images book3 and Macbeth under different intensities
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Fig. 9. Representation of o, 6 and A components computed for image (d) in Fig. 1

3 Image Enhancement Methods

3.1 Grey Levels Transformation Methods

In order to better attenuate photometric effects such as shading, shadows, specularities
and inter-reflections, as well as change to local variation in the intensity of color of
the illumination another approach consists to apply an image enhancement method
[20]. The principle objective of image enhancement is to process an image so that
results are more suitable than original for specific application [2]. The main task, in
our case of study, is to optimize intra-class similarity and inter-class similarity such as
every grey-level class (i.e. text regions and background regions) can be well sepa-
rated.

Different image enhancement algorithms can be used to improve the appearance of
an image such as its contrast in order to make the image interpretation, understanding,
and analysis easier. Various contrast enhancement algorithms have been developed to
modify the appearance of images by highlighting certain features while suppressing
others. A widely used approach for contrast enhancement is based on the use of a
power law response equation such as follows (see Fig. 10):

s=cr’ (D)

Generally ¢ and y are positive constants. r and s represent respectively the input and
output intensity levels (see [21]).

S ey Lo e

Fig. 10. Influence of the parameter gamma on the contrast of the output image
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Another function, the piecewise linear transformation (see Fig. 11) can also be
used to modify the distribution of the grey levels of any 1D component such as the
saturation or the brightness (see Fig. 12 and 13). In Fig. 12 there are two classes: the
background (brighter region) and the text layer (darker regions). The best results that
we have experimentally obtained with a piecewise linear transformation are given in
Fig. 12 (b). As the most illuminant-invariant components for darker regions (i.e. text
layer) are S and log(B/G) components (see Table 2) we apply this transformation on
these components. As we can see on Fig. 12 results are not perfect as on the original
image (on the most illuminant-invariant components) the inter-class similarity is quite
high, e.g. some pixels of the background have the same saturation value than the text
layer). In Fig. 13 there are three classes: the background (brighter and darker regions)
and the text layer (intermediate regions). The best results that we have experimentally
obtained with a piecewise linear transformation are given in Fig. 13 (b). As the most
illuminant-invariant components for text regions are V and log(R/G) components (see
Table 3) and as the gray scale range of log(R/G) component is too low (see Fig. 5
(b)), we apply this transformation only the V component. As we can see on Fig. 13

Tirp=s |

___;"' {r=1)

Fig. 11. Example of piecewise linear transformation function used for reducing details in darker
regions and brighter regions but at the expense of enhancing details in intermediate regions

S channel S channel
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(a) Original image (b) Output image (c) Histogram of S channel before (d) Histogram of S channel after
image enhancing image enhancing
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w0
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(¢) Original image () Output image (2) Histogram of log(B/G) channel before (h) Histogram of log(B/G) channel after
image enhancing image enhancing

Fig. 12. Examples of image enhancing obtained from a piecewise linear transformation. This
transformation is used for enhancing contrast between darker regions (i.e. the text layer) and
brighter regions (i.e. the background) without enhancing too much details in intermediate re-
gions. For S we have used the values (r1=15, s1=5) and (12=75, s2=120) and for log(B/G) the
values (r1=90, s1=120) and (12=110, s2=130).
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results are not very good as on the original image the inter-class similarity is too high
as some pixels of the background have the same V value than the text). We can note
also on Fig. 6 that for darker regions and brighter regions the intra-class similarity is
higher on log(R/G) and H components than for log(B/G) and S components for text
regions, but as the inter-class similarity of the background and text regions (see Fig.
3) is lower than the intra-class similarity of each of these two classes we cannot atte-
nuate as desired photometric effects.

3.2 Morphological Reconstruction Based on Geodesic Transform

In order to suppress lighter objects (e.g. text layers) than their surroundings and con-
nected to border of the image, another strategy consists to use a morphological recon-
struction transform based on geodesic dilation.

According to Soille [22] geodesic dilation of a bounded image always converges
after a finite number of iterations (i.e. until the proliferation or shrinking of the mark-
er image is totally impeded by the mask image). For this reason geodesic dilation is
considered as a powerful morphological reconstruction scheme. The reconstruction by
dilation Rg (f) of a mask image (g) form a marker image (f) is defined as the geodesic
dilation of (f) with respect to (g) iterated until stability as follows (see Fig. 14):

RI(H) =% (f) o)

The stability is reached at the iteration i when: Og) ) = OSH) (f). This reconstruction
is constrained by the following conditions that both (f) and (g) images must have

=

W channel * channel | }
2acn|

-
. | | |
P

() Original image (b) Output image (¢) Histogram of V channel before image enhancing  (d) Histogram of V channel after image enhancing

Fig. 13. Examples of image enhancing obtained from a piecewise linear transformation. This
transformation is used for enhancing contrast between intermediate regions (i.e. the text) and
darker and brighter regions (i.e. the background) without enhancing too much details in back-
ground regions. In this example (r1=15, s1=5), (12=75, s2=120), (r3=240, s3=130) for V.

(a) 1-D marker signal f and (b) Reconstruction by erosion R?
mask signal g of g with respect to f

(A) Algebraic Opening

Fig. 14. Algebraic opening for a 1-D signal
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the same definition domain (i.e. Dy = Dg) and f < g. This reconstruction transform
presents several properties: it is increasing (g, < g, = Rgl(f) < Rgz(f)), anti-

B
extensive (Rg(f) < g), and idem-potent Rg(Rg(f)): Rg (f)). This reconstruction

transform corresponds to an algebraic closing of the mask image. The connected
opening transformation, y, (g) of a mask image (g) can be defined as:

v, (@) =RI(£) 3)

where the marker image f, equals to zero everywhere except as x which has a value
equal to that of the image (g) at the same position.

According to Soille [22] the connected opening transformation can be used to ex-
tract connected image objects having higher intensity values than their surrounding
when we chose the mask image zero everywhere, except for the point x which has a
value equal to that of the image (g) at the same position (see Fig. 15).

In order to suppress lighter objects than their surroundings and connected to border
of the image, we choose the marker image zero everywhere except the border of the
image. At the border of the image we chose the pixel value of marker the same as
mask pixel value at the same position. Once we get the connectivity information with
the help of morphological reconstruction based on geodesic transform, we suppress
these lighter objects connected to image border. After this preprocess step most of the
non-text regions are reduced and kept only most probable text layer candidates which
leads us to emphasize more on region of interest of the image (see Fig. 15 (b)). Espe-
cially in our experiments we have seen that this process reduce the background inten-
sity variations and enhance the text layers of the image.

£ LL
lt‘ Town Centre (_ l:
I<- ROES

(a) Original image (b) Connected opening (c) Original image (d) Connected opening (the

border of image was first set to 0)

(e) Connected opening (without
changing the border of the image)

Fig. 15. (b) Connected image objects having higher intensity values than their surrounding can
be extracted by the connected opening transform. (d) Connected image objects having darker
intensity values than their surrounding can be extracted by the connected closing transform.

In order to suppress darker objects (e.g. text layers) than their surroundings and
connected to border of the image the connected closing transformation can be used.
The first shortcoming of this morphological transformation and of the former (i.e.
closing and opening) is that we must first estimate if the