Adaptive wavelet methods for solving operator
equations: An overview

Rob Stevenson

Abstract In [Math. Comp 70 (2001), 27-75] andHound. Comput. Math.2(3)
(2002), 203-245], Cohen, Dahmen and DeVore introducedtagapavelet meth-
ods for solving operator equations. These papers meanak&-tineough in the field,
because their adaptive methods were not only proven to cgeybut also with a
rate better than that of their non-adaptive counterpadases where the latter meth-
ods converge with a reduced rate due a lacking regularityeo$olution. Until then,
adaptive methods were usually assumed to converge viaragatuassumption. An
exception was given by the work of Dorfler i8[AM J. Numer. Anal.33 (1996),
1106-1124], where an adaptive finite element method wasprw/converge, with
no rate though.

This work contains a complete analysis of the methods fraathrementioned
two papers of Cohen, Dahmen and DeVore. Furthermore, weagiwerview over
the subsequent developmentsin the field of adaptive wavel#tods. This includes
a precise analysis of the near-sparsity of an operator irelwagoordinates needed
to obtain optimal computational complexity; the avoidaméecoarsening; quan-
titative improvements of the algorithms; their generdl@ato frames; and their
application with tensor product wavelet bases which givaatision independent
rates.

1 Introduction

1.1 Non-adaptive methods

In this survey, we discuss optimally converging adaptiveelet methods for solv-
ing well-posed linear operator equations
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Bu=f.

Such methods were introduced by Cohen, Dahmen and DeVaz®ib(1, CDD02].
For wavelet methods in general for solving operator equatiwe refer to [Dah97,
Coh03, Urb09].

We assume thaB is a boundedly invertible linear operatdoetweenZ™ and
%', where 2" and# are Hilbert spaces. As typical examples, we have in mind
linear partial differential or singular integralequations, in which cas€™ and %
are Sobolev spaces or, for non-scalar equations, prodigsb spaces. We assume
that we have Riesz basts” = {¢; : A € O} and¥? = {y : A € O} for 2
and? available, which are ofvavelet typeln most applicationsZ™ and% and
W# and¥? will be equal.

The adaptive wavelet methodology has been extendednelinearproblems,
see [CDD03a, DSX00a, CDD03b, CU05, BDS07, BU08]. Such mmoisl however,
will not be discussed in this paper.

A standarchon-adaptivewumerical (wavelet) method for solvifigu= f consists
of selecting &\ from a fixed sequencéy C A1 C --- with UjA; = 0, and computing
a (quasi-) best approximation, to u from sparq Lp{ :A € A}. The standard choice
for A is the set of all wavelet indice’s with “level” up to i, so that spa{wf A€
A} is equal to the span of all “scaling functions” on leve€The counterpart of this
wavelet method in dinite element settingg the computation of the finite element
approximation with respect to animesuniformly refined initial mesh

Associated ta2” and¥? , there exists a parameter

Smax > 0
such that for a suitable choice Of);, for all u € 2" that aresufficiently smooth
[u—upll2 S #A) S,

where this ratemnax cannot be improved by imposing additional smoothness eondi
tions or by another selection 6f\;);.

For completeness, here and in the remainder of this work, @it D we will
mean thaC can be bounded by a multiple &, independently of parameters on
which C andD may depend. Obviouslg 2 D is defined ad < C, andC <~ D as
C<DandCzD.

Remark 1 There existu € 2" for which a rate better thasnax can be realized.
Indeed, ifu happens to have a finite representatiotifi , or if it is exceptionally
close to such a function, then with a suitable choic&%j; any rate can be realized.
Since such cases are exceptional, we may ignore them intineficonsiderations.

Typically, the parametesax is a function of theorder of the wavelet basi#’* ,
the order of smoothness that is measured in the (Sobolegg spaand the dimen-
sion of the underlying domain.
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Example 1Let 2" = H™(Q) whereQ is a bounded domain iR", and let¢”# be
a standard wavelet basis of ordkr m. Then
d—m

Smax = n

and withA; being the set of all wavelet indicaswith levels up ta, this ratesmaxis
realized foru € HY(Q). More generally, fos € (0,Smay andu € HS""™M(Q), a rate
sis realized. This result is sharp in the sense thagfor0, there exists no choice
(/)i such that the rateis realized for alu € HS™ ™ ¢(Q).

1.2 Adaptive methods

Even for smooth right-hand sidésin many applications the smoothness conditions
onuto realize the optimal ratgyaxwith the standard choice ¢4\; ); are not fulfilled.
Typical examples are boundary value problems on non-snuwttains, where cor-
ners, edges etc. induce singularities in the solution. Faple model examples, the
precise knowledge of these singularities enables one ¢otselsequencg); ); such
that the optimal ratenay is retrieved, assuming is sufficiently smooth. Such a se-
quence(/;); involves local refinements towards the boundary, i.e., tubton of
extra wavelets with supports near the boundary. For morergéproblems, how-
ever, such an a priori selection @f;); is not feasible.

The topic of this work aradaptive(wavelet) methods. With these methods, the
expansion of\; to Ai;1 is made based on information providedupy. In this way,
the sequenceg);)i and(uy, )i depend (non-linearly) on.

The method from [CDDO1] is similar to an adaptive finite elemmethod in
the sense that information from an a posteriori error egtima used to guide the
expansion of\; to A1 such that the error is reduced, at the expense of a (quasi-)
minimal increase in the cardinality.

The idea behind the method from [CDDO02] is the applicatiosaheiterative
method to construdi\;); such that(uy, )i converges (linearly) ta. Here a (quasi-)
optimal balance between support sizes and accuracy izedddy, after each fixed
number of iterations, removing small coefficients from therent approximation, a
process known asoarsening

The key to the development of adaptive wavelet methods igthéhat for alarge
class of operatorB, its bi-infinite stiffness or system matrix with respect titable
wavelet bases is close to a sparse matrix. Here suitablestieatthe wavelets are
sufficiently smootland have sufficiently manyanishing momentShanks to this
near-sparsity, given an approximatior /o to u, its generally infinitely supported
residual can be accurately approximated at relatively logt.cThis fact allows to
run an iterative scheme to the bi-infinite matrix vector dum in which residuals
are computed approximately, essentially being the schesng[[CDDO02], or to use
the approximate residual as an a posteriori error estinaatorthe scheme proposed
in [CDDO1].
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1.3 BestN-term approximation and approximation classes

As a benchmark for these adaptive methods, we consider ai{jjbast possible
choiceof (A;); depending on uwhere we assume to have full knowledge of this
function, and thus of its expansion in the wavelet b&sis. Givenu=u' W% :=
YaeoUpryi and an approximation = v'W# , becausé’” is a Riesz basis, it
holds that

[u=viz = [u=vl, 1)

where| - || is the norm orfp = ¢5(00) :={v: 0 —R: 3¢ |Vy |2 < }. The subspace
of finitely supporteds € ¢, will be denoted agy. As a consequence of (1), given a
budgetN € N, a (quasi-) best choice for an approximatios: v' ¢ € 2" with
#supps < N is to takev to be abest N-term approximatioio u, i.e., a vector with at
mostN non-zero coefficients that hé&sdistance tai not larger than any vector with
support length< N. Obviously, such a bed-term approximation ta, denoted as
un, coincides withu on thoseN positions whereu has itsN largest coefficients in
modulus, and is zero elsewhere. Note tinais not necessarily unique.

All u whose besN-term approximations converge with rage- O are collected
in the approximation class

(= dg) i={U€Ely:||u]ys:= sugs x [min{N € No : [[u—un]|s, < €}]° < oo}

E>
2)
Indeed, one may verify thaful| s =~ SUyen, (N + 1)%[|u — un||, being the com-
monly used definition of the (quasi-) norm e#®. Givenu € <75 ande > 0, the
smallestN such thatju — uy|| < € satisfies

N <& 3l 8, 3)

which bound is generally shargince fore < ||u||, the value o in the definition
of ||u||ss is positive, furthermore note that

ullors > sup &= |lul.
0<e<||ul|

As discussed in Remark 1, fer> snax the class#’S, although not empty, is
not relevant. For ang € (0, smay, the classe/® is much larger than the class of
(representations of) functions that can be approximateld wite s for any fixed
choice of(A;);.

Example 2In the situation of Example 1, with wavelets that are suffidiesmooth,
for s (0,9-M) and with 1 := (3 +9)%, (representations of) all functions in the
Besov spac8S"(L,(Q)) are contained in7S. Coarsely speakin@®S" (L, (Q)) is
the space of all functions havisg+t orders of smoothness iy (Q), which space,
sincet < 2, is thus (much) larger thans™!(Q) with an increasing difference with
growings. For details about the relation between approximatiorselagand Besov
spaces we refer to [DeV98, Coh03]. For several boundanevaioblems, assuming
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a sufficiently smooth right-hand side it has been proved that the solutiarhas
a much higher regularity in this scale of Besov spaces thaineirscale of Sobolev
spacegH™™(Q))s, see [DD97, Dah99].

In view of the definition ofe/3, in particular (3), we will call aradaptive wavelet
method to be (quasi-) optimdl

whenever u has a representation=uu' ¥# with u € /S for some
s (0,smax, then given a tolerance > 0, it produces an approximation
Vv € fo with [ju—v|| <& and#suppr < s‘l/SHuHiﬁ, at the cost of a
number of arithmetic operations that can be bounded by sdiaelate

multiple of the same expression.

1.4 Structure of the paper

The remainder of this work is organized as follows: In Sectv@ reformulate well-
posed operator equations as bi-infinite matrix vector égostand give some typi-
cal examples of such operator equations.

In Sect. 3 and 4, we define the adaptive wavelet schemes fr&@d(2] and
[CDDO01], respectively, and prove their (quasi-) optimallote that we reverse the
order in which these schemes were proposed.

The analysis from Sect. 3 and 4 applies under the assumigdritte operator
B in wavelet coordinates can be sufficiently well approxirddig sparse matrices
that are computable in linear complexity. In Sect. 5, wefyehis assumption for a
class of partial differential operators.

In Sect. 6, we discuss the generalization of the adaptivelsaapproach to the
case that instead of Riesz bases we only have frames aeai@bt motivation will
be that on general non-product domains, the constructiofwvavelet) frames is
easier than that of (wavelet) Riesz bases.

Finally, in Sect. 7, the application of tensor product wavélases is discussed.
Approximation using such bases does not suffer from theafleeccurse of dimen-
sionality. An application of those bases is given by the §ify@ptimal simultane-
ously space-time adaptive solution of parabolic initiallbdary value problems.

1.5 Some properties of the (quasi-) nornis|| s

We end this section by recalling two known properties of|thg&.s-norm (cf. e.g.
[DeVv98]) that will be used in Sect. 3 and 4. In order to keepafesentation in these
sections self-contained, we include their proofs.

Lemma 1.Forv € &S andw € /g,

W[l < 2max([[v|.s, (#suppw)®[[v —w])).
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Proof. For € € (0,2||v — w]|], the approximation o#v by itself shows that the ex-
pressioreNSs in the definition of||w|| ;s is bounded by Bv — w/||(#suppv)S.

Fore > 2|[v—w||, let N be the smallest integer such that—vn| < §. Then
[w—vn|| < &andeN® = 25NS < 2||v| . 0

Lemma 2. For s> 0 and witht := (3 +9)72,

[V|lrs = supn x #{A € O: vy | > n}YT,  (vewd). (4)
n>0

Proof. Let us denote the expression at the right-hand side of (4)vés,s. LetN
be the smallest integer such that the entries-efvy are in modulus not larger than
n. ThenN < (||v||»sn~1)7, and

Iv—vnll < S 240\ #A € Ot | € (2-kn,2-kn))
k=0

< _ _ 2
<3 2 (M2t Y2 < 0T,
k=0

_ T/2 _
and so|V|.s < supy-on*" 2IVIIEE % ((IVllsn™1T)° = IV]).s.
To show the other direction, first we note that

IV—Vall S NS|V]ls (Ve SN > 1). (5)

Indeed, if||v — vn|| = ||V — Vn-1]|, thenvy = vy_1 = v and (5) is valid. Otherwise,
i.e., when|v—vy|| < |lv—vn-1|, by puttinge := ||v — vn]||, the definition off| - || s
shows (5).

With (w(v))nen denoting a non-decreasing re-arrangement @f modulus,
secondly we note that

SUPNYT W (V)| S [IV][os (v € o), (6)
NeN

Indeed |y (V)| < ||V|| < ||V]|ws. For 1<k <N,

(N=KIWVP< Y WP < Iv—vid® <k ZviZs,
k<J<N

of [ (V)] < MiMycken ——
(N—K)2

Now givenN € Ny, letn := W1(v), then#{A € O:|vy| > n} =N. Fromn <
(N+1) [V s, we arrive afvls < SUR(N -+ 1) TV]| s x NYT < |[v]| 5.
0

IVllers = N“HT V] ors.
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2 Well-posed linear operator equations

2.1 Reformulation as a bi-infinite matrix vector equation

Let 27,% be separable (infinite dimensional) Hilbert spaces @/é¢the complex
case does not impose additional difficulties apart from irggy somewhat more
complicated notations). Let us assume that we have avaitRlesz basig/* =
{L[J/‘\% A € 0} for 27, meaning that thanalysis operator

Ty X' — g0 [0 )aens

is boundedly invertible. By identifying, with its dual, its adjoint%#’,-, known as
the synthesis operatoand defined by(.#',-c) = (F2°0,C)¢,xr, (G € 27, C € £2),
reads as ’ ’
Flyila— 2 ic—cW =5 gy
Aeld

Similarly, letW?” = {7 : A € O} be a Riesz basis fo#, with analysis operator
Fy and adjoint),. For both* and¥?, we have suitablevaveletbases in
mind. Note that w.l.0.g. we could assume that the indexCsistthe same fol/?
andw?” .

Now given anf € %, and a boundedly invertible € £ (2°,%"), we are inter-
ested in solving thénear operator equatiomnf findingu € 2" such that

Bu= f.

Writing u = s»-u, and applyingZs to both sides of the equation, we infer that the
problem can equivalently be written as the bi-infinite mawector problem

Bu=f, (7)
wheref := .7y f = [f(¢)])cn € L2, and the'stiffness” or system matrix
B:=ZyBF) = [(BY )WY )] uen € L (L2, o)
is boundedly invertible. With-,-) 1= (-, )¢, x¢,, for anyv, w € ¢,
(BV,W) = (FyBF),v,w) = (BV)(w), ®)

wherev =%/, .v andw = .7, w.
With the Riesz constants

|- 729l

Npz =T o |l o1p, = SUp ——2,
0£ge 2" ”g 2

1729l

. -1-1
Awr i =IF2) o = 08, 9T,
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andAy andAy defined analogously, and with || := || - ||¢,—.¢,, Obviously it holds
that
1Bl < IBll2— 27 Apr A, (9)
1B7Y < M (10)
T Apz Ay

Remark 2 Although not strictly necessary for the remainder of thipgrawe make
a few comments aboudlual basesThe collection

W = (Fy Fa) W

is the Riesz basis fo2”’ that is dual to#¥” . Indeed, since the correspond'i/ng anal-
ysis operator¥ 4 reads as{jgg)*l, it is boundedly invertible, and s&“ " is a
Riesz basis for2”'. It holds that#/,,.% - = |, which, since¥”” is a basis, implies
thaty;” (wf) = , ,

Givenad c 0,Qq: 2 — 2 :vi= 3, 5@ (Vg is thebiorthogonal pro-
jectoronto spafiyy” : A € 0}, i.e, Q4 = Qy and @y vanishes on Irfld — Qz)
forall A € (0. We havel|Qs|| 2 2~ < Ay /Ay, and so

V—QrVl|2 < (1+Ayz /Ay inf _ |lv—w
| AVl (L4 Agz /Ay )wespar{w;l:/\eu}H

The dual projecto); : 2/ — 27, that reads aQ’(9) = ¥, 7 oy, has
analogous properties.

If we identify 27 with 2" using the Riesz map, then if, using this identifica-
tion, ¥ and¥?" are equal, the, being equal to its adjoint, is the orthogonal
projector onto spafy;” : A € (1}

Obviously, similar observations can be made for the cabest¥” and its dual
w?'

2.2 Some model examples

We give some examples of partial differential equationsigdar integral equa-
tions that are of the forBu= f with B € £(2",%") boundedly invertible. More
examples can be found in [CDD02, DKO05].

2.2.1 Second order elliptic boundary value problems

The variational formulation of a second order elliptic bdary value problem on a
domainQ c R" with homogeneous Dirichlet boundary conditions readBas f,
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where
(Bu)(v) ::/ AOu-0Ov+ (b-Ou)v+ cuvdx
Q

If A€ Lo(Q)™M beLu(Q), c€ELe(Q),c>0(ae), J-b=0 (a.e) and, for
somed > 0,A > > 0 (a.e), then(Bv)(v) > 5|V|ﬁ1<9> > ||v|\a1<Q> (ve H}(Q)),
i.e., B is coercive The Lax-Milgram lemma now shows that with™ := H}(Q),
B: 2" — 2" is boundedly invertible.

Remark 31f dQ < C? or Q is convex, and the coefficients of the differential oper-
ator satisfy some mild smoothness conditions, tBemi?(Q) NH(Q) — L2(Q)

is boundedly invertible, e.g., see [Hac92] + reference=dcibere. Since the same
is valid for the adjointB’, defined by(B'v)(u) = (Bu)(v), we also have thaB :
L2(Q) — (H2(Q)NHE(Q))" is boundedly invertible. In view of the possibility to
take 2" # %, we infer that the adaptive wavelet method can be used alsatze
the best possible convergence rat&0Q).

2.2.2 Boundary integral equations

For Q being some domain i3, let " := dQ. The Laplace equation of2 or on
R3\ Q, with either Dirichlet or Neumann boundary conditions carréformulated
as a boundary integral equation of ty() (v) := [ Lux)v(x)ds,= f(v) (ve Z),
where either

._ u(y) S

Lu(x) ._/I_4nlx_y|dsy, 2 =H3(), (11)

or
W\ T

Lu(x) ::i%u(x)—k/l_ %ds},, 2 =Ly(r), (12)

or
)’ 1
Lu(x) = —anx/r%ds,, 2 —H (/R (13)

In all three caseB : 2" — 2" is known to be boundedly invertible.

2.2.3 Stokes equations

The variational formulation of the Stokes equations on aaiarf? C R" with ho-
mogeneous Dirichlet boundary conditions reads as

(B(T, p))(¥,q) ::/ DU:DVdX+/ pdidex+/ qdividx= (V)
Q Q Q
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(Ve HYH Q)" g € Lao(Q)). With 27 := H3(Q)" x Loo(Q), it is well-known that
B: 2 — 2" is boundedly invertible.

2.2.4 Parabolic evolution equations

For some domai® ¢ R" andT > 0, we consider the parabolic problem

ut,x) =0 (t€(0,T),x€dQ),

(du+Ox-AOxu+b-Oxu+cu)(t,x) = g(t,x) (t€(0,T),xe Q),
{ u(0,x) = h(x) (xe Q),

whereA € Lo((0,T) x Q)™M b € Loo((0,T) x Q)", c € Lu((0,T) x Q), and, for
somed > 0,A > 0 > 0 (a.e.). With

2 =10, T)@H3(Q)NHYO,T) o H 1(Q)
i.e., 2 is an intersection of Bochner spaces, and
% = (L2(0,T) ©H(Q)) x L2(Q),

and assuming thate L,((0,T);H3(Q))" andh € Lo(Q), a variational formulation
of this problem reads as: Finde 2" such that

T
(Bu)(v1,V2) ::/ /(dtu)v1+ADxu-val+(b-Dxu)v1+cuv1dxdt+/ u(0, - )vodx
0 Q Q

T
:/ /gvldxdt+/ hwdx  ((vi,v2) € #).
0 Ja 0

The operatoB : 2" — %" is boundedly invertible (cf. [SS09], [DL92, Ch.XVIII,
§3], [Wl082, Ch.IV§26]).

3 Adaptive wavelet schemes I: Inexact Richardson iteration
([CDDO02])

3.1 Richardson iteration

Throughout this section, until Sect. 3.4, we vdsumehat there exists aon € R
such that
lld—aB|| < 1, (14)

i.e., we will assume that a properly damped Richardsontitara

u(i+l> — u(i> + a(f _ Bu('))
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applied to (7) converges linearly.

Lemma 3. In addition to being boundedly invertible, BtsatisfyB =B ' > 0. Then
for o € (0,2/]|B]]),

lid - aB|| = max(a||B| -~ L,1—alB~*| %) < 1,

with minimumfgj whena = 2/(||B||+[B~%|71), wherek (B) := ||BJ|||[B~2|.
Proof. SinceB=B", ||Id— aB|| = MaX co(ild—aB) |A | = MaX,cq(p) |1 — apl, and
from B > 0, we haved(B) c [||[B~1||7%,||B||]. Elementary calculations now com-
plete the proof. a

If, apart from being boundedly invertible betweeti and %, B is symmet-
ric, i.e., 2" = % and (Bv)(w) = (Bw)(v) (v,w € £27), and positive definitgi.e.,
(Bv)(v) > 0 (ve Z), then, because of (8), soBsand Lemma 3 applies. The ex-
ample from Sect.2.2.1 whdn= 0, as well as the example from Sect. 2.2.2 in the
cases (11) and (13) fall into this category.

If 2" =% andBis bounded andoercivei.e., for somed > 0, (Bv)(v) > 5||v||%-
(ve 27), then (8) and the next lemma show that the properly dampeldaRison
iteration is again convergent. An application is given by¢ilxample from Sect.2.2.1
for generab € L,(Q)" with J-b =0 (a.e).

Lemma 4.1f, in addition to B being boundedBs := %(B+ B') > 0and has a
bounded inverse, then far € (0,1/(||Bg|| + [|Bg*(| )] with a < 2/(||Bs*||B])),

lid - aBJ| < /1 2a||Bg| 2+ a?[B||? < 1.

Proof. As shown in Lemma 3, foo € (0,1/(||Bg|| + HBng‘l)], Illd —2aBg|| <
1—2a||Bg*|~*. This shows that

1d - aB||?=[|(1d—aB)(ld—aB")||
=|[ld—2aBs+a’BB" | < 1-2a|Bg*|*+a?|B|?< 1,

whena < 2/(]|Bg*[|BI})-

3.2 Practical scheme

Of course the Richardson iteration cannot performed exaGtnerally the right-
hand sidd is infinitely supported, and althoudhis close to being sparse, generally
so is any column oB. The idea proposed in [CDDO02] is to apply Richardson it-
eration with inexact evaluations of the matrix-vector prodand of the right-hand
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sidef. It is easily seen that with a proper decay of the tolerancethiese inexact
evaluations as the iteration proceeds, the perturbedidgars still linearly conver-
gent. The issues at stake are whether the support lengthe @étands are, up to a
constant multiple, equal to the generally best possiblentiswn the lengths of the
bestN-term approximations that give rise to the same error, anethdr the com-
putational costs to produce such iterands are bounded tsathe expressions. To
ensure these properties, i.e., to ensure (quapitinality of the algorithm, assump-
tions are needed on the cost of the inexact applicatid® afd that of the inexact
evaluation of the right-hand side as a function of the pibsdrtolerance.

Definition 1. Fors> 0, B will be called to bes-admissiblavhen we have available
an approximate matrix times vector routine

APPLY [w, €] — z¢
that, for anye > 0 andw € ¢y, yields az; € ¢ with
IBw—z| <&,

and, for anys € (0,9,
fsuppee < & V/%|wi| 7z, (15)

where the number of operations used by the ARIPLY [w, ] is bounded by some
absolute multiple of

8*1/S||w||ié§+#supp/v+ 1. (16)

As we will see, in order to guarantee optimality of the ineéXaichardson iter-
ation, as well as of the alternative Adaptive Wavelet-GateMethod discussed in
Sect. 4, it will be needed thatot less than that for which the solutioru happens
to be inZ®. That is, with the best possible ratgax as introduced in Sect. 1.1,
will be sufficient, and generally necessamhen

S_Z s('I'I61X7 (17)

an issue that was somewhat ignored in the early publicaborsdaptive wavelet
methods. In Sect. 5, we will see that for partial differentiperators with suffi-
ciently smooth coefficients and for wavelets that are seffity smooth and have
sufficiently many vanishing moments (or, more generallpcedlation properties)
indeed (17) is valid. We include pointers to the literatuleeve it is shown that the
same holds for classes of singular integral operators,

In view of the definition of=’S, a consequence of (15) is that restricted td/,
is a bounded mapping fron¥® to «7° for s € (0,5]. As shown in [CDDO01, Prop.
3.8], we even have:

Proposition 1. LetB bes-admissible. Then fors (0,9, B: «/° — /% is bounded,
and forzg := APPLY [w, €], we have|zg || os < ||W|| s, uniformly ine.
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Proof. Forse (0,9, w € &75ande > 0, letN € N be such thaf{ B||||w —wn|| < &/2,
and letz, , := APPLY [wn, £/2]. Then #supp > < e*l/s||wN||ié§ < e*l/SHWHZ?,
and||Bw — z; || < €, showing the first statement.

Lemma 1 and (15) show thiize||.;s < max(||Bw||/s, W) < [Wls. O

The requirement (16) basically means that the cost of pliadug is propor-
tional to its length plus that of.

Concerning the inexact evaluation of the right-hand sildeughout this paper
we assume availability of the following routine:

RHS[g] — f¢ :
% Input: € > 0.
% Output:fs € £o with

[f—fe]| <& and #supde <min{N:|f—fn| <&},

% taking a number of operations that is bounded by some atesplultiple of
% #supie + 1.

A realization ofRHS generally has to depend on the right-hand dide hand,
that, however, in contrast to the solutianis known to the user. Noting that for
ocg,

=t =0t St o= inf  f =
el fespar{yy A <0}

(cf. Remark 2), we see that for sufficiently smodt{tRHS is realized by collecting,
or more precisely, by approximating using suitable quadeatthe wavelet coeffi-
cients off up to some suitable level.

Corollary 1. Let B be s-admissible. If, for some s (0,5, u € <5, thenf, =

RHS[¢] satisfies#tsupde < s‘l/SHuHiﬁ, where the number of operations used by

the callRHS[¢] is bounded by some absolute multiple of
e Y3u) s+ 1.

Proof. By the assumptions and Proposition 1, we Hawer's, with ||f|| os < ||u]] ozs.
Now the proof is completed by the definition of° and the assumptions made on
RHS. O

Remark 4Recalling thatsmay is the approximation order 6¢Z in 2", let $nax
denote the approximation order¢f’ in '

The property, shown in Corollary 1, that for anye .»7° with s < s, it holds
thatf € «/5 can only be expected whesyax > mMin(s,Smax). This means thas-
admissibility of B with S>> syax requires thanax > Smax

In the scalar model situation o = # = H™(Q) for some domaim2 C R",
and¥?, w*" being wavelet collections of ordet, d, normalized inH™(Q) or

(HM(Q)), respectively, it holds thamax = 9™ and spax = ¢, In this case,
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Smax > Smax Mmeans thad >d —2m. For differential- and integral operators, in Sect. 5
we will see that the conditiod > d — 2m suffices to demonstrateadmissibility of
B for s> Spax

Remark 5The properties thafif — f¢|| < € and, whenu € &5, that #supp; <
e‘l/SHquﬁ, with the cost of producing it being bounded by some absalutkiple

of s‘l/SHuHZinL 1 is all that will be needed aboty := RHS[¢]. Our assumptions
on RHS together with Corollary 1 show that these properties holém is s
admissible for some > snax. The assumption, formulated in the description of the
RHS routine, that we can realize quasi-b&sterm approximations fof in linear
complexity is actually stronger than what is needed wheR > Smax-

BesidesAPPLY andRHS, the inexact Richardson iteration requires another sub-
routine:

COARSE[w, ] — Wg:
% Input:w € ¢p ande > 0.
% Output:wg € £g with

[w—we|| <& and #suppwe <min{N: [w—wy]| < €}, (18)
% taking a number of operations that is bounded by an absohutigple of

#suppw + max(log(e~*||w]), 1).

An implementation of a routin€OARSE with these properties will be given in
Sect. 3.3.

The routineCOARSE will be applied after each fixed number of (inexact)
Richardson steps. The idea is to remove small coefficienta the iterands, that,
because they are small, little contribute to the approxnabut, because their pos-
sibly large number, may hamper an optimal balance betwesiracy and support
length. Although obviously an application GIOARSE generally increases the er-
ror, the following proposition ([Coh03, Th. 4.9.1]) shovwst indeed it creates the
aforementioned optimal balance.

Proposition 2. Let{ > 1 and s> 0. Then for anye > 0, v € «° andw € ¢y with
[v—w| <e,
for w;, := COARSE[( ¢,w] we have that

_ 1
#suppze < e IV TS Iweells S VI,

and|lv—wg|| < (1+)e.
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Proof. The smallesN € Nowith ||v—vy|| < ({ —1)¢ satisfies\ < (({ — 1))~ Y/s|jv||"S.
From|jw—vn|| < [[w—V| +|lv—vn|] < €+ ({ —1)e = (¢ and (18), it follows that
fsuppuze SN S e Y5V 2.

The second and last statement follow from Lemma 1 and ancatiglh of the
triangle inequality, respectively. O

We are ready to give the inexact Richardson iteration:

Richle, &] — ug :
% Input:e > 0andg > ||ull.
% Parametersf < 1/2, K € N andp < 1 such thaf|ld — aB|| < p and2pX < 6.

i:=0,u®:=0
whil e g >¢edo
i=i+1
&:=2p%g 1/0
V(-0 — (1)
for j=1,...,Kdo
VD) 1= V5= | g (RHS[BE4] — APPLY [v(ii-1), 2817
enddo
u® := COARSE[(1— 8)g, V(K]
enddo
ug :=u®

Theorem 1 ([CDDO02)). Let & > ||u||, and e > O, thenu, := Rich[e, &) satisfies

|u—ug|| < &. If for some s> 0, u € &S, then#suppe < e~ Y/S|ul| ™2, If, addition-
ally, B is s-admissible, s s ande < & < ||lu|, then the number of operations used

by the callRich[e, &) is bounded by an absolute multipleznfl/3||u||1/S In other
words, ifS> snax then the inexact Richardson iteration is (quasi-) optimal

Proof. For the first statement, it suffices to show that—u )|| < &. Fori =0, this
is clearly valid. Now for somé > 1, let |[u — Y| < g_1. For 1< j <K, for

somed; with ||5;|| < 281, we have
u—vih) = (1d—aB)(u—vH-Y) 1 g,
and so
. K
u—vik = (1d—aB)¥(u—u Z (Id— aB)K- ;.
From||ld — aBJ| < p, we infer that

ol
K*J% :Zngi—l: Osi, (19)

) K
lu—vE| < pfe 1+ 3 p
=1
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and conclude that

Ju—ul <68+ (1-0)s ==

as required. _

Now for somes > 0, letu € .7S. From (19) and the definition af!), Proposi-
tion 2 shows that

. 1 1 .
#suppi®) < & oulE, uO]s < Julls,

which bounds, as we emphasize here, hold uniformiy 8inceg; 2 &_1, the first
bound shows the second statement of the theorem.

Now let B is s-admissible for somes > s. SinceK is fixed, Proposition 1
shows that||v())|| s < ||u]|s, uniformly ini and j. The properties from Defi-

nition 1, together with Corollary 1 show that #supp) < efl/SHquﬁ and that

the cost of computing it from the previous iterand is bounbg@n absolute mul-

tiple of & /%||u[|"/S. For the latter, we have used that by assumptiorEgr <
-1/s
g Slu Yo < g

~1/9|u|| 8. since the cost of the caBOARSE[(1— 0)&, V()] is
bounded by an absolute multiple of #swdi) + max(log(((1— 6)&)~1||v(K)|, 1)

< si’l/SHquﬁ, the proof is completed by using the linear decreasg a$ function
of i. O

Remark 6 Although for anys € (0,9, APPLY [, €] : &/ — 7% is bounded, even
uniformly in g, there is no guarantee that by a repeated applicatiorj| thg,s
(quasi-) norm of the iterands does not grow beyond any bolimd.was the reason
to add coarsening to this inexact Richardson iteration. &hizal experiments have
shown that indeed generalBOARSE is needed to ensure optimality of the inexact
Richardson iteration.

3.3 The routinesCOARSE and APPLY

The obvious implementation @OARSE[w, ] — w, would be to order the ele-
ments ofw by non-increasing modulus, and then to defineas the smallest pos-
sible head ofw such that the discarded tail has norm not larger thabnfortu-
nately, withM := #suppw, this ordering requireg’(MlogM) operations, so that
linear complexity cannot be realized. This is the reasohithfCDD01, CDDO02]
on many places the suboptimal complexity of the sorting ve&er into account
separately. Later, this problem was solved independegtBdrinka and Metselaar
in [Bar05, Met02], who proposed to apply an approximate Kattsorting:

BUCKETSORT [w, €] — (W[p))1<p<p
% Input:w € £g, € > 0.
% Output: A distribution of the (largest) elementsmbver P “buckets”.
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e Let P be the smallest positive integer wath"/2||w||.,/#SUppW < €.
e Store the indices ok in one of the P buckets, depending on the modulus of the
corresponding coefficient to beﬂﬂ\% [[W]les, [|W]|eo] (first bucket)(3 [|w]eo, \% (W] [eo],

cot, 01 (27P/2||W||o, 2~ (P~D/2|| ]| ], and discard them otherwise.
Letw|, denote the restriction of to indices in bucket p.

The number of bucke®is max 1, [2log, (|||~ v#suppn/€)]). This numberis
chosen so thdtw — zﬁzlw[p} | < &. This means that for the task of finding a (quasi)
minimal A such that|jw — w/|, || < €, these coefficients can be discarded anyway.
This suggest the following coarsening routine:

COARSE[w, &] — W :
% Input:w € £g, € > 0.

(Wig)1<p<p := BUCKETSORT [w, €]

Build w, by extracting indices from the buckets, starting with thet fiucket and
when it got empty continuing with the second one and so onwégthth each
bucket in arbitrary order, unti|jw —wg|| < €.

Note that for smalk, the number of buckets can be larger than #supflthough
then necessarily some buckets are empty, the computatiosbf the call cannot
be bounded on some absolute multiple of #subone. This cost, however, can be
bounded on some absolute multiple of #suppus the number of buckets. Further,
since squared coefficients within one bucket differ at mdattor 2, #suppy; is at
most twice as large as the length of the shortest approxamgdiv within tolerance
€. We conclude that the above implementation realizes appgnttes of COARSE
that were mentioned in its description in the previous secif necessary, consult
[GHSO07, Remark 2.3]).

To define a validAPPLY routine, we have to assume thacan be sufficiently
well approximated by computable sparse matrices. We vélia to have available
sequences;)jeny; (Cj)jeny C R, (BW)jen, C Z(£2,42), such that

e |B-BU|| <egj,limj_.e =0,

e the number of non-zeros in each columrB4f, as well as the number of opera-
tions needed to compute them, is boundedjpy

e B® =0 (and thug/B|| < ep), co = 0 and sup.y, Cj+1/¢j < .

So the fastee; decays as function dfj, the closer isB to a computable sparse
matrix. This motivates the following definition:

Definition 2. Fors* > 0, B will be called to bes*-computablevhen for anys < s*,
sup €jcj < .

By specifying an approximate matrix-vector multiplicatimutineAPPLY , next
we will show that ars*-computable matriB is Ssadmissible for ang < s*.

In the APPLY routine proposed in [DSS08] and recalled below, for séhseif-
ficiently largew is split into Z[P):lw[p} plus its tailw — ZS:lW[p]1 after which for



18 Rob Stevenson

1< p < P, Bw is approximated bya{r)w,, where (usually), grows with de-
creasingp. On the tailw — ZE:lW[p]: and possibly also on some; with p close to
P, B is simply approximated by the zero operator. So the baseig® approximate
columns ofB that correspond to large entries in the input vegtanore accurately
that those that correspond to entries that are small. ThenmthatAPPLY is an
adaptive routine, which depends non-linearly on the imput

A difference with the corresponding original routine prepd in [CDDO01] is that
instead of the splitting ofv into buckets, each of them containing all entrieswof
with modulus in a certain range, thenewas chopped into parts with prescribed
lengths. Secondly, and more importantly, instead of takingn [CDDO01] an a pri-
ori distribution of the accuracies of the approximation8adver the parts, which
distribution was chosen to yield an error below the presttitolerance in a worst
case scenario, to enhance its quantitative performaneeuttient implementation
is based on a minimization of the cost for yielding an errdowehe tolerance using
a posteriori information.

APPLY [w, €] — z¢ :
% Input:w € /g ande > 0.

1. [(Wyp)p] := BUCKETSORT [w, £/ (2e)]

2. Compute the smalleét= Ny with
¢
0 = ep|w— z wip |l < &/2.
p=1

3. Determing € Ng such thaty, ;g [lw,[| <e—dandg, S, (p=1.....0),
wherej € N{ is the solution of

~

0
G;, #SUPPNV[p — minl, pZlejvpllw[p]H <eg-3o. (20)

1

p

4. Compute

14
Ze = z B“P)W[p].
p=1

In practice, the cost of solving the exact solution (ije.:,j~) of the small opti-
mization problem in 3 is neglectable. By using tiiat ¢'(|logg|) (see the proof
of Theorem 2) below), and by deriving some a priori boundd|jd&, we expect it
to be possible to prove that these cost are indeed alwaysaiagle compared to
the other cost of the algorithm. Instead of doing so, howevershow how to find
analytically a near optimum in 2 common situations: If fomeoconstant€ andD,
cj =C2//s andej = D27, so thatB is s*-computable, then
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« 1 s
P _log ( [Wigl )5571 S a1 [Wig || 5T (#suppwiq ) 55
P 2\ \#tsuppw (e—0)/D
is the solution of (20) when minimization is performed o If for some con-
stantsC, D andw > 0,¢; =Cj/w ande; = D27/, so thatB is evenc-computable,
then

Wi ¥ g1 #suppg )
#suppvp (€ —9)/D

is the solution of (20) when minimization is performed o#®ér Assuming thesép
are non-negative, by rounding them up to the nearest valig one obtains a valid

].

Theorem 2. z := APPLY |w, ¢] satisfie§|Bw — z¢|| < €. If B is s"-computable, then
for any s< s,

j~p:|092(

#suppe < £ Y/S w1, (21)
where the number of operations required by the call is bodriglesome absolute
multiple of

£ 1/3||\w[ Y2+ #suppy + 1. (22)

In other wordsB is s-admissible for ang < s*.

Proof. The estimate§B||||w— ¥, wy|| < dandy |, |B—BUP)|[|jwy| <e—5
show the first statement.

Letse (0,s") and selecs < 51 < 5 < S".

As we have seen, the cost of the AAIWCKETSORT [w, £/(2ep)] is bounded
by an absolute multiple of #suppplus the number of buckets, the latter being not
larger than mail, [21og, (||w||«+/#suppv/(e/(2€p))]), so that the cost of the call
is bounded by an absolute multiple of #supp 1+ e*l/SHWHZ?.

With 7 := (3 +9)7%, Lemma 2 shows that

#suppnyy) < #{A € 0wy | > 2772wl } < 2P72)|w ST |w| Es,

so that

- - . 2
Wi | S 2 /21wl ftistpRIGy S 2 P2 w02 w7

The proof will be completed once we have shown that therdss@snej € Nj
. _ 1
with zézlqpﬂw[p} | <e—dandyl, ;G #supmwy < € Ys|\w||"2. Fore = 0 there
is nothing to prove, so we assume that 0.
First, we derive an upper bound fbdetermined in step 2 &APPLY . By defini-
tion of ¢, we have

-1 ©
g/2<ellw—Y wyll=eo, |3 w2 < €02~/ |wilE 2w 2,
p=1 p=¢
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or
272 ||| ST e S Y8 w 2. (23)

~

Note that here we used the notatiopy also to denote the restriction wfto indices
in buckets beyond those that were generated by th8tBIKETSORT [w, £/ (2&p)].
Next, letd > ¢ be defined as the smallest integer such that

l
2127<J7p)slr/2||w[p]|\ <e-Jd. (24)
p:

In case thafl > ¢, froms; > swe have
¢
g/2<e-6<y 7
p=1

¢
<y 2—(3—1—p)51T/22—pSf/ZHan-O_T/ZHwHZE
p=1 |
synthesisg 2~ (- 1-0suT/2-05T/2 )y L-T/2) vy /2

< 27 O=DST2 )| L-1/2 w72,

or
22wl Tl e S €S w 5. (25)
From (23) we see that the upper boundiagiven by (25) is also valid whed= /.
Now we selectj, as to be the smallest integer such tegt< 2-(-Ps17/2,
Then (24) shows that indeezif,zlqpﬂw[p]n < & —d. Because of sqpssjcj$2 < o
and supcj.1/cj < e, we havegj, < ¢, 1 < q;l_/lsz < 20-P(1/%2)(T/2) From (25),
we conclude that

~

L
Cj p#SUPIW Z 20 P IT/22PT2 | T [ w]| s

p=1 p=1
<20 E /R | T jw | s
< 272w W e S Vw5,
which completes the proof. a

3.4 Non-coerciveB

If B is non-coercive, then the Richardson iteration may not eag®, and so the
inexact Richardson iteration does not apply. A generaliegiple remedy is to apply
the inexact Richardson iteration to thermal equations
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B'Bu=B'f.

Clearly,B' B is symmetric, positive definite, and boundedly invertiblem|B ' B|| =
|B||? and||(B"B)~!|| = ||IB~Y||%. In order to conclude that the inexact Richardson
iteration applied to the normal equations is (quasi-) optjiwhat is left to show is
that for somes™> snax, B' B is Sadmissible, and that we have a valid routine for
approximating the right-hand si@' f in the sense of Remark 5. Proposition 3 from
[CDDO02, Sect. 7] given below shows that both conditions atflled whenB and

B ares-admissible for some> smax.

Concerning the latter, from Theorem 2, recall tBais s-admissible for some
S> Smax When it iss*-computable for some* > symax. The results demonstrating
s"-computability ofB, that will be given in Sect. 5, are symmetric in the sense that
they also shove*-computability ofB " for the same value of.

Proposition 3. (a). If BandB' are s-admissible, then so B' B. With theAPPLY
routines forB andB" denoted aAPPLY g and APPLY gr, respectively, and with
o being an upper bound fdiB||, a valid APPLY for B B is given by

[W, €] — z¢ := APPLY 57 [APPLY g[W, £/(2&p)],€/2].

(b). For € > 0, g¢ := APPLY g7 [RHS[¢/(269)], €/2] satisfies||B'f — g¢|| < .
If BandB' are s-admissible, then whenever for some @,], u € /5, it holds

that#supme < 5‘1/S||u||ié§, with the cost of producing it being bounded by some

absolute multiple of~/5/|u[| %/ + 1.
Proof. (a).
IB"Bw—z¢[| <|[B (Bw—APPLY g[w,&/(2€0)])[| +&/2 < ||B|e/(2e0) +€/2< €.

Let se (0,§. Puttingte := APPLY g[w, £/(2ep)], from B beings-admissible, we

know that #supp: < 8_1/S||W||ié§, and that the cost of producing it is bounded

by some absolute multiple arl/s|\w|\ié§+#supp/v+ 1. Moreover, Proposition 1

shows thaf|te|| ors < ||W]| o5, uniformly in € (and inw).

FromB beings-admissible, we know that #supp< £~ /5|[te ||/ < £~ 2/5[|w]| /2,
and that the cost of producing it fromg is bounded by a constant multiple of
£ 1/9||te || M3 + #suppte + 1 < e Y/5|w|| %2+ 1. We conclude that indeeB" B is
s-admissible.

The proof of (b) is similar to that of (a). O

3.5 Alternatives for the Richardson iteration

As already appears from Lemma 3, the quantitative perfoomahnthe approximate
Richardson scheme will depend on the spectral conditionbenmmf the matrix be-
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ing inverted. In this respect, the approach, for non-ceer8j of applying the in-
exact Richardson iteration to the normal equations, whighsgrise to a squared
condition number, might not always be the best possiblecehoi

For (symmetric) saddle point problems, as the Stokes eangafiom Sect. 2.2.3,
as alternatives, in [CDDO02] it was proposed to apply theaweRichardson iteration
to the reformulation introduced in [BP88] of the saddle pgiroblem as a symmet-
ric positive definite system, or to the Schur complementesysiif necessary after
first switching to the augmented Lagrangian formulation)tHe latter case, each
iteration requires the application of the Schur complenopetrator, and so in par-
ticular, the solution of an elliptic system. Necessarihgde systems can only be
solved approximately, in which case the resulting schemengvn as the inex-
act Uzawa iteration. With the inner elliptic problems beswved with an adaptive
wavelet method, (quasi-) optimality of the overall schemthe sense of Theorem 1
was demonstrated in [DDU02].

Also in cases where the Richardson scheme applies dired8y = f, one may
think of applying a more advanced iterative method. For syinim and positive
definite B, in [CUO5, DFR"07b] it was shown that an approximéafteepest De-
scentmethod, with appropriate tolerances for the inexact mategtor and right-
hand side evaluations, is (quasi-) optimal. Since the asyticronvergence rate of
the optimally damped Richardson iteration is equal to tlidhe Steepest Descent
method, the main advantage of the latter scheme lies in ttéHfat it frees the user
of the task of providing accurate estimates of the extrengalinalues oB.

For B being only coercive, instead of the Steepest Descent mgtiheilinimal
Residuaimethod (see e.g. [Saa03]) might be applied. We envisagégbasi-) op-
timality of an approximate Minimal Residual method can beven along the same
lines as for the Steepest Descent method. SincB foging only coercive it is even
less obvious how to choose the damping parameter in the Rishia scheme, the
advantage of the approximate Minimal Residual method &\ikven bigger.

Even more advanced schemes than the Steepest Descent anadliRésidual
method aré&rylov subspacenethods, like the Conjugate Gradient method for sym-
metric positive definite systems. Clearly, in the infinitendnsional setting, these
schemes can only be applied with inexact evaluations oféliluals. Numerical
results are reported in [BK08]. With a suitable choice of thkerances for these
inexact evaluations, the approximate Conjugate Gradiezthod has been shown
to converge ([vS04]). Yet, as far as we know, in the infiniteensional setting it
has not been proven that there exists a choice of the tolesauch that the result-
ing scheme is not only convergent but also (quasi-) optildkeed, recall that the
tolerances determine the support lengths of the iterande e immediately after
coarsening), and with that the cost of the algorithm. So @wof this observation,
it is not necessarily true that a faster converging iterafives rise, when applied
approximately, to a quantitatively better performing atlegpwavelet scheme.

In the next section, we will study the Adaptive Wavelet-Glale Method pro-
posed in [CDDO01] and later modified in [GHS07]. As we will saalike the meth-
ods we discussed so far, this scheme rarbe viewed as an inexact evaluation of
some convergent iterative scheme applied to the bi-infimdérix vector problem.
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4 Adaptive wavelet schemes Il: The Adaptive Wavelet-Galeria
Method ([CDDO01, GHSO07])

Throughout this section we will assume tligats symmetric and positive definite,
i.e.,B=B" >0.0n/(0), we define

-1l := (B-,-) 2.

Remark 71f B is not symmetric and positive definite, then the scheme ptede
here can be applied to the normal equatiBn®u = B'f, meaning that in the fol-
lowing everywherd should be read é8" B andf asB ' f.

ForanyA C O, with £2(A) we will mean the subspace v ¢>(0) with supports
in A. The trivial embedding of,(A) into ¢2(0) will be denoted byl 5, and its
adjoint with respect td-,-), i.e., the operator that replaces coefficients outsidsy
zeros, will be denoted big, . We set

Ba :=PaBlA.
Using thatB is symmetric and positive definite, one verifies that for Ang [J,

11 1

IBAMIZZ(- 1< (-1 < [Ball2]l <[] onta(A),
11 1

IBAMIZI- Il <IBa - <BAIZIlI- I onta(A),

as well ag|Bx || < ||B]| and||B;1|| < ||IB71||, which properties will be used often in
the following.

4.1 The Adaptive Wavelet-Galerkin Method (AWGM) in a idesdd
setting

The solutionup € ¢2(A) of Byup = Paf is known as théalerkin approximation
to u from ¢2(A). With respect td|| - ||, it is the best approximation to from this
subspace.

The idea of the AWGM is to loop over the following 2 steps: Givé C 0,
compute the Galerkin approximatian, . EnlargeA to a setA C O such that for
some constan < 1, ||u—ug||| < p||u—unl|. This loop is similar to the one that
underlies the Adaptive Finite Element Method (AFEM), whitieeenlargement of
corresponds to mesh-refinement. The AFEM is discussed by&hétto in another
chapter of this book.

In the AFEM, a refinement that guarantees error reductiofiained by com-
puting an a posteriori error estimator, being the squareafibie sum of local error
indicators associated to the elements, and by refining thleseents that carry the
largest error indicators and whose joint sum can be bounded helow on a con-



24 Rob Stevenson

stant multiple of the total squared a posteriori error eston(this is known as the
so-calledbulk criterion). The AWGM works according to the same principle, with
the role of the a posteriori error estimator being playedHh®y residuaf — Buy,
where for the moment we ignore the fact that this residuahotibe computed ex-
actly.

The nextlemma, being [CDDO01, Lemma4.1], shows convergefibe AWGM.
Although in this lemmav can be a general function (A ), we have in mind it to
be (an approximation to) the Galerkin approximatipn

Lemma 5. Letu € (0,1], w € £»(A) andA C A ¢ O such that

[IPA(f—Bw)|| = pl|f —Bw]. (26)

Then, foruj; € />(A) being the solution 0Bj;uj; = P;f, we have

1
2

llu—uzlll < [1— K2k (B) ] 2[[lu—wl].

Proof. We have
_1 1
llui —wil = [IB[|"2[B(uz —w)|l = [IB[|~2[|P7 (f — Bw)]|
1 1
> [[B]| 72 pf[f —Bw|| = pk(B) 2 [Ju —w]|.
The proof of is completed by using the Galerkin orthogogalit
Jlu—wlZ = flju = uz]l*+[luz —wi|. 0

In Lemma 5A is some enlargement gf such that the bulk criterion (26) is sat-
isfied. The natural approach is to constrddby gathering the indices of tHargest
elements in modulus of the residual. In [CDDO01], the coroesfing practical algo-
rithm —i.e., with the inexact solution of the arising Galerkystems and the inexact
evaluation of the residuals using tA®PLY andRHS routines— was shown to be
(quasi-) optimal by the addition of a recurrent applicattrfCOARSE, similar to
the inexact Richardson iteration from Sect. 3.

In the next lemma, being [GHS07, Lemma 2.1], it is shown thiagémyu is taken
to be sufficiently small, then the cardinality of the expangl \ /A can be controlled.
This lemma will be the key to show that the algorithm from [CQI) without a
recurrent coarsening of the iterands is already (quasiinab (coarsening will still
be used to find the large entries from the approximate relsiglater, basically the
same technigue was used to show that the standard adapiteesfement method,
so without coarsening, is (quasi-) optimal, see [Ste07].

Lemma 6. If, in the situation of Lemma 3y < K(B)*% andA D A is thesmallest
set satisfyind26), then

#AVA) < min{N: Jlu—u|| < [1— 12K (B)] 2 lu—w]|}. 27)
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Proof. For anN as in the right-hand side of (27), It := A (Jsuppun. Then, for
the solution ofB;u; = P;f, we have|ju —uj || < |[|u—un||, and so by Galerkin
orthogonality

1
Ui — W[ = pk(B)2 [ju—wif,

giving
a1
IP4 (f = Bw) || = [IBj; (uz —w)|| = [[B7H~2[Juz —wl|
a1 1
> (1B "2k (B)2 lu—w]| > pl|f — Bw].
By our assumption oA, we conclude that@A\A) < #A\A) < N. 0

Lemmas 5 and 6 suggest the following routine:

exact-AWGM: .
% Parametery € (0,k(B)2).

No:=0,up, =0,

fori=12...do
find the smallest\i 1 D Aj with [|Pa,,, (f — Bun,)|| > u|f —Bup,||
solveBa, ,Up ; = Pa,f

enddo

Proposition 4. For (uy, )i produced byexact-AWGM, we have
_1qi/2
llu—un Il < 1= 2k (B) Y] "?jull,
and if for some s> 0, u € <75, then
#supn, < [lu—up, | /Sul3

Proof. For 0< k <i, Lemma 5 shows thau — up ||| < p'¥||u — ux, ||| wherep :=
1
[1— p?k(B)~1] 2, which in particular shows the first statement.
Assuming that € «7°for somes> 0, witho :=[1— IJZK(B)]% , Lemma 6 shows
that
#AK\K-1) < MIn{N: [[lu—unll] < ofju—un_, I}
. 1
<min{N: [Ju—un|| < [|B]"20]lu—ua, I}
1 ~ 1
< [IB]|~2aju— un, I ¥Sull %3,

by |-l < ||B|\%|| -|| and the definition of} - || os.
By combining both estimates, foe N we have
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i i
#suppiy < #A; = 3 #HA\AK 1) < BV 0 Yl S (lu—una, )70
=1 K=

i
— 1 _ i—
< |[BIM %o YS||ulfSllu—up I 7YY (Y
k=1

—1/s

< K(B)l/ZS g

. 1
- 1_p1/sHu_u/\i—1H l/S”u”_gé; (28)

il
by |- | < [IB7I2]|- |- O

In view of the definition of</°, note that the bound on #supg derived in
Proposition 4 is, up to some constant multiple, the genetadist possible one.
That is, not taking into account the computational cost rthgineexact-AWGM
is (quasi-) optimal

4.2 Practical scheme

In this subsection, we turexact-AWGM into a practical scheme by

e computing residuals only approximately,

e allowing that for the enlargement 1 of A;, which satisfies the “bulk criterion”,
#(Ni+1\/) is only minimal up to some constant multiple,

e solving the arising Galerkin problems only approximately.

The following proposition extends Lemmas 5 and 6 to thisrsgtt

Proposition 5. Let d € (0,a), y > 0 be constants such that := %(‘55 < K(B)*%
andy < (l"ﬁi(g"”K(B)‘l. GivenA C Oandw € l3(A), letr € £2(0) be such that
[[f—Bw —r[| < 5] (29)
LetA c A c O be such that
IPAT || = af[r]] (30)

and such that, up to some absolute multigie) \A) is minimal among all suci.

LetWw € ¢>(/\) be an approximation ta; such that
IPAf = BAW[ < yrll. (31)

Then it holds thdt
llu—W|| < pllu—wl|, (32)

_5\2 _ 1
wherep = [1— (42)°k(B) 1 + &K(B)] 2 <1,and

1 Under the milder conditioly < %(a - 6)K(B)*%, a more complicated proof ((Gan06, Proposi-
tion 3.2.2] or [GHS07, Theorem 2.7]) shows (32) for another 1.
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A i . 2 3
#AA) S min{N: [[lu—un|| < [1—pk(B)]2[Ju—w]|}.

Proof. From||f —Bw|| < (1+9)|r||and||P;r| <[P (f—Bw)|| + &||r||, we have

|Ps(f—Bw)|| > (a—9)r| > %Hf— Bw||, so that Lemma 5 shows that

_ 141
flu—uzill < [1—(458)%k(B) 2 |Ju—w]|. (33)
We have
~ _ 1 ~ _ 1
llug — W[l < B2 [|P&f—Bx W[ < B 2yjr|
1,1 1
<|IB7H|2 25 If — Bw|| < £5K(B)Zu—w]|.

The last two displayed formulas together wjjth — |2 = [u — u %+ [Ju; —W||?
show (32). The condition opshows thap < 1.
LetA C A C O be the smallest set with

[PA(f—Bw)|| > u|f —Bw].
Then
pr| < pl[f = Bw|[+ ud|[r|| < [[P4(f—=Bw)|| + pd|lr[| < [[PAr |+ (1+p)d|r|]

or||Pir|| > (u— (14 u)d)[r|| = a|lr||. We conclude that
~ A . 1
HA\A) SHA\A) < min{N: [Ju—un]| < [1 - p2k(B)]2 [Ju —wl]},

where the last inequality follows from Lemma 6 using tpat K(B)*%. a

The selection of a\ as in (30) will be performed by a call of the following
routine.
EXPAND[A,r,a] — A :
% Input: A C O, #A < oo, 1 € fp, a € [0,1].

I := COARSE[r|o\a, V1-a?|r|]

N =AUsupp
Proposition 6. A := EXPANDIA,r,a] satisfiesA > A, ||P;r|| > a||r||, and

HA\A) S mIn{#A\A) : [[Psr || > allr]l, A C A c O},

The number of operations used by the &XPAND|A,r,a] is bounded by some
absolute multiple oftA + #supp + 1.

Proof. We have|r —Pjr|| = [[rima — ]l < v1—a?||r||, which is equivalent to
|Pir|l > allr||. The properties SEOARSE imply the statement about the work as
well as that
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#A\A) = #supg S min{#A 1A C O\A, [Ir|ova — Pa(rloa)ll < vV1—a?||r||}
=min{#A : A C O\A, |Pyoat]| > allrl},

which completes the proof. O

The arising Galerkin systems will be solved approximatsfythe application
of an iterative scheme. Since the (approximate) solutiothefprevious Galerkin
system will be used as the starting vector, a uniformly bedntumber of iterations
will suffice. Each iteration requires the applicationB). Although this matrix is
close to being sparse, generally its number of non-zerdgesrig not of the order of
#/\ . Therefore, the iterative scheme will be executed only axiprately. Below we
consider the simplest option of applying an inexact Rickarndteration.

GALERKIN [A,Wx,3,€] — wp
% Input: 8,& > 0, A C [, # < o0, Wy € lo(A) with [[PAf —Baw, || < 0.
% Parametersp, a, e € R, K € N such that|ld — aB|| < p < 1, 2pX < ¢/3,
% and||B|| < ep.

v(0 = w,

for i=1,...,K,do _ _

V) = -1 4 aPA (RHS[22-] — APPLY [v(-D), ,22.7)
enddo

wy = viK)

The following proposition is essentially [CDDO1, Prop.$6.7

Proposition 7. wy := GALERKIN [A,wpx, J, €] satisfies|Paf —Bawa || < €. Let
B bes-admissible, and for some=s(0, 5], u € «7°. Then the cost of the call can be
bounded on some absolute multiple of

N(8/€)(& /3 ullyz+ 8 /SWn [ +#A + 1),
wheren : (0,00) — [1,0) is some non-decreasing function.

. i5
Proof. For somedy, ..., € f2(A) with |G < ﬁ_eo’

K .
[PAf —BAVI) || = ||(1d — aBA )X (PAf—BAV(?) +B Z(Id —aBp)X g

1=
K [
p'o
<pKorey PRl <
P i;p Kep
(cf. proof of Theorem 1). The statement about the cost fallfram thes-admissibility

of B and the assumptions &HS, in particular (16), Corollary 1 and Proposition 1,
as well as from the fact th# < « depending o /€. O
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Remark 8 The above implementation @ALERKIN can be improved. Instead of
computingPARHS[n]| for a decreasing sequencerps, it is better to compute once
an approximatiomiy € £2(A) with |PAf—f4 || < n for the final accuracy (actually,
then an even less accurate approximation suffices). Funtiséead of approximat-
ing the application oB, by using theAPPLY routine and by afterwards restricting
the result to/\, obviously it is better not to compute any entry with indexside
A. Also with these improvements, the routine remains quatintély demanding be-
cause of the relatively expensive adaptive approximateixnatctor applications.

A more efficient Galerkin routine can be constructed usirdggect correction
principle. LetB, be afixedsparse matrix with/ld — B, BX1H < g/4. Existence of
such a matrix follows by assumirgy-computability ofB. Then

Wp = Wa + B, (Paf — BaWn)
satisfies
IPAf—=BaWA | = [|(Id—BAB, ) (PAf —BaWa )| < §5 =

By taking B, to be somewhat more accurate, say wjtd — BAB || < £/(25),
room is left to compute the initiadefectPAf — Bawa approximately, and to ap-
proximate the application cﬁxl. The first task requires single calls BHS and
APPLY, and for the second task a few iterations of a fast iteratie¢hod can be
applied, e.qg., the conjugate residual method. Details edoind in [GHSO07].

We are ready to formulate the practical AWGM. It works acdaogdo the prin-
ciples outlined in Proposition 5. The tasks (30) and (31yeadized by calls of the
routinesEXPAND and GALERKIN , respectively. The first task (29) amounts to
finding an approximation of the residual of the current iteravith arelative error
not larger thard. This will be implemented by initially approximating thissidual
with an absolutetolerance equal to some multiple of the norm of the previous
residual. If this tolerance turns out to be too large, in #rese that it is not less than
0 times the norm of the so computed residual, in an inner logghalved until the
criterion is met.

In view of obtaining a quantitatively efficient implementat, one would like to
choose thif) not too small, but sufficiently small such that “usually” omesidual
computation suffices. It can, however, never be excludedithaheer chance at an
early stage the (favourable) situation is encounteredtteaturrent iterandi’) is
equal or exceptionally close to the solutian Then the algorithm will continue
halving the tolerance until the norm of the computed rediglies tolerance is not
larger than the target, showing that the true residual is not larger trearSince
in this case there is no point in expanding the index set orpedimg the Galerkin
solution more accurately, this behaviour of the algoritsrdesired.

AWGM [8,8_1] — Ug :
% Input:g,e_1 > 0. )
% Parametersn, d,y, 6 such thatd € (0,a), ‘{T*g <K(B)"2,6 >0and

%ye (0, %K(B)*l).



30 Rob Stevenson

i:=0,ul):=0A:=0
do:=0¢g_1
do ¢ :=¢/2,r) :=RHS[Z/2] — APPLY [u(),Z /2]
ife:=|rV|+¢<e thenus:=ul stop endif
until Z <o|r®|
Aiy1:=EXPANDIA;, 1) a]
u(+1) := GALERKIN [Ai11,u® &, y|r®|]
i=i+1
enddo

Theorem 3 ([GHSO07]).Lete_1,& > 0, then forus := AWGM [g, £_1] we have that
|If — Bug|| < &. If for some s> 0, u € <5, then#suppue < £~/5|ul| 2. If, addi-
tionally, B is s-admissible, s< s ande < £_1 ~ ||f||, then the number of operations
used by the calhAWGM [g, &) is bounded by an absolute muItipIe&Jfl/SHuHiéi.

In other words, ifS> snax then this AWGM is (quasi-) optimal.

Proof. By definition ofg;, we have
I[f—Bu| <&, (34)

so thats; is a valid parameter for the later c@ALERKIN [Ai1,ul &, y|[rV|].
Since( is halved in each iteration, if the inner loop does not teaterbecause
of < 3|irM||, then at some point it will terminate becausesof ¢.
If the inner loop terminates becausefok 5||r(||, then, because @ < 1,

g~ |r) = |f-Bul| (35)

and||f —Bu® —r|| < Z < 5||r1]|. Since after the subsequent callsSsO{PAND
andGALERKIN , [P,V > a|[rD] and|[Py,,, " —Ba_,u™ V| < yrD], an
application of Proposition 5 shows that, wjph< 1 from that proposition,

Jlu—u® 2 < pllu—u®| (36)
and 1 :
#(Aipa\AD) S min{Nflu—un |l < [L- pk(B)Zlu—u®|}.  (37)

Becauseg = ||r®|| + ¢ < ||f —Bu®|| +2¢ < ||f — Bu)|| +20¢_4, from (35)
and (36), we conclude that eventually the inner loop, and tha algorithm, will
terminate because @f < €. By (34), this proves the first statement of the theorem.

Fully analogous to the proof of Proposition 4, from (36) aBd)(we conclude
that if for somes > 0,u € /%, then

#suppt <#A 1 < Ju—u®|~Ysjul s, (38)

With K denoting the value of at termination, i.e.u; = u®, if K =0 then
#supple = 0, and the second statement of the theorem is obviouslylfrie> 0O,
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then this second statement follows fram g1 ~ ||u—u®~1| and (38). Together
with Lemma 1, the same arguments also show that

D s < JJull . (39)

Now let B be s-admissible for some > s, and lete < e_1 < ||f||. By definition
of s-admissibility and Corollary 1, witlC; denoting the cost of the evaluation of
r() := RHS[{/2] — APPLY [u(),Z /2], we have

#supp V) <G < (2/2) Yo ul e+ 14 (¢/2) Y3 u | Y2 + #supp® +

S YY)l e+ &Yl e, (40)
by (39) and, fori > 1, by (38), (35) an(t. 1< &~ ||f|| S JJulles (and thus 1S
& ¥/®|u)|™3), and, fori = 0, by #supp(© = 0 ande 1 < [f]| < [|ull.ss.

To proceed, we claim that for@ i < K, at termination of the inner loogd, = &;.
Indeed, if the inner loop terminates at the first evaluatibrthe unt i | -clause,
then{ = 0¢_1 2 &, the latter fori = 0 being valid by assumption. Otherwise, at
the previous evaluation of thent i | -clause, we hadf —Bu®|| < |[r()] + ¢ <
(61 +1)¢. Since thisC is twice the final one, (35) shows that the latter satisfies
{2 &

From the above claim, (40) and the successive halvingssifrting from =
B¢_1, we conclude that for & i < K, at termination of the inner loop

#supp ) <G <& You)Ye,

whereC; denotes theotal cost of the inner loop that produced thi¥. Proposi-

tions 6 and 7 show that the cost of subsequent cal&X3tAND andGALERKIN
is bounded by an absolute multiple of# & Vol M2 < & 9|ul2 and, since
& S yiIrQ|, of #Ai1 < & Y%|u|| 7, respectively.

Fromg <p'~ Js (i <j), being a consequence of (36) and (35), and, wkeno,
&-_1 > €, we may conclude that the total cost of the @WGM |, &) is bounded

by an absolute multiple oef‘1/5||u||1/S once we have shown that the cost of the
final run of the inner loop can be bounded an absolute multiptlis expression.
For this goal, it suffices to show that at termination of thistlinner loop{ = ¢.

If this inner loop terminates by the first evaluation of thé-clause, then
{ = Og_1 2 €, for K = 0 by assumption. Otherwise, the previous valuef of
being twice the final one, satisfies bath®| +¢ > ¢ andZ > &rV||, and so
(1+671)¢ > &, with which the proof is completed. O
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4.3 Discussion

As we have seen, both the adaptive inexact Richardson scR&hdrom Sect. 3
and the Adaptive Wavelet Galerkin MethéiVGM discussed in the present sec-
tion are (quasi-) optimal. Practical experiments, see [GH&nd [DHS07, Sect. 4],
show that thédWGM is quantitatively more efficient. One reason could be thelnee
for coarsening irRich. Indeed, without coarsening generally this algorithm $urn
out not to be (quasi-) optimal. This means that in betweendaarsening steps,
the error as function of the support size does not decay Wwehoptimal rate. As
a consequence, in each coarsening step many previouslyutedhgoefficients are
thrown away. Another possible explanation is that in bogfoethms, the expansion
of the current wavelet index set via an approximate residomputation is the most
costly part. In view of this, given such an index set, it seemost efficient to com-
pute a (near) best approximation from the span of the cooretipg wavelets, being
the Galerkin approach.

Apart from the aforementioned references, practical erparts with (variants
of) the AWGM can be found in [BBCO1, Bar01, BK06, BK08]. Numerical re-
sults with (variants of) the adaptive inexact Richardsdreste applied to the Schur
complement of the Stokes equations (Uzawa scheme) can bd fio(DUV02].

5 The approximation of operators in wavelet coordinates by
computable sparse matrices

From the main theorems 1 and 3, recall that the inexact Risloar iteratiorRich
and the Adaptive Wavelet Galerkin MethdiVGM applied toBu = f are (quasi-)
optimal under the condition tha® is s-admissible (cf. Definition 1) for some
S> snax. Consequently, if either of the adaptive wavelet schemagpjdied to the
normal equations, botB andB' have to bes-admissible for some > smax. With

B being a boundedly invertible operator betwe&hand#/”, recall thatsnax is the
generally best possible approximation rate from sgdnof a function in.2". Fur-
thermore, from Theorem 2, recall thatBfis s*-computable (cf. Definition 2), then
it is ssadmissible for any < s*. In view of these results, our task is therefore to
shows*-computability ofB and possibyB " for somes’ > Spax.

The question whetheéB (andB ") is s*-computable for soms’ > spax depends
on the operatoB and the wavelets at hand. So far, apart from the boundedly in-
vertibility of B, we only assumed th&* and¥? are Riesz bases fo¥” and#/,
respectively. In this section, we study the issus‘etomputability forB resulting
from ascalar PDEor asystem of PDE’®n a domainQ ¢ R", and for¢* and
W being collections of commonly applied, locally supportpigcewise smooth
wavelets. In Section 7, we comment on the cas#df and¥? being collections
of tensor product wavelets.
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Also for classes fosingular integral operatorand suitable waveless-computability
with s* > spax is valid. We refer to [Ste04, GS06b, DHS07] and on the chapter
“Rapid Solution of Boundary Integral Equations” by H. Habint and R. Schneider
in this book.

5.1 Near-sparsity of partial differential operators in walet
coordinates

This subsection is devoted to the question how well the ssmatiorB of a partial
differential operator with respect to wavelet bases cangpeaximated by sparse
matrices. We will not be concerned with the question how tmgote, or more
generally, how to approximate the entries of these sparsgoes, and at which cost.
These issues will be postponed to the next subsections. @rent task motivates
the following definition.

Definition 3. Fors* > 0, B € £ (¢, ¢») will be called to bes*-compressiblevhen
we have available sequenc@s)jcny. (Cj)jen, C R, (BW)jen, C Z(£2,¢2), such
that

e |[B-BU)| <egj,limj_.e =0,

e the number of non-zero entries in each columBgf is bounded by;,

e B® =0 (and thug/B|| < ep), co = 0 and sup.y, Cj+1/¢j < .

and such that for ang < s*, sup jc} < .

So compared to the definition sf-computability (Definition 2), the only difference
is that we do not require that number of operations neededrtgputehe non-zero
entries in each column &) is bounded by;.

For somea; € Nj (I € {1,2}), we consider the representation as a bi-infinite

matrix of a bounded linear operatér: H™(Q) — (H\2/(Q))’ defined by

(Eu)(un) = [ go™u0%u; (u e (),
Q
with respect to wavelet collections
@O = (g2 e Oy c HY(Q).

We will assume that the coefficiegts sufficiently smooth

In this paper, we do not discuss tbenstructionof wavelet bases on domains,
but refer to the numerous papers written on that topic. Safeeences are included
at the end of this subsection. Following standard convasfja | € Ng will denote

the level of the WaveletLpA('). Here thinking of the wavelets beingprmalized in
L2(Q) and constructed usindyadicdilations, fors > 0 up to some upper bound
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determined by the smoothness of the wavelets, it holdq\mﬂiHHsm) ~ 291, In
view of this, we investigate the approximation of

E-— [2—\#\\0!1\—\/\Haz\(,/_\q,fll))(w/(\z))])\#eu
by sparse matrices.

The representation of a scalar PDE will resultinto a sum ofisnatrices (where,
because of the eventual normalization of the wavelets imérigorder Sobolev
norms, matrices corresponding to lower order terms will hétiplied from left
and right by diag2~1*19], . ; or diag2~], . ; for somes;t > 0 with s+t > 0) and
the representation of a system of PDE’s will consist of bi@&ach of them being a
sum of such matrices.

We will assume that the wavelets dogal, locally finite andpiecewise smooth
where for an easy treatment of the quadrature issue, we astanthe wavelets
from both collections are piecewise smooth with respecthsamepartitions,
moreover which arenestedas function of the level (for the general case, see
[SWO08]): We assume that for &l N, there exists a collectio{lQli") 1V E Ok}
of disjoint, uniformly shape regular, open subdomainshw@ = Uvegkﬁﬁv),
diam(Q.")) = 2-* and Q" being the union of som@,"} . These subdomains will
be such that suppiI> (I €{1,2}), which is assumed to be connected, is the union of

a uniformly bounded number 0’1?‘&"‘) (locality), and such that eacﬁé") has non-

empty intersection with the supports of a uniformly boundedber oftp/(\') with
|A| =k (locally finitenesy Typical examples of th@li") aren-cubes on-simplices,

or smooth images of such. We assume tp%)qQ(V) is smooth with, for any € Np,
Al

sup [0y (x)] < 2+ (41)

(v)
XE_QIM

(piecewise smoothngsthe latter being a consequence of the smoothnaﬂ)g)cp}‘z(v) ,
Al
the normalization of the wavelets irp(Q) and their construction using dyadic di-

lations. Note that the singular supporttpf) is part of the skeletomveﬁde‘a"‘).
We will also need that the wavelets satisfy soghebal smoothnessonditions:
For some
NoU{-1}>r > |a| -1,
we assume that
193 Iwg o) S 2MEH (te (o, +1). (42)

Forr; > —1, this estimate follows from (41) whapl;') eC(Q).
We assume that the wavelets haaacellation properties of ordet; € Ny, mean-
ing that
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L] S 2l o 190y (L€ DAL UEWE(Q).  (43)
o Al W (suppy, )1 FA 1L B

Actually, with some constructions, here supﬁf should read as a neighbourhood
of supplp/(\') with diameter 2/A|. For convenience we ignore this fact, but our results
extend trivially to this situation.
Finally, for anyy < ai, y # a;, we assume the homogeneous Dirichlet boundary
conditions |
o'yl =0 atoQ, (44)

actually being a consequence of our earlier assumptior#tfiat H(‘)‘"I | (Q).

We split
E=E"+E®,

whereEf\r’)u — E,, when eitheriA| > |u| and supp” ¢ Q‘%) for somev € O
or |[A| < |u| and suppwf,l) C Q‘(A‘” for somev € 0, andEf\r?u is zero otherwise.
So E(" contains theegular entriesof E, i.e., the non-zero entries for which the
the interior of the support of the wavelet on the higher lel@ds not intersect the
singular support of the wavelet on the lower level. The rerimgisingular entries
are gathered iE¥. As we will see, the size of the singular entries decays lests f
as function of the difference in the levels of the indicesithéth the regular entries,
but this will be compensated by a smaller increase of theinter.

We writeE(") = (Eg&)g,kel\]o, WhereEZ& = (Ef\r.)“)‘,\ —¢jul—k and similarlyE(® =

(E?S&)KKENO .

Proposition 8. The number of non-zero entries in each rovE{;fi (Ef&) or column
of E{') (E) is bounded by an absolute multiple2sfaxk-£.0in (omaxk-(.0)(n-1))
With
pri=da+|az], psi=3+min(dy+ |azl,r1+1—|ai]),
for |A| > |u|, we have

—(l1A1= nlps —(l1A]= o
5 10l )2 112, LT 5 g g2 1D

The same statement is valid fok| < |u| when (a1,02,r1,d) is replaced by
(ag,a1,r2,dp) in the definitions op; and ps.

Proof. The first statement follows by the localness and locally dimitss of both

wavelet collections, and concerni&®, by their piecewise smoothness.
Whenr1+1<|a1|+]|az|, selectay < ap with |a1+ Y| =r1+1andsdaz—y| =

|ai1| + |az| — (r1+1). Using (44) for the case that suwff) ﬂsupplpf,l> noQ #0,

integration by parts, V(stupptp/(\Z)) <2 and (42) show that
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Epul = Zf\yual\f\/\uazu/Suppw(z)(_1)\v\gV(gaa1w‘(}))aarywl(\m|
A

< 2~ lullasl=IAla| ||g||W;1+1_|al‘(Q)2—\/\\nz\u\(5+f1+1)2\/\\(§+\Gl\+\0’2\—(f1+1))
= ||g||W°f°1+1f\al\(Q)27(M‘7‘“‘)(?+r1+17‘a1‘>.

Forri+ 1> |ai1| + |az| by additionally using that thqjﬁz) haved, vanishing
moments ((43)) and taking into account tuép e WtL(Q) ((42)), we have

Epul = Zf\p\\al\f\)\\\azu suppy(z)(—1)‘02‘aC{Z(gaale:L))w/(\Z)|
A

< o—|Hllas|—[Al|azl o—|A|min(dp.r1+1—[ay |~ |azl)

x [ 092(Q0 )| iy 1t gy |9 @)

wop
< o~ Iullas]=[Allazl o~ |A| min(dp.ri+1-|ay| ~|az])

ol HI(5-+min(dy-+|a|+az|,ra+1) o—|A |3
(Q)
2~ (=D (Z+min(dz-+]az|,ra+1-laa)

x Hg|‘W‘)Tin(d2+ldzl-f1+1f\01\)
~ NGl iy ety -1

which completes the proof oithe first estimate.

Finally, when supg\”) Q‘%) for somev € &, by estimatingEE\r’)“ as above,
but now applying (41) for sufficiently largginstead of (42), we obtain the second
estimate. a

In the next proposition, we construct sparse approximdtiomatrices likeE (")
orE®,

Proposition 9. Let C = (Cyk)rkeng With Cyx = (Cy 11)|a |=¢,|u/—k b€ such that for
some ¢c Ng and p > 0, the number of non-zero entries in each rowfy or
column ofCy ¢ is bounded by an absolute multiple25t2k-¢.0d4 and

Caul < o |IM-1ul] (§+0)
Then withC'J) constructed fron€ by droppingC, , when

[[Al=Iul|>j/p,

we have . _
jlc-cWs27,

where the number of non-zero entries per row and colum@(éfis bounded by
some absolute multiple of '
max29/?j/p).
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Proof. By two applications of the Schur lemma, we have

ICkl> <max 5 |Cyul-max ¥ [Cyul S 4 MP,
W:KW —k W\:k‘)\ -y
jc-cPP<max 5 |Cud-max 5 [[Ci
kiK1 /0) {e1e->1/p}

<471 O

So the result of the last proposition shows tBaandC' ares*-compressible
with
s"=p/q
(or s* = 0 whenq = 0). We exemplify our findings concernirg-compressibility
in the model case of an (elliptic) scalar PDE of order. 2

Example 3For some bounded doma@ c R", with n > 2, andme N, let B :
H'(Q) — HF'(Q)' be defined as

BUW = |

S apd?udfy,
2 |al |Bl<m

laf,

with coefficients such th& is boundedly invertible and that are sufficiently smooth.
Letw? =w? = {4y : A € O} C HJ(Q) be a dyadic wavelet collection, nor-
malized inL(Q), such that for som& > d > m, d € No, NoU{—-1} 5r >m—1,

a). infviespar{w,\:\)\\gi} ”u_ViHHm(Q) = 2_(d_m)lHuHHd(Q) (ue Hd(-Q) N H(r)n(-Q))!
b). the wavelets are local, locally finite and piecewise stim¢and thus satisfy (41)),
¢). the wavelets are i@'(Q) (and thus satisfy (42) with =r),

d). the wavelets have cancellation properties of odign3)),

e). {27 My, : A € O} is a Riesz basis fadJ(Q).

The representation & with respect to the wavelet basis from e) reads as
B= ; [27(\/\\+\u\)m/ 8.0 WP, oo
jal,fBl<m Q ’

Due to the scaling factor 2 1*IH)™ one may verify that it suffices to analyze the
s*-compressibilty of the highest order terms. By applyingd@sitions 8 and 9 to
those terms, we infer th& andB " ares'-compressible with

Ss* =min

(d+m %+min(d~+m,r+1—m))
’ n—1 '

As a consequence of the dyadic construction, we have fat#1: [A| <i} = 2",
which together with a) shows that

d—m
—

Smax =
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- 3
We conclude that’ > snaxwhend > d —2mand 2" > 9= (the third condition

d+m>r+1—mfollows already from the first one using that always d — 2).

On (0,1)", or on a smooth image of thdtjorthogonal splinevavelets can be
constructed that satisfy a)-e) for arbitrasly> d with d +d even andr = d -2
%[D898]l). Because af = d — 2, the conditions fos* > syaxread asl > d —2mand
ems 2.

nFor éeneral domains, these wavelets can be applied in catiinwith non-
overlappingdomain decompositiotechniques. The existing techniques fall into 2
categories: With the technique basedextension operatorgroposed in [DS99b],
all above conditions can be satisfied. The condition numbéreresulting basis,
however, turns out to increase rapidly with The other technique amounts to a
continuougluing of multiresolution analyses over the interfaceseen patches,
see [DS99a, CTU99]. As a result, wavelets with supportsekegnd to more than
one patches are only continuous, and thusdfor 2 not in C4-2, resulting in a
reduced value of*. For problems of order@ = 2, this limitation can be overcome
with a construction of wavelets that hgvatchwise vanishing momensge [HS06].

5.2 The approximate computation of the significant entries

For a non-constant coefficiegt generally the entries &) andE(® have to be
approximated by suitable quadrature. In this subsectiersivow that such approxi-
mations can be made that keep the error on the same leveg, takihg in each row
and columnon average/'(1) operations per entry. This means these matrices are
s*-computable for the same value $ffas they were shown to ts-compressible.
The key observation is that this restriction on the work dalésv to spend quite
some operations, up to the number of entries in the row omaojuo the approx-
imation of the few largest entries with indices that haveatdgvel, as long as the
work per entry decays sufficiently fast as function of théedénce in the levels of
the indices. For simplicity, we exclude the special, algjioeasy case thgt= 0 in
Proposition 9. Since witE(® the role ofq is played byn— 1, we thus assume that
n>1.

Proposition 10.LetC andC(}) be as in Proposition 9 assuming that-e0. Suppose
that for some constant$,w > 0, { # w, for anyA,u € [J one can compute an
approximationC, , to C, , in &(N) operations with

Cap—Capl < N-@o— | -1ul| (§+&a) (45)

Now for someo € (1,&/w) whené > w, ando € ({/w,1) when < w, and
6 < min(1,0), build Cl)) by approximating each non-zero entry@f) as above by
taking
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operations. Then the work for computing each row or colum@éfis bounded by
some absolute multiple &fi/?, and

2-qiwd/p whené > w,

2—qj(§+(6—-0)w)/p whené < w. (46)

[ch —&W| < {

In particular, taking® = min(1, ), we have|C)) — Cl)|| < 2-aimin(@&)/p,
Proof. The work per row or column is bounded by an absolute multiple o

e _ , , e
Z)zlq max(1, 2q16/pflcrq) = 20i/p 4 2aié/p ZJZIQ(lch)
i= =

= 201/P 4 2918/P max(1, 201(1-0)/P) = 24i/P,

because 06 < min(1,0).
Taking into account the selection §f , ,,, two applications of the Schur lemma
show that

1CE = €)=t =l S 212810/ p It -mios) 2ap-t-ma 26
= 2-2aj8w/pp—|t-m2q({—0w)
[ch —ci| < S 2-aifw/pp-ia(l-ow)
o<i<j/p
which shows (46). a

Comparing Propositions (9) and (10), we see that in orderageour earlier
claim thatC = E(") or C = E®® ares*-computable for the same valuesifas they
were shown to bg*-computable, it suffices to have available a family of quadea
formulas satisfying (45) with

min(w,&) >p and maxw,§&) > p.
Below, under some mild additional assumption ((48)), wefyéhnis by showing

that for anya,b > 0, we can construct a family of approximatiofts, , n)nen,

whereE,\.“,N requires?(N) evaluations otgd“lwf,l)df’?wf), such that for some
teN,

~ _ _ n
Exp— En o] S N3 PGB gy o (47)

This means that (45) is valid with = a andé =b/nor & = (b+3)/(n— 1) for
g=norg=n-1, respectively.
Without loss of generality let us assume that

Al = |ul.
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Suppose that for any e Ng andv € ﬁév), there exists a sufficiently smooth trans-
formation of coordinateg, with derivatives bounded uniformly ik and v, such
that for someee N, and all|A| =k,

w)(\2> le) K|K_1<Qév)) 6 Pe_l. (48)

In the following, for notational convenience, without laggyenerality we take =
id.
To approximate an integrﬁbw) f, for anyp € N we consider internal, uniformly
k
stable, composite quadrature rud@S(V) N (f) of fixed order(i.e, the degree of poly-
P

nomial exactness plus on@) andvariable rank N The rankN of a composite

quadrature formula denotes the number of subdomains onhwth& elementary

quadrature formula is applied. Since the orgenf Q9<v> N is fixed, the number of
k >

abscissae in the composite r@e, )  is O (N). For such rules, the following error
e
estimate is valid

| /Q<v> = Q) y (NI £ Vol (@ INP/diam( Q)P o) (49)
k

(e.g., see [GS06§2]).
To find an upper bound for the quadrature error when thess arke applied

with integrand 2‘“”0’1“"‘““2‘g6°’14/f,1)d“24/f,2), we have to bound the expression
(0”9)(d“d"lwf,l>)(drdo’2w/(\2>) for all multi-indices with|p + o + 1| < p. Since
g is assumed to be sufficiently smoot@A,| > |u| and afaazwf) vanishes when

|T+ a2| > e, by invoking (41) we see that the worst case occurs when0 and
|T+ az] =z:=min(e— 1, p+ |az|), and thus wheho| = p—z+ |az|, yielding

lulla|— 1 2
o~ |ulla] V\Haz\”g@mwﬁ)ﬁaz%(\ )”WDE(QS’)) <
(Iu+1AD) 3 olul(p—zt|azl) o|A | (z—|az])
2 22 22 2 HgHWOE(Qli”))'
By substituting this result into (49), using that dié@i")) ~2 Mland vo(Qé")) ~
2-12In by takingp satisfying

p> maxnab—|as|+e—1)

and by summing over the uniformly bounded numbe@é‘f) that make up suquA(z)
we end up with (47).

This completes the proof of our claim made at the beginnintpisfsubsection
that thatC = E(") or C = E® ares*-computable for the same value sifas they
were shown to beg*-computable.
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Remark 9The estimate for the quadrature error obtained by summimgttor es-
timates for the quadrature errors over thoseith Q[M C supppf) can be orders

of magnitude too pessimistic. The point is that it has notbesed thalw/(\2> is
a wavelet and thus is oscillating, which causes cancetlagioerrors, in particu-

lar whenguf,l) is smooth on the interior of sunéz), i.e, when it concerns gegu-
lar entry. For that case, much sharper estimates can be foul8Wi0§], see also
[BBDT02].

5.3 Trees

Although, as we demonstrated, it can be done whilst retgiojptimal computa-
tional complexity, the approximate computation using qaade of the required
entries of the stiffness matrix that may involve wavelet$aogely different levels is
arather delicate process. Such computations can be avmydedtricting to wavelet
approximations where the underlying index sets form a trethis subsection, we
briefly indicate the main ingredients of this approach.

We restrict ourselves to the case that W = W? = {y : A € 0} is a Riesz
basis forZ™ = %. Apart from wavelets, here we will need scaling functionsek
@ C Z is called a collection of scaling functions on lekekhen spafiy, : |A| <
k} = spanb,. We assume that they are (uniformly) local and locally finite (cf.
definitions in Subsec. 5.1), and that each wavglgetis a linear combination of a
uniformly bounded number of scaling functions on lej&] (and that supg, is
connected).

We equip the index sefl with a tree structure by assigning to eatlk [ with
|A] > 0 aparentu with |u| = |A| — 1 and sup@, Nsuppyy # 0. By our assump-
tions, the number of children of any parent is uniformly bded. We calA C O a
treg, when allA € O with [A| =0 are inA (the “roots”), and when whenevére [
with |A| > 0isinA then so is its parent.

Analogously to (2), we define approximation class&$, and corresponding
(quasi-) normg| - ||.»s, where we now consider only belstterm approximations
un to u € ¢, whose supports, apart from having a length not larger thaform a
tree. ForZ" being a Sobolev space, it has been shown that the resultisged are
only slightly smaller than those one obtains with uncorisé@besiN-term approx-
imation, see [CDDDO01] for details.

The reason to consider tree approximation is that any /o whose support
forms a tree, can be expressed as a linear combinatikrsoéling functions, where
K < #suppv and where the supports of any two scaling functions in thjzaex
sion can only intersect when their difference in levels is lacger than 1. More-
over, this scaling function representation can be found {#suppv) operations,
see [DSXO00b].

As an application, now leB € Z(¢,,¢2) be s*-compressible, let the support
of w € ¢y form a tree, and let > 0 be given. Then as shown in [DHS07], using
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the near besN-term tree approximation algorithm from [BDO4], tre@g C --- C
A2 C A1 C suppw can be found such that, withy = w|,\p\,\p+1 (Aj41:=0) and
suitable jp € No, z¢ := zJp:lB(jrﬂw[p] satisfies||Bw — z¢|| < £ and, for anys <
s, #suppee < e*l/SHng;jls/s, where the cost of determining suppis bounded by
some absolute multiple af~2/5||z¢ || %>+ #suppv+ 1. What is more, taking the
construction of the sparse matrid$) into account, for both partial differential and
singular integral operators, suppforms a tree.

Instead of approximating the required entries of the inedimatrice8(ir), this
opens another possibility to approximdev. Since|[Bw — z¢| < ¢ is shown by
estimating||Bw — z¢|| < 5, |B — BUP)[|lwy]|, and by bounding|B — BU#)]|
by summing over upper bounds for the entriesBothat were dropped in the
definition of BUp), one infers that alsdBw — (BW)|supw. || < € as well as that
IBw — (Bw)| ;]| < &, whereA := suppw Usuppe; is a tree. B

Now with @ denoting the collection of the single scale functions wjghrsp =
{¢n 1 A € A} and Ty the corresponding basis transformation from multiscale to
single scale representation, we hdlg, i = T/TTB(CD, ®)Tj, thus withB(®, @)
being the single-scale representatiorBof, 1. Since(Bw)|; = T/TT B(®,®)Tiw,
in order to construct a validPPLY, what is left is to approximate the multiplica-
tionwithB(®, @) in /J’(é:*l/s||zg|\;{lS °+#suppv + 1) operations, while keeping the
error on the level of a multiple of. For partial differential operators, the advantage
is that non-zeros entries Bf @, @) only involve pairs of scaling functions on equal
or consecutive levels. For singular integral operatorgpproximate the multipli-
cation withB(®, @) one may think of the application p&anel clusterind[HN89])
or multipole expansion§GR87]).

Finally, whereas for the optimal adaptive solutionliokar operator equations,
the restriction to tree approximations is not really neaggsfor such a solution
of nonlinear operator equations it seems indispensable (see [CDDOBalged,
note that for a nonlinear operator of the forfrfv) (x) = g(v(x)), the evaluation of
f(w'W)(x) already requires a number of operations of the order of tmeteu of
wavelets in the expansion that are non-zera.iff suppw is a tree, however, then
after transformation to the locally finite single scale eg@ntation, any of such a
point evaluations can be donedr(1) operations.

6 Adaptive frame methods

6.1 Introduction

A drawback of wavelet methods for solving operator equatisrthe rather com-
plicated construction of wavelet bases on non-product dmn#s was already
mentioned at the end of Sect. 5.1, the usual constructioiaia won-overlapping
decomposition of th@-dimensional domain or manifold into subdomains, each of
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them being a smooth parametric image of thdimensional unit cube. Loosely
speaking, wavelets or scaling functions constructed asrtaiube are lifted to the
subdomains, after which those functions that do not vartigim anterface between
subdomains are either continuously connected to funcfions neighbouring sub-
domains or are smoothly extended into these subdomainst &pen the fact that
these constructions are not that easy to implement, andisealvantage is that the
condition numbers of the resulting bases are quite someattgr than that of the
corresponding bases on theube.

As an alternative, for2” being a Sobolev space, in [Ste03] it was suggested to
use anoverlappingdomain decomposition, and to defitk? simply as the union
of the wavelet bases on the subdomains. By a proper choidediases on these
subdomains, the span 8f# will be dense in2", but due to the overlap regions,
it cannot be a basis fo®". Instead it will be @rame for Z". In [DFR07a], such a
frame was called aaggregated wavelet frame

6.2 Frames

Let 2" be a separable Hilbert space. A collecttin= {¢, : A € O} C 2" is called
aframefor 2° when theanalysis operator

F X =l g— [9(W)]reos

is a boundedly invertible mapping betwegf’ andits rangeran.#. From Sect. 2,
recall that its adjoint, known as ttsynthesis operatoreads as

F' il — X c—c W,
We set thérame constants

_ 1-Z9lle,
0#ge2” |9

Ny = H%

21ty Ay :
7

The composition7’.# : 27/ — 2 is boundedly invertible with|.#' .7 || 1. o =
AZ and||(F'F) Y g o = Ag?

The collection¥ := (.#'.%7)~'¥ is a frame for.2”, known as the canonical
dual frame, with analysis operatéf := .7 (.%'.%) ! and frame constant&s;1 and
qul. From.Z'.% =1, one infers that any € 2 has a representation= v’ with
A;l <|IVlep/ IV 2s <A ., actually a property that is equivalent¢bbeing a frame
with frame constantdy andAy. Note that generally a representatiornvat 2" in
frame coordinates is not unique (unlégss a Riesz basis).

We havel, = ranZ @&+ ker.Z' andQ :=.%#.7%' is the orthogonal projector onto
ran.Z. The frameW is a Riesz basis fof?” if and only if ker.#’ = 0 or equivalently
ran = (.
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Many examples of frames can be given. Besides aggregatedeténames, here
we only mention curvelets ([CD04]) and shearlets ([LLKWQ5]

For a givenf € 2" and a boundedly invertible € £ (2", Z”), let us consider
the problem of findingi € 2~ such that

Bu= f. (50)
Writing u = .#'u for someu € /5, thisu solves
Bu =, (51)

where
B:=%B%/, f.=7f.

Obviously, we have(B|| < AZ||B|| 2 2. With respect to the decomposition
lr =ranZ o' ker.#', B is of the form[50 9]. From%B1%'B=B%B 1% =
Q, we conclude thaBy = B|ians : ran — ran is boundedly invertible with
IBot|l < Ag?|B7Y|| 27— 4. Finally, we note that fov,w € ran.%,

(Bov,W) = (Bv,w) = (ZBZ'v,w) = (Bv)(W), (52)

wherev = .7'v andw = .%'w, or equivalently becausew € ran7, v = Zv and
w=_.FW.

6.3 The adaptive solution of an operator equation in frame
coordinates

In case the operatd® in (50) is symmetric and positive definite, one may think of
applying the adaptive wavelet Galerkin approach discussé&gct. 4 ontdBu = f
from (51). Since, however, for a “true” framB,has a non-trivial kernel, foA C [
the generalized condition number Bfa <4, i.€., the quotient of its largest and its
smallest non-negative eigenvalue, can be arbitrarilyelaftpis makes this approach
unfeasible.

Therefore, we return to the damped Richardson iteratiocudised in Sect. 3.1.
Denoting itsith iterand asi(, and withu somesolution ofBu = f, we have

u—u = (1 —aB)(u—ul=1),

which, due to the non-trivial kernel @, shows no convergence. By applyiQg
however, we obtain

Qu—u®) = (1 —aBg)Qu—ul~b).
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If B is symmetric and positive definite or only coercive, then iew of (52),
analogously to the analysis from Sect. 4, we infer that byaper choice ofa,

|l —aBg|| < 1. Sinceu—.Z'u) =.2'Q(u—u), we conclude linear convergence
of #/ul) touin 2. For non-coerciv@®, the iteration can be applied to the normal
equations.

When applying the damped Richardson iteration with an ioegaaluation of
the matrix-vector multiplication and that of the right-luksidef, then, with a proper
choice of decaying tolerances, for the resulting iteraiolimear decrease of the
projected errof(u—u) can still be shown. These inexact evaluations, however,
generally produce error components that are inkerSince ke’ = kerB, these
error components will not be changed by subsequent Ricbarsteps. Although
these error components do not affect the projected erroergdly they do affect the
</5-norms of the iterands, and with that, the cost of the apfitina of theAPPLY
routine.

In spite of this, in [Ste03] it was proved that the algoritlitich, as given in
Sect. 3.2 but with a modified choice of the tolerances (see0Btfor details), is
again (quasi-) optimal in the sense of Theorentiven ane > 0, it produces an
ug with ||Q(u —ug)|| < €. If for some s> 0, Bu = f hassomesolutionu € &5,
then#suppe < e*l/SHquﬁ. If, additionally, for some& > s, B is S-admissible and
Q: &5 — &/Sis bounded, then the number of operations used by the calliaded
by an absolute multiple af~2/5[|u[|/2. In order words, i> Smax, With Snax defined
similarly as in the basis cagsee Sect. 1)1then this inexact Richardson iteration
is (quasi-) optimal B B

The additional condition tha : &7 — /% is bounded is satisfied whe&is s
admissable (cf. Definition 1 and Proposition 1), which imtis satisfied when, for
somes' > s, Q is s*-compressible (cf. Definitions 2, 3 and Theorem 2, and realiz
that the question about cost of computing entrie@a$ not relevant, sinc® does
not enter the algorithm, but its boundedness#f is only needed for the proof of
optimality).

Unfortunately, although we expect it to hold more generatiythe aggregated
wavelet frame case so far tsecompressibility ofQ was proved (in [Ste034.3])
only in the case that the wavelets on each subdomaih amethogonal and that,
before aggregation, they were multiplied by a smooth famcthat is positive on
the subdomain and that vanishes outside the subdomain. fiwatresults reported
in [DFR*07b] indicate (quasi-) optimality in other cases. In [DFB])Zhe bound-
edness of) : @/° — &S was shown for time-frequency localized Gabor frames.

Sulfficient fors-admissability oB is that it iss"-computable for soms’ > s. For
aggregated wavelet frames, a proosbicompressiblity oB can follows the same
lines as in Sect. 5.1 for the basis case. In the aggregateeletdvame case, the
approximate computation using quadrature of the signifieatries ofB is a harder
task. Indeed, wavelets from different subdomains whoseaup overlap will be
piecewise smooth with respect to different underlyingigarts. Nevertheless, in
[SwWO08], for partial differential operators with smooth ffaEents,s*-computability
for ans* > spaxwas demonstrated.
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Thinking of a symmetric and positive definBgthe selection of a suitable damp-
ing parameterr for the Richardson iteration requires estimating the sesathon-
negative eigenvalue @. Other than in the Riesz basis case whBrleas no zero
eigenvalues, in the true frame case it is difficult to esterhts eigenvalue numer-
ically. In [DFRT07b], it was shown that an approximate steepest desceatidter
which does not require information about the spectrunBpofs (quasi-) optimal
under the same conditions as the approximate Richardsaiidte.

6.4 An adaptive Schwarz method for aggregated wavelet frame

LetBe (%, 2") be symmetric and positive definite, whef€ is a Sobolev
space with positive smoothness index on a domainLet ¥ be an aggregated
wavelet frame being the union of wavelet ba¥és. .., %, on overlapping subdo-
mainsQs,...,Qm, respectively. Each of these bases is a Riesz basis of the-cor
sponding Sobolev space on the subdomain, with homogeneduakIBX boundary
conditions on the internal boundary.

The partition of the domain into overlapping subdomainsthat of the frame
into the different Riesz systems, suggest the applicatfoa $chwarz method to
solve Bu = f, being the representation of the operator equaian= f in frame
coordinates. An multiplicative adaptive Schwarz method stadied in [SWQ09].

Let B = (Bk)1<kr<m @andv = (vi)1<k<m denote the corresponding partitions of
the system matridB and any vector of frame coordinates, respectively. Then the
(exact) multiplicative Schwarz algorithm reads as follows

fori=12,...do
for k=1tomdo
() _ ¢ k-1 (i em (i—
solveBkkuk =fx nglBkgug ZZ=k+lkau1€
enddo
enddo

1

Using the general theory of Schwarz methods (e.g. see [¥uB8k shows that
Z'u) = u Ty converges linearly tain 2.

The idea behind an inexact, adaptive variant is to find anamation touli') by
the application of an adaptiwgaveletmethod on subdomaify (either of inexact
Richardson type or an adaptive wavelet Galerkin method)a Byitable choice of
decaying tolerances, the resulting method will still bedérly convergent.

For eaclk, the sequencéuf('))i of approximate solutions of the subdomain prob-
lems onQy converges to some, that depends on the choice of the initial vectors
(Uéo))lgggm. With u beingsomerepresentation af, i.e.,u’ ¥ = u, it is not clear that
the splittingu = ux + (u — uk) is smoothness preserving, in the sense thatife/®,
thenuy € «7° with ||uk|| s < |Ju||ors. From our considerations about the cost of the
APPLY routine that is part of the adaptive wavelet method, it is &y clear that
such a smoothness preservation would be needed to congluasi{) optimality of
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the resulting method. Actually, numerical experimentsdated that generally this
splitting is not smoothness preserving.
)

In order to solve this problem, again consider the sysBQ;ml((i) =fx— z‘;;} Bkeu,

— 3 Bkgui'_”. Note that if, before solving, coefficients frO(mél))]_S[Sk_l and
(U2|71>)k+1§g§m that correspond to wavelets that are fully supportedinare
modified, in particular, areleleted then this will not change the approximation
uTw = 3%, uE')lT% +35M . 1ul" Wy after this solving, although the vectors
(Uil))lgggk and(uil_l))k+1§[§m generally do change. For this process, but then with
an inexact adaptive solving, it was shown that if the sizab®foverlap regions are
sufficiently large compared to the maximal diameter of thepsut of any wavelet,
then the aforementioned splitting smoothness preserving. Using this result, the
overall method was shown to be (quasi-) optimal assumingBHa s-admissable
for somes> smnax (cf. the discussion in Sect. 6.3). The boundedne&s:0f/S — 7S

is notrequired.

Note that the method with the deletion of the coefficients t@respond to
wavelets associated to other subdomains, but that are gufpported in the cur-
rent subdomain is actually closer to the original Schwarthoeéfrom [Sch90] than
the method we described first. Indeed, what is left afterdbistion process is es-
sentially only boundary data for the problem on the currabti®main. The method
with deletion is also cheaper to implement since it requinescomputation of less
entries in the system matrix corresponding to pairs of wetgedssociated to differ-
ent subdomains. Recall that the quadrature problem to appate those entries is
more demanding.

Numerical results reported in [SWO09] show that quantityithis multiplicative
adaptive Schwarz method is much more efficient that the agegteepest descent
method described in Sect. 6.3.

7 Adaptive methods based on tensor product wavelet bases

7.1 Tensor product wavelets

Let Q be a product domain, i.eQ = Q; x --- x Qp, then fort > 0,
H'(Q) =H'(Q1)®L2(Q2) @ ®La(Qn) N+ NL2(Q1) @+ ® La(Qn-1) ©H' (Qn)

Fort ¢ No+ 3, the same holds true witH!(Q) reading aH}(Q) andH'(%;) as
H§(Q). Similar statements involving boundary conditions of loweder, or with
boundary conditions on a part of the boundary (of produce}ygre also valid
([DS09a)). .

Now for 1< i < n, let ¢() = {L[J;I) A € 0} € HY(Q) be a Riesz basis for
Lo(Qi) that, when normalized il (Q;), is a Riesz basis fdd'(Q;). Wavelet bases
are known to have this property for a range .ofhen using above characterization
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of H'(Q), it can be shown (cf. [GO95]) that the tensor product wavedesis
W=wWg. . .ouh_ 1y, = %(?@...%(:) AeD:=0Wx...xOMy

is a Riesz basis fad'(Q).

Note that the widths of the support of a tensor product wavekasured in the
coordinate directions can differ to an arbitrarily largegesd. Furthermore, other
than with a (standard) wavelet basis, there exists no restilution analysis o®
such that (biorthogonal) complement spaces are spannedudysat of.

In spite of these differences, tensor product wavelet besebe applied in adap-
tive wavelet algorithms. In order to show that these algani give (quasi-) optimal
results, what is needed to verify is that the representaifoime operator under
consideration in tensor product wavelet coordinates caufiieiently well approx-
imated by computable sparse matrices in relation to thepgmesstible convergence
rate that can be expected. That s, what is needed to chedieihers® > syax, With
Smax being defined in Sect. 1.1 astfrom Definition 2 in Sect. 3.3.

7.2 Non-adaptive approximation

Let Q; be a domain of dimension and¥() be a wavelet basis of ordef > t,
cf. Example 1. Then it is well-known that a sufficiently smiodinction onQ can
be approximated irH!(Q) from the sequence of spacéspari{@, : 31 |Ai| <
£}), with rate Smax = max d'T._t up to some log-factors (the error bound reads as
di—t
N~ 75 (logN)9 for someq > O with N being the number of unknowns). This
type of approximation is known asparse-gridor hyperbolic crossapproxima-
tion (see [Zen91, DKT98, BG04]). Far> 0, the aforementioned log-factors can
even be removed by considering slightly modified approxiomaspaces, known
asoptimized sparse-grigpaces ([GKOQ]). In particular, from now on thinking of
n=...=nyp=1andd; =... =d, =:d >t, a sufficiently smooth function on
ann-rectangle is approximated Ht for t > 0 by optimized sparse grids with rate
Smax = d —t. That is, the so-called “curse of dimensionality” — the fdwit with
standard wavelet (or finite element) approximation theisaiteversely proportional
with the space dimension — is completely removed.

7.3 BestN-term approximation and regularity

Sparse grid approximation ison-adaptiveand the aforementioned high conver-
gence rate requires a smoothness of the function being @ppated that the solu-
tion of an operator equation may not possess. Indeed, in§BSOwas shown that
for the Poisson problem on threrectangle with homogeneous Dirichlet boundary
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conditions and a smooth right-hand side, the optimizedsgpgiid convergence rate
in HY is % + % instead ofsnax = d — 1 that would be obtained when the solution
was sufficiently smooth. Only if the right-hand side vanske a sufficiently high
order at the non-smooth parts of the boundary, the bestlgesate is obtained.

The requirements to approximate a function onrthrectangle with a certain rate
s < Smax = d —t with best N-term approximatioinom the tensor product basis, i.e.,
the requirements for the function to be.i#, are (much) milder than the require-
ments to obtain this rate with (optimized) sparse grid apjpnation. Fors < Smax, &
characterization of7* in terms of intersections of tensor products of Besov spaces
was given in [Nit06]. Following earlier work in [Nit05], for € N in [DS09a] it
was shown that if a function on then-rectangle has partial derivatives up to order
nd in certain weighted., spaces, with weights that vanish at the boundary, then
u e 797, What is more, additionally it was shown that the solutioranfelliptic
boundary value problem of ordet &n then-rectangle with smooth coefficients,
homogeneous Dirichlet boundary conditions and a smootit-tignd side satisfies
these regularity conditions.

Here we emphasize that for sufficiently langendd, a rated —t cannot be re-
alized with besN-term standard wavelet approximation. Indeed, with wasedé

orderd, in n space dimensions the best possible ra@’qﬁsA (near) characterization

of &7+ can be given in terms of certain Besov spaces. It is knownghiewy that
for n > 3, the solution of an elliptic boundary value problem hasgtkh smooth-
ness in this scale of Besov spaces. In other words, one cammply choose the
rate at one’s convenience by increasing the oddém any case in three dimensions,
with finite elements of orded one can realize the best possible r%?§é by includ-
ing anisotropicrefinements towards the boundary ([Ape99]). The tensorywobd
wavelet approach has the unique additional feature thattleeyax does not dete-
riorate with an increasing space dimension.

7.4 s*-computability

In order to conclude that the adaptive tensor product wawvedthod converges at
the same rate as the sequence of bettrm approximations with respect to the ten-
sor product basis in linear complexity, it is needed #iat snax= d —t. For bound-
ary value problems with homogeneous Dirichlet boundarydd@ns and smooth
coefficients and piecewise smooth, sufficiently globallysith univariate wavelets
with sufficiently many vanishing moments, this has beenfiegtin [SS08]. Think-
ing of the arbitrarily stretched supports of the tensor patdvavelets, one might
consider it as counterintuitive that an operator is bettengressible in a tensor
product wavelet basis than it is in a standard wavelet bakiskey is that the sizes
of the entries decay exponentially as function ofshenof the absolute differences
in levels of the tensor product wavelets involved. Compbdisg of integrodifferen-
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tial operators has been investigated in [Rei08].

7.5 Truly sparse stiffness matrices

Recently, in [DS09b] a univariate wavelet basis of cubicrrige splines was con-
structed that has the property that any second order boyrdare problem with
constant coefficients and homogeneous Dirichlet boundarglitions on the-cube
with respect to the-fold tensor product basis teuly sparse As a consequence, the
application of an adaptive wavelet method simplifies enarsho Indeed, the ap-
plication of the stiffness matrix to any finitely supportegector can be performed
exactly in linear complexity. Also with non-constant, sritoooefficients, the appli-
cation of this basis in the adaptive wavelet Galerkin meibedivantageous. For the
approximate residual computation, being the most time wmirsg part of the algo-
rithm, entries outside the nonzero pattern of a constarfficeat operator, except
those that correspond to wavelets on a few coarsest levelanarder of magnitude
smaller than those inside this pattern, and so can be disg¢ard

7.6 Problems in space high dimension

We have seen that the sequence of approximations producad &gaptive tensor
product wavelet method converges with the saate as the sequence of bdst
term approximations with respect to the tensor productsbasiis does not exclude
the possibility that the quotient of the error produced by #ldaptive method and
that of the besiN-term approximation of the same length grows with incregsin
n. Actually, generally in any case any available upper bowrdHis quotient will
grow exponentially as function af. A reason is that various estimates to bound
the error for the adaptive method depend critically on thed@on number of the
n-fold tensor product basis. If and only if the univariate ei@is are chosen to be
L,-orthogonal, this condition number is bounded uniformiynjiwhereas it grows
exponentially im otherwise.

In [DSSO08], then-fold tensor product of the univariate piecewise polyndmia
L,-orthogonal wavelet basis from [DGH96] is applied to soleastant coefficient
elliptic boundary value problems on therectangle. For this case, it was shown that
even thefactor that the adaptive method might lose compared to the [ddstrm
approximations is bounded by an absolute constant. Expetsrfor the Poisson
problem on then-cube with right-hand side 1 show, however, that the bettrm
approximations themselves still suffer from another,@lgh much milder curse
of dimensionality. Although for any dimensian the rate of approximation ik*
is d — 1, the number of unknowns needed to achieve a relative ealombsome
given tolerance grows exponentially with Apparently, the consta@ in the error
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boundCNY-1 grows exponentially witim. In view of the result from [NWO08] saying
that the approximation of a general infinitely differenteimultivariate function is
intractable this exponential growth of the constant is not surprising.

Likely, to approximate a function in high space dimensionih the current
hardware think of dimensions higher than say 8-10, one shewploit more
information about the function than only that it is the smlotof a boundary
value problem with somgeneral smooth right-hand side. As demonstrated in
[Gra04, BM02, HKO7], a class of functions that can be aca&lyaapproximated
in high space dimensions are the solutions of boundary yaiolelems with right-
hand sides that can be well approximated by a small numbepafrable functions.

7.7 Non-product domains

The application of tensor product wavelet bases is noticgstito Sobolev spaces
HY(Q) with t > 0 whereQ is product domain. Indeed, recall that the commonly
applied approaches to construct wavelet bases on a nomgirddmain start with
writing this domain as a non-overlapping union of subdorsaéach of them being

a smooth parametric image of timecube. With the approach based on extension
operators, wavelet bases on thkeube are lifted to the subdomains, after which
those that do not vanish at an interface between subdom@&issreothly extended
into neighbouring subdomains. This approach can be appkedatim to tensor
product wavelet bases on thecube.

Using anon-overlappingdomain decomposition, one may also think of con-
structing an aggregated frame based on tensor productetdases on the subdo-
mains. In the general case, however, where the underlyirigipas in the overlap
regions are not aligned, the compressibility of the resglgystem matrix will be
too low.

7.8 Other, non-elliptic problems

We considered well-posed linear operator equations oftteB: 2" — 2, where

Z =H' Q) or H§(Q) and Q is a product domain. In this casd!(Q) is an in-
tersection of tensor product of Sobolev spaces. Well-pagedator equationB :

2 — %', where2 and% are of this type arise more generally. We mention here
the “unfolding” of elliptic n-scale homogenization problems (cf. [AB96, HS05]) as
well as the higher dimensional partial differential eqoas for the mean field, two-
point correlation and possibly higher order moments of #relom solution of an
elliptic PDE with stochastic input data (cf. e.g. [ST03, HBSVPS06]).
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Another example is given by the space-time variational fdation of the
parabolic initial boundary value problem presented in S&& 4. In this case?” =
L2(0,T) @ HH(Q)NHY(0,T) @ H Q) andZ = (L»(0,T) @ H3(Q)) x L2(Q).

A classical approach to the numerical solution of the pdialatial boundary
value problem is th#lethod of Lineswhich reduces the problem by spatial semidis-
cretization to a system of coupled ordinary differential&ipns to be solved nu-
merically in(0,T). Conversely, in Rothe’s Method the problem is reduced b tim
semidiscretization to a sequence of coupled spatial tiellggoblems to be solved.
Both these approaches, and the more recently proposedntimoous Galerkin
method are essentially time marching methods. The ultimiateof adaptive meth-
ods is to achieve an approximate solution with an error belprescribed tolerance
at the expense of, up to an absolute multiple, minimal amoLcwmputer time and
storage. Due to the character of time stepping this seendgbaealize and, unlike
for elliptic problems, so far no optimality results seem &kmnown.

In [SS09], the aforementioned spacgsand? were equipped with tensor prod-
uct wavelet bases. The resulting system matrix was provée sufficiently com-
pressible and so the adaptive wavelet method applied tartindtaneously space-
time variational formulation converges with the rate ag tifdhe bestN-term ap-
proximations. While keeping discrete solutions on all tilexels is prohibitive for
time marching methods, thanks to the use of tensor prodsetshavith the method
in [SS09] there is no penalty in complexity because of thatewdhl time dimen-
sion.
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