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Abstract In [Math. Comp, 70 (2001), 27-75] and [Found. Comput. Math., 2(3)
(2002), 203-245], Cohen, Dahmen and DeVore introduced adaptive wavelet meth-
ods for solving operator equations. These papers meant a break-through in the field,
because their adaptive methods were not only proven to converge, but also with a
rate better than that of their non-adaptive counterparts incases where the latter meth-
ods converge with a reduced rate due a lacking regularity of the solution. Until then,
adaptive methods were usually assumed to converge via a saturation assumption. An
exception was given by the work of Dörfler in [SIAM J. Numer. Anal., 33 (1996),
1106–1124], where an adaptive finite element method was proven to converge, with
no rate though.

This work contains a complete analysis of the methods from the aforementioned
two papers of Cohen, Dahmen and DeVore. Furthermore, we givean overview over
the subsequent developments in the field of adaptive waveletmethods. This includes
a precise analysis of the near-sparsity of an operator in wavelet coordinates needed
to obtain optimal computational complexity; the avoidanceof coarsening; quan-
titative improvements of the algorithms; their generalization to frames; and their
application with tensor product wavelet bases which give dimension independent
rates.

1 Introduction

1.1 Non-adaptive methods

In this survey, we discuss optimally converging adaptive wavelet methods for solv-
ing well-posed linear operator equations
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Bu= f .

Such methods were introduced by Cohen, Dahmen and DeVore in [CDD01, CDD02].
For wavelet methods in general for solving operator equations, we refer to [Dah97,
Coh03, Urb09].

We assume thatB is a boundedly invertible linear operatorbetweenX and
Y ′, whereX andY are Hilbert spaces. As typical examples, we have in mind
linear partial differentialor singular integralequations, in which caseX andY

are Sobolev spaces or, for non-scalar equations, products of such spaces. We assume
that we have Riesz basesΨX = {ψX

λ : λ ∈ ∇} andΨY = {ψY

λ : λ ∈ ∇} for X

andY available, which are ofwavelet type. In most applications,X andY and
ΨX andΨY will be equal.

The adaptive wavelet methodology has been extended tonon-linearproblems,
see [CDD03a, DSX00a, CDD03b, CU05, BDS07, BU08]. Such problems, however,
will not be discussed in this paper.

A standardnon-adaptivenumerical (wavelet) method for solvingBu= f consists
of selecting aΛ from a fixed sequenceΛ0 ⊂Λ1 ⊂ ·· · with ∪iΛi = ∇, and computing
a (quasi-) best approximationuΛ to u from span{ψX

λ : λ ∈Λ}. The standard choice
for Λi is the set of all wavelet indicesλ with “level” up to i, so that span{ψX

λ : λ ∈
Λi} is equal to the span of all “scaling functions” on leveli. The counterpart of this
wavelet method in afinite element settingis the computation of the finite element
approximation with respect to ani timesuniformly refined initial mesh.

Associated toX andΨX , there exists a parameter

smax > 0

such that for a suitable choice of(Λi)i , for all u ∈ X that aresufficiently smooth

‖u−uΛi‖X . (#Λi)
−smax,

where this ratesmax cannot be improved by imposing additional smoothness condi-
tions or by another selection of(Λi)i .

For completeness, here and in the remainder of this work, with C . D we will
mean thatC can be bounded by a multiple ofD, independently of parameters on
whichC andD may depend. Obviously,C & D is defined asD . C, andC h D as
C . D andC & D.

Remark 1.There existu ∈ X for which a rate better thansmax can be realized.
Indeed, ifu happens to have a finite representation inΨX , or if it is exceptionally
close to such a function, then with a suitable choice of(Λi)i any rate can be realized.
Since such cases are exceptional, we may ignore them in the further considerations.

Typically, the parametersmax is a function of theorderof the wavelet basisΨX ,
the order of smoothness that is measured in the (Sobolev) spaceX , and the dimen-
sion of the underlying domain.
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Example 1.Let X = Hm(Ω) whereΩ is a bounded domain inRn, and letΨX be
a standard wavelet basis of orderd > m. Then

smax =
d−m

n
,

and withΛi being the set of all wavelet indicesλ with levels up toi, this ratesmax is
realized foru∈ Hd(Ω). More generally, fors∈ (0,smax] andu∈ Hsn+m(Ω), a rate
s is realized. This result is sharp in the sense that forε > 0, there exists no choice
(Λi)i such that the rates is realized for allu∈ Hsn+m−ε(Ω).

1.2 Adaptive methods

Even for smooth right-hand sidesf , in many applications the smoothness conditions
onu to realize the optimal ratesmaxwith the standard choice of(Λi)i are not fulfilled.
Typical examples are boundary value problems on non-smoothdomains, where cor-
ners, edges etc. induce singularities in the solution. For simple model examples, the
precise knowledge of these singularities enables one to select a sequence(Λi)i such
that the optimal ratesmax is retrieved, assumingf is sufficiently smooth. Such a se-
quence(Λi)i involves local refinements towards the boundary, i.e., the addition of
extra wavelets with supports near the boundary. For more general problems, how-
ever, such an a priori selection of(Λi)i is not feasible.

The topic of this work areadaptive(wavelet) methods. With these methods, the
expansion ofΛi to Λi+1 is made based on information provided byuΛi . In this way,
the sequences(Λi)i and(uΛi )i depend (non-linearly) onu.

The method from [CDD01] is similar to an adaptive finite element method in
the sense that information from an a posteriori error estimator is used to guide the
expansion ofΛi to Λi+1 such that the error is reduced, at the expense of a (quasi-)
minimal increase in the cardinality.

The idea behind the method from [CDD02] is the application ofsomeiterative
method to construct(Λi)i such that(uΛi )i converges (linearly) tou. Here a (quasi-)
optimal balance between support sizes and accuracy is realized by, after each fixed
number of iterations, removing small coefficients from the current approximation, a
process known ascoarsening.

The key to the development of adaptive wavelet methods is thefact that for a large
class of operatorsB, its bi-infinite stiffness or system matrix with respect to suitable
wavelet bases is close to a sparse matrix. Here suitable means that the wavelets are
sufficiently smoothand have sufficiently manyvanishing moments. Thanks to this
near-sparsity, given an approximationũ ∈ ℓ0 to u, its generally infinitely supported
residual can be accurately approximated at relatively low cost. This fact allows to
run an iterative scheme to the bi-infinite matrix vector equation, in which residuals
are computed approximately, essentially being the scheme from [CDD02], or to use
the approximate residual as an a posteriori error estimatoras in the scheme proposed
in [CDD01].
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1.3 BestN-term approximation and approximation classes

As a benchmark for these adaptive methods, we consider a (quasi-) best possible
choiceof (Λi)i depending on u, where we assume to have full knowledge of this
function, and thus of its expansion in the wavelet basisΨX . Givenu = u⊤ΨX :=
∑λ∈∇ uλ ψX

λ and an approximationv = v⊤ΨX , becauseΨX is a Riesz basis, it
holds that

‖u−v‖X h ‖u−v‖, (1)

where‖·‖ is the norm onℓ2 = ℓ2(∇) := {v : ∇→R : ∑λ∈∇ |vλ |2 < ∞}. The subspace
of finitely supportedv ∈ ℓ2 will be denoted asℓ0. As a consequence of (1), given a
budgetN ∈ N, a (quasi-) best choice for an approximationv = v⊤ΨX ∈ X with
#suppv≤ N is to takev to be abest N-term approximationto u, i.e., a vector with at
mostN non-zero coefficients that hasℓ2-distance tou not larger than any vector with
support length≤ N. Obviously, such a bestN-term approximation tou, denoted as
uN, coincides withu on thoseN positions whereu has itsN largest coefficients in
modulus, and is zero elsewhere. Note thatuN is not necessarily unique.

All u whose bestN-term approximations converge with rates> 0 are collected
in the approximation class

A
s(= A

s
∞) := {u ∈ ℓ2 : ‖u‖A s := sup

ε>0
ε × [min{N ∈ N0 : ‖u−uN‖ℓ2 ≤ ε}]s < ∞}.

(2)
Indeed, one may verify that‖u‖A s h supN∈N0

(N + 1)s‖u− uN‖, being the com-
monly used definition of the (quasi-) norm onA s. Givenu ∈ A s andε > 0, the
smallestN such that‖u−uN‖ ≤ ε satisfies

N ≤ ε−1/s‖u‖1/s
A s, (3)

which bound is generally sharp. Since forε < ‖u‖, the value ofN in the definition
of ‖u‖A s is positive, furthermore note that

‖u‖A s ≥ sup
0<ε<‖u‖

ε = ‖u‖.

As discussed in Remark 1, fors > smax, the classA s, although not empty, is
not relevant. For anys∈ (0,smax], the classA s is much larger than the class of
(representations of) functions that can be approximated with rates for any fixed
choice of(Λi)i .

Example 2.In the situation of Example 1, with wavelets that are sufficiently smooth,
for s∈ (0, d−m

n ) and withτ := (1
2 + s)−1, (representations of) all functions in the

Besov spaceBsn+t
τ (Lτ(Ω)) are contained inA s. Coarsely speaking,Bsn+t

τ (Lτ (Ω)) is
the space of all functions havingsn+ t orders of smoothness inLτ (Ω), which space,
sinceτ < 2, is thus (much) larger thanHsn+t(Ω) with an increasing difference with
growings. For details about the relation between approximation classes and Besov
spaces we refer to [DeV98, Coh03]. For several boundary value problems, assuming
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a sufficiently smooth right-hand sidef , it has been proved that the solutionu has
a much higher regularity in this scale of Besov spaces than inthe scale of Sobolev
spaces(Hsn+m(Ω))s, see [DD97, Dah99].

In view of the definition ofA s, in particular (3), we will call anadaptive wavelet
method to be (quasi-) optimalif

whenever u has a representation u= u⊤ΨX with u ∈ A s for some
s∈ (0,smax], then given a toleranceε > 0, it produces an approximation

v ∈ ℓ0 with ‖u− v‖ ≤ ε and #suppv . ε−1/s‖u‖1/s
A s, at the cost of a

number of arithmetic operations that can be bounded by some absolute
multiple of the same expression.

1.4 Structure of the paper

The remainder of this work is organized as follows: In Sect. 2, we reformulate well-
posed operator equations as bi-infinite matrix vector equations, and give some typi-
cal examples of such operator equations.

In Sect. 3 and 4, we define the adaptive wavelet schemes from [CDD02] and
[CDD01], respectively, and prove their (quasi-) optimality. Note that we reverse the
order in which these schemes were proposed.

The analysis from Sect. 3 and 4 applies under the assumption that the operator
B in wavelet coordinates can be sufficiently well approximated by sparse matrices
that are computable in linear complexity. In Sect. 5, we verify this assumption for a
class of partial differential operators.

In Sect. 6, we discuss the generalization of the adaptive wavelet approach to the
case that instead of Riesz bases we only have frames available. Our motivation will
be that on general non-product domains, the construction of(wavelet) frames is
easier than that of (wavelet) Riesz bases.

Finally, in Sect. 7, the application of tensor product wavelet bases is discussed.
Approximation using such bases does not suffer from the so-called curse of dimen-
sionality. An application of those bases is given by the (quasi-) optimal simultane-
ously space-time adaptive solution of parabolic initial boundary value problems.

1.5 Some properties of the (quasi-) norms‖ · ‖A s

We end this section by recalling two known properties of the‖ · ‖A s-norm (cf. e.g.
[DeV98]) that will be used in Sect. 3 and 4. In order to keep thepresentation in these
sections self-contained, we include their proofs.

Lemma 1. For v ∈ A s andw ∈ ℓ0,

‖w‖A s ≤ 2max(‖v‖A s,(#suppw)s‖v−w‖).



6 Rob Stevenson

Proof. For ε ∈ (0,2‖v−w‖], the approximation ofw by itself shows that the ex-
pressionεNs in the definition of‖w‖A s is bounded by 2‖v−w‖(#suppw)s.

For ε ≥ 2‖v−w‖, let N be the smallest integer such that‖v− vN‖ ≤ ε
2. Then

‖w−vN‖ ≤ ε andεNs = 2ε
2Ns ≤ 2‖v‖A s. ⊓⊔

Lemma 2. For s> 0 and withτ := (1
2 +s)−1,

‖v‖A s h sup
η>0

η ×#{λ ∈ ∇ : |vλ | > η}1/τ , (v ∈ A
s). (4)

Proof. Let us denote the expression at the right-hand side of (4) as|||v|||A s. Let N
be the smallest integer such that the entries ofv−vN are in modulus not larger than
η . ThenN ≤ (|||v|||A sη−1)τ , and

‖v−vN‖ ≤
∞

∑
k=0

2−kη
√

#{λ ∈ ∇ : |vλ | ∈ (2−(k+1)η ,2−kη ]}

≤
∞

∑
k=0

2−kη(|||v|||A s2k+1η−1)τ/2 . η1−τ/2|||v|||τ/2
A s ,

and so‖v‖A s . supη>0 η1−τ/2|||v|||τ/2
A s × ((|||v|||A sη−1)τ )s = |||v|||A s.

To show the other direction, first we note that

‖v−vN‖ ≤ N−s‖v‖A s (v ∈ A
s,N ≥ 1). (5)

Indeed, if‖v−vN‖ = ‖v−vN−1‖, thenvN = vN−1 = v and (5) is valid. Otherwise,
i.e., when‖v−vN‖< ‖v−vN−1‖, by puttingε := ‖v−vN‖, the definition of‖·‖A s

shows (5).
With (γN(v))N∈N denoting a non-decreasing re-arrangement ofv in modulus,

secondly we note that

sup
N∈N

N1/τ |γN(v)| . ‖v‖A s (v ∈ A
s). (6)

Indeed,|γ1(v)| ≤ ‖v‖ ≤ ‖v‖A s. For 1≤ k < N,

(N−k)|γN(v)|2 ≤ ∑
k< j≤N

|γ j(v)|2 ≤ ‖v−vk‖2 ≤ k−2s‖v‖2
A s,

or |γN(v)| ≤ min1≤k<N
k−s

(N−k)
1
2
‖v‖A s h N−1/τ‖v‖A s.

Now givenN ∈ N0, let η := γN+1(v), then #{λ ∈ ∇ : |vλ | > η} = N. Fromη .
(N+1)−1/τ‖v‖A s, we arrive at|||v|||A s . supN(N +1)−1/τ‖v‖A s ×N1/τ ≤ ‖v‖A s.

⊓⊔
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2 Well-posed linear operator equations

2.1 Reformulation as a bi-infinite matrix vector equation

Let X ,Y be separable (infinite dimensional) Hilbert spaces overR (the complex
case does not impose additional difficulties apart from requiring somewhat more
complicated notations). Let us assume that we have available aRiesz basisΨX =
{ψX

λ : λ ∈ ∇} for X , meaning that theanalysis operator

FX : X
′ → ℓ2 : g 7→ [g(ψX

λ )]λ∈∇,

is boundedly invertible. By identifyingℓ2 with its dual, its adjointF ′
X

, known as
thesynthesis operator, and defined byg(F ′

X
c) = 〈FX g,c〉ℓ2×ℓ2 (g∈ X ′,c∈ ℓ2),

reads as
F

′
X : ℓ2 → X : c 7→ c⊤ΨX := ∑

λ∈∇
cλ ψX

λ .

Similarly, letΨY = {ψY

λ : λ ∈ ∇} be a Riesz basis forY , with analysis operator
FY and adjointF ′

Y
. For bothΨX andΨY , we have suitablewaveletbases in

mind. Note that w.l.o.g. we could assume that the index set∇ is the same forΨX

andΨY .
Now given anf ∈ Y ′, and a boundedly invertibleB∈ L (X ,Y ′), we are inter-

ested in solving thelinear operator equationof findingu∈ X such that

Bu= f .

Writing u = sX u, and applyingFY to both sides of the equation, we infer that the
problem can equivalently be written as the bi-infinite matrix vector problem

Bu = f, (7)

wheref := FY f = [ f (ψY

λ )]λ∈∇ ∈ ℓ2, and the“stiffness” or system matrix

B := FY BF
′
X = [(BψX

µ )(ψY

λ )]λ ,µ∈∇ ∈ L (ℓ2, ℓ2)

is boundedly invertible. With〈·, ·〉 := 〈·, ·〉ℓ2×ℓ2, for anyv, w ∈ ℓ2,

〈Bv,w〉 = 〈FY BF
′
X v,w〉 = (Bv)(w), (8)

wherev = F ′
X

v andw = F ′
Y

w.
With the Riesz constants

ΛΨX := ‖FX ‖X ′→ℓ2
= sup

06=g∈X

‖FX g‖ℓ2

‖g‖X ′
,

λΨX := ‖(FX )−1‖−1
ℓ2→X ′ = inf

06=g∈X

‖FX g‖ℓ2

‖g‖X ′
,
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andΛY andλY defined analogously, and with‖ · ‖ := ‖ · ‖ℓ2→ℓ2, obviously it holds
that

‖B‖ ≤ ‖B‖X →Y ′ΛΨX ΛY , (9)

‖B−1‖ ≤ ‖B−1‖Y ′→X

λΨX λY

. (10)

Remark 2.Although not strictly necessary for the remainder of this paper, we make
a few comments aboutdual bases. The collection

ΨX ′
= (F ′

X FX )−1ΨX

is the Riesz basis forX ′ that is dual toΨX . Indeed, since the corresponding anal-
ysis operatorFX ′ reads as(F ′

X
)−1, it is boundedly invertible, and soΨX ′

is a
Riesz basis forX ′. It holds thatF ′

X ′FX = I , which, sinceΨX ′
is a basis, implies

thatψX ′
λ (ψX

µ ) = δλ µ .

Given a∇̃ ⊂ ∇, Q∇̃ : X → X : v 7→ ∑λ∈∇̃ ψX ′
λ (v)ψX

λ is thebiorthogonal pro-

jector onto span{ψX

λ : λ ∈ ∇̃}, i.e.,Q2
∇̃ = Q∇̃ andψX ′

λ vanishes on Im(Id−Q∇̃)

for all λ ∈ ∇̃. We have‖Q∇̃‖X →X ≤ ΛΨX /λΨX , and so

‖v−Q∇̃v‖X ≤ (1+ΛΨX /λΨX ) inf
w∈span{ψX

λ :λ∈∇̃}
‖v−w‖X .

The dual projectorQ′
∇̃ : X ′ → X ′, that reads asQ′

∇̃(g) = ∑λ∈∇̃ g(ψX

λ )ψX ′
λ , has

analogous properties.
If we identify X ′ with X using the Riesz map, then if, using this identifica-

tion,ΨX andΨX ′
are equal, thenQ∇̃, being equal to its adjoint, is the orthogonal

projector onto span{ψX

λ : λ ∈ ∇̃}.
Obviously, similar observations can be made for the collectionsΨY and its dual

ΨY ′
.

2.2 Some model examples

We give some examples of partial differential equations or singular integral equa-
tions that are of the formBu= f with B∈ L (X ,Y ′) boundedly invertible. More
examples can be found in [CDD02, DK05].

2.2.1 Second order elliptic boundary value problems

The variational formulation of a second order elliptic boundary value problem on a
domainΩ ⊂ Rn with homogeneous Dirichlet boundary conditions reads asBu= f ,
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where
(Bu)(v) :=

∫

Ω
A∇u ·∇v+(b ·∇u)v+cuvdx.

If A ∈ L∞(Ω)n×n, b ∈ L∞(Ω)n, c ∈ L∞(Ω), c ≥ 0 (a.e.), ∇ · b = 0 (a.e.) and, for
someδ > 0, A ≥ δ > 0 (a.e.), then(Bv)(v) ≥ δ |v|2

H1(Ω)
& ‖v‖2

H1(Ω)
(v∈ H1

0(Ω)),

i.e., B is coercive. The Lax-Milgram lemma now shows that withX := H1
0(Ω),

B : X → X ′ is boundedly invertible.

Remark 3.If ∂Ω ∈C2 or Ω is convex, and the coefficients of the differential oper-
ator satisfy some mild smoothness conditions, thenB : H2(Ω)∩H1

0 (Ω) → L2(Ω)
is boundedly invertible, e.g., see [Hac92] + references cited there. Since the same
is valid for the adjointB′, defined by(B′v)(u) = (Bu)(v), we also have thatB :
L2(Ω) → (H2(Ω)∩H1

0 (Ω))′ is boundedly invertible. In view of the possibility to
takeX 6= Y , we infer that the adaptive wavelet method can be used also torealize
the best possible convergence rate inL2(Ω).

2.2.2 Boundary integral equations

For Ω being some domain inR3, let Γ := ∂Ω . The Laplace equation onΩ or on
R3\Ω , with either Dirichlet or Neumann boundary conditions can be reformulated
as a boundary integral equation of type(Bu)(v) :=

∫

Γ Lu(x)v(x)dsx = f (v) (v∈X ),
where either

Lu(x) :=
∫

Γ

u(y)
4π |x−y|dsy, X := H− 1

2 (Γ ), (11)

or

Lu(x) := ±1
2

u(x)+
∫

Γ

(x−y)⊤nyv(y)
4π |x−y|3 dsy, X := L2(Γ ), (12)

or

Lu(x) := −∂nx

∫

Γ

(x−y)⊤nyv(y)

4π |x−y|3 dsy, X := H
1
2 (Γ )/R. (13)

In all three cases,B : X → X ′ is known to be boundedly invertible.

2.2.3 Stokes equations

The variational formulation of the Stokes equations on a domain Ω ⊂ Rn with ho-
mogeneous Dirichlet boundary conditions reads as

(B(~u, p))(~v,q) :=
∫

Ω
∇~u : ∇~vdx+

∫

Ω
pdiv~vdx+

∫

Ω
qdiv~udx= ~f (~v)
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(~v ∈ H1
0(Ω)n, q ∈ L2,0(Ω)). With X := H1

0(Ω)n × L2,0(Ω), it is well-known that
B : X → X ′ is boundedly invertible.

2.2.4 Parabolic evolution equations

For some domainΩ ⊂ Rn andT > 0, we consider the parabolic problem






(∂tu+ ∇x ·A∇xu+b ·∇xu+cu)(t,x) = g(t,x) (t ∈ (0,T), x∈ Ω),
u(t,x) = 0 (t ∈ (0,T), x∈ ∂Ω),
u(0,x) = h(x) (x∈ Ω),

whereA ∈ L∞((0,T)×Ω)n×n, b ∈ L∞((0,T)×Ω)n, c∈ L∞((0,T)×Ω), and, for
someδ > 0, A ≥ δ > 0 (a.e.). With

X := L2(0,T)⊗H1
0(Ω)∩H1(0,T)⊗H−1(Ω)

i.e.,X is an intersection of Bochner spaces, and

Y := (L2(0,T)⊗H1
0(Ω))×L2(Ω),

and assuming thatg∈ L2((0,T);H1
0(Ω))′ andh∈ L2(Ω), a variational formulation

of this problem reads as: Findu∈ X such that

(Bu)(v1,v2) :=
∫ T

0

∫

Ω
(∂tu)v1 +A∇xu ·∇xv1 +(b ·∇xu)v1 +cuv1dxdt+

∫

Ω
u(0, ·)v2dx

=
∫ T

0

∫

Ω
gv1dxdt+

∫

Ω
hv2dx ((v1,v2) ∈ Y ).

The operatorB : X → Y ′ is boundedly invertible (cf. [SS09], [DL92, Ch.XVIII,
§3], [Wlo82, Ch.IV,§26]).

3 Adaptive wavelet schemes I: Inexact Richardson iteration
([CDD02])

3.1 Richardson iteration

Throughout this section, until Sect. 3.4, we willassumethat there exists anα ∈ R

such that
‖Id−αB‖ < 1, (14)

i.e., we will assume that a properly damped Richardson iteration

u(i+1) = u(i) + α(f −Bu(i))
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applied to (7) converges linearly.

Lemma 3. In addition to being boundedly invertible, letB satisfyB = B⊤ > 0. Then
for α ∈ (0,2/‖B‖),

‖Id−αB‖ = max(α‖B‖−1,1−α‖B−1‖−1) < 1,

with minimumκ(B)−1
κ(B)+1 whenα = 2/(‖B‖+‖B−1‖−1), whereκ(B) := ‖B‖‖B−1‖.

Proof. SinceB = B⊤, ‖Id−αB‖ = maxλ∈σ(Id−αB) |λ | = maxµ∈σ(B) |1−αµ |, and
from B > 0, we haveσ(B) ⊂ [‖B−1‖−1,‖B‖]. Elementary calculations now com-
plete the proof. ⊓⊔

If, apart from being boundedly invertible betweenX and Y ′, B is symmet-
ric, i.e., X = Y and (Bv)(w) = (Bw)(v) (v,w ∈ X ), andpositive definite, i.e.,
(Bv)(v) > 0 (v ∈ X ), then, because of (8), so isB and Lemma 3 applies. The ex-
ample from Sect.2.2.1 whenb = 0, as well as the example from Sect. 2.2.2 in the
cases (11) and (13) fall into this category.

If X = Y andB is bounded andcoercive, i.e., for someδ > 0,(Bv)(v)≥ δ‖v‖2
X

(v ∈ X ), then (8) and the next lemma show that the properly damped Richardson
iteration is again convergent. An application is given by the example from Sect.2.2.1
for generalb ∈ L∞(Ω)n with ∇ ·b = 0 (a.e.).

Lemma 4. If, in addition to B being bounded,BS := 1
2(B + B⊤) > 0 and has a

bounded inverse, then forα ∈ (0,1/(‖BS‖+‖B−1
S ‖−1)] with α < 2/(‖B−1

S ‖‖B‖),

‖Id−αB‖ ≤
√

1−2α‖B−1
S ‖−1+ α2‖B‖2 < 1.

Proof. As shown in Lemma 3, forα ∈ (0,1/(‖BS‖+ ‖B−1
S ‖−1)], ‖Id−2αBs‖ ≤

1−2α‖B−1
S ‖−1. This shows that

‖Id−αB‖2 = ‖(Id−αB)(Id−αB⊤)‖
= ‖Id−2αBS+ α2BB⊤‖ ≤ 1−2α‖B−1

S ‖−1 + α2‖B‖2 < 1,

whenα < 2/(‖B−1
S ‖‖B‖).

⊓⊔

3.2 Practical scheme

Of course the Richardson iteration cannot performed exactly. Generally the right-
hand sidef is infinitely supported, and althoughB is close to being sparse, generally
so is any column ofB. The idea proposed in [CDD02] is to apply Richardson it-
eration with inexact evaluations of the matrix-vector product and of the right-hand
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sidef. It is easily seen that with a proper decay of the tolerances for these inexact
evaluations as the iteration proceeds, the perturbed iteration is still linearly conver-
gent. The issues at stake are whether the support lengths of the iterands are, up to a
constant multiple, equal to the generally best possible bounds on the lengths of the
bestN-term approximations that give rise to the same error, and whether the com-
putational costs to produce such iterands are bounded by thesame expressions. To
ensure these properties, i.e., to ensure (quasi-)optimalityof the algorithm, assump-
tions are needed on the cost of the inexact application ofB and that of the inexact
evaluation of the right-hand side as a function of the prescribed tolerance.

Definition 1. For s̄> 0, B will be called to be ¯s-admissiblewhen we have available
an approximate matrix times vector routine

APPLY [w,ε] → zε

that, for anyε > 0 andw ∈ ℓ0, yields azε ∈ ℓ0 with

‖Bw−zε‖ ≤ ε,

and, for anys∈ (0, s̄],

#suppzε . ε−1/s‖w‖1/s
A s, (15)

where the number of operations used by the callAPPLY [w,ε] is bounded by some
absolute multiple of

ε−1/s‖w‖1/s
A s +#suppw+1. (16)

As we will see, in order to guarantee optimality of the inexact Richardson iter-
ation, as well as of the alternative Adaptive Wavelet-Galerkin Method discussed in
Sect. 4, it will be needed that ¯snot less than thats for which the solutionu happens
to be inA s. That is, with the best possible ratesmax as introduced in Sect. 1.1,it
will be sufficient, and generally necessary,when

s̄≥ smax, (17)

an issue that was somewhat ignored in the early publicationson adaptive wavelet
methods. In Sect. 5, we will see that for partial differential operators with suffi-
ciently smooth coefficients and for wavelets that are sufficiently smooth and have
sufficiently many vanishing moments (or, more generally, cancellation properties)
indeed (17) is valid. We include pointers to the literature where it is shown that the
same holds for classes of singular integral operators,

In view of the definition ofA s, a consequence of (15) is thatB, restricted toℓ0,
is a bounded mapping fromA s to A s for s∈ (0, s̄]. As shown in [CDD01, Prop.
3.8], we even have:

Proposition 1. LetB bes̄-admissible. Then for s∈ (0, s̄], B : A s → A s is bounded,
and forzε := APPLY [w,ε], we have‖zε‖A s . ‖w‖A s, uniformly inε.
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Proof. Fors∈ (0, s̄], w∈A s andε > 0, letN∈N be such that‖B‖‖w−wN‖≤ ε/2,

and letzε/2 := APPLY [wN,ε/2]. Then #suppzε/2 . ε−1/s‖wN‖1/s
A s ≤ ε−1/s‖w‖1/s

A s,
and‖Bw−zε/2‖ ≤ ε, showing the first statement.

Lemma 1 and (15) show that‖zε‖A s . max(‖Bw‖A s,‖w‖A s) . ‖w‖A s. ⊓⊔

The requirement (16) basically means that the cost of producing zε is propor-
tional to its length plus that ofw.

Concerning the inexact evaluation of the right-hand side,throughout this paper
we assume availability of the following routine:

RHS[ε] → fε :
% Input:ε > 0.
% Output:fε ∈ ℓ0 with

‖f − fε‖ ≤ ε and #suppfε . min{N : ‖f − fN‖ ≤ ε},

% taking a number of operations that is bounded by some absolute multiple of
% #suppfε +1.

A realization ofRHS generally has to depend on the right-hand sidef at hand,
that, however, in contrast to the solutionu, is known to the user. Noting that for
∇̃ ⊂ ∇,

‖f − f|∇̃‖ h ‖ f − ∑
λ∈∇̃

f (ψY

λ )ψY ′
λ ‖Y ′ h inf

f̃∈span{ψY ′
λ :λ∈∇̃}

‖ f − f̃‖Y ′

(cf. Remark 2), we see that for sufficiently smoothf , RHS is realized by collecting,
or more precisely, by approximating using suitable quadrature, the wavelet coeffi-
cients of f up to some suitable level.

Corollary 1. Let B be s̄-admissible. If, for some s∈ (0, s̄], u ∈ A s, then fε :=

RHS[ε] satisfies#suppfε . ε−1/s‖u‖1/s
A s, where the number of operations used by

the callRHS[ε] is bounded by some absolute multiple of

ε−1/s‖u‖1/s
A s +1.

Proof. By the assumptions and Proposition 1, we havef ∈A s, with ‖f‖A s . ‖u‖A s.
Now the proof is completed by the definition ofA s and the assumptions made on
RHS. ⊓⊔

Remark 4.Recalling thatsmax is the approximation order ofΨX in X , let s̃max

denote the approximation order ofΨY ′
in Y ′.

The property, shown in Corollary 1, that for anyu ∈ A s with s≤ s̄, it holds
that f ∈ A s can only be expected when ˜smax ≥ min(s̄,smax). This means that ¯s-
admissibility ofB with s̄≥ smax requires that ˜smax≥ smax.

In the scalar model situation ofX = Y = Hm(Ω) for some domainΩ ⊂ Rn,
andΨX , ΨX ′

being wavelet collections of orderd, d̃, normalized inHm(Ω) or
(Hm(Ω))′, respectively, it holds thatsmax = d−m

n and s̃max = d̃+m
n . In this case,



14 Rob Stevenson

s̃max≥ smax means that̃d≥ d−2m. For differential- and integral operators, in Sect. 5
we will see that the conditioñd > d−2msuffices to demonstrate ¯s-admissibility of
B for s̄≥ smax.

Remark 5.The properties that‖f − fε‖ ≤ ε and, whenu ∈ A s, that #suppfε .

ε−1/s‖u‖1/s
A s, with the cost of producing it being bounded by some absolutemultiple

of ε−1/s‖u‖1/s
A s + 1 is all that will be needed aboutfε := RHS[ε]. Our assumptions

on RHS together with Corollary 1 show that these properties hold when B is s̄-
admissible for some ¯s≥ smax. The assumption, formulated in the description of the
RHS routine, that we can realize quasi-bestN-term approximations forf in linear
complexity is actually stronger than what is needed when ˜smax > smax.

BesidesAPPLY andRHS, the inexact Richardson iteration requires another sub-
routine:

COARSE[w,ε] → wε :
% Input:w ∈ ℓ0 andε > 0.
% Output:wε ∈ ℓ0 with

‖w−wε‖ ≤ ε and #suppwε . min{N : ‖w−wN‖ ≤ ε}, (18)

% taking a number of operations that is bounded by an absolutemultiple of

#suppw+max
(

log(ε−1‖w‖),1
)

.

An implementation of a routineCOARSE with these properties will be given in
Sect. 3.3.

The routineCOARSE will be applied after each fixed number of (inexact)
Richardson steps. The idea is to remove small coefficients from the iterands, that,
because they are small, little contribute to the approximation, but, because their pos-
sibly large number, may hamper an optimal balance between accuracy and support
length. Although obviously an application ofCOARSE generally increases the er-
ror, the following proposition ([Coh03, Th. 4.9.1]) shows that indeed it creates the
aforementioned optimal balance.

Proposition 2. Let ζ > 1 and s> 0. Then for anyε > 0, v ∈ A s andw ∈ ℓ0 with

‖v−w‖ ≤ ε,

for wζε := COARSE[ζε,w] we have that

#suppwζε . ε−1/s‖v‖1/s
A s, ‖wζε‖A s . ‖v‖A s,

and‖v−wζε‖ ≤ (1+ ζ )ε.
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Proof. The smallestN∈N0 with ‖v−vN‖≤ (ζ −1)ε satisfiesN≤ ((ζ −1)ε)−1/s‖v‖1/s
A s.

From‖w−vN‖ ≤ ‖w−v‖+‖v−vN‖ ≤ ε +(ζ −1)ε = ζε and (18), it follows that

#suppwζε . N . ε−1/s‖v‖1/s
A s.

The second and last statement follow from Lemma 1 and an application of the
triangle inequality, respectively. ⊓⊔

We are ready to give the inexact Richardson iteration:

Rich[ε,ε0] → uε :
% Input:ε > 0 andε0 ≥ ‖u‖.
% Parameters:θ < 1/2, K ∈ N andρ < 1 such that‖Id−αB‖ ≤ ρ and2ρK < θ .

i := 0, u(0) := 0
while εi > ε do

i := i +1
εi := 2ρKεi−1/θ
v(i,0) := u(i−1)

for j = 1, . . . ,K do

v(i, j) := v(i, j−1) + α(RHS[
ρ j εi−1
2αK ]−APPLY [v(i, j−1),

ρ j εi−1
2αK ])

enddo
u(i) := COARSE[(1−θ )εi,v(i,K)]

enddo
uε := u(i)

Theorem 1 ([CDD02]). Let ε0 ≥ ‖u‖, and ε > 0, thenuε := Rich[ε,ε0] satisfies

‖u−uε‖ ≤ ε. If for some s> 0, u ∈ A s, then#suppuε . ε−1/s‖u‖1/s
A s. If, addition-

ally, B is s̄-admissible, s≤ s̄ andε < ε0 . ‖u‖, then the number of operations used

by the callRich[ε,ε0] is bounded by an absolute multiple ofε−1/s‖u‖1/s
A s. In other

words, ifs̄≥ smax, then the inexact Richardson iteration is (quasi-) optimal.

Proof. For the first statement, it suffices to show that‖u−u(i)‖ ≤ εi . For i = 0, this
is clearly valid. Now for somei ≥ 1, let ‖u− u(i−1)‖ ≤ εi−1. For 1≤ j ≤ K, for

someδ j with ‖δ j‖ ≤ ρ j εi−1
K , we have

u−v(i, j) = (Id−αB)(u−v(i, j−1))+ δ j ,

and so

u−v(i,K) = (Id−αB)K(u−u(i−1))+
K

∑
j=1

(Id−αB)K− jδ j .

From‖Id−αB‖ ≤ ρ , we infer that

‖u−v(i,K)‖ ≤ ρKεi−1 +
K

∑
j=1

ρK− j ρ jεi−1

K
= 2ρKεi−1 = θεi , (19)



16 Rob Stevenson

and conclude that

‖u−u(i)‖ ≤ θεi +(1−θ )εi = εi

as required.
Now for somes> 0, let u ∈ A s. From (19) and the definition ofu(i), Proposi-

tion 2 shows that

#suppu(i) . ε−1/s
i ‖u‖1/s

A s, ‖u(i)‖A s . ‖u‖A s,

which bounds, as we emphasize here, hold uniformly ini. Sinceεi & εi−1, the first
bound shows the second statement of the theorem.

Now let B is s̄-admissible for some ¯s ≥ s. Since K is fixed, Proposition 1
shows that‖v(i, j)‖A s . ‖u‖A s, uniformly in i and j. The properties from Defi-

nition 1, together with Corollary 1 show that #suppv(i, j) . ε−1/s
i ‖u‖1/s

A s and that
the cost of computing it from the previous iterand is boundedby an absolute mul-

tiple of ε−1/s
i ‖u‖1/s

A s. For the latter, we have used that by assumption onε0, 1 .

ε−1/s
0 ‖u‖1/s≤ ε−1/s

i ‖u‖1/s
A s. Since the cost of the callCOARSE[(1−θ )εi ,v(i,K)] is

bounded by an absolute multiple of #suppv(i,K) +max(log(((1−θ )εi)
−1‖v(i,K)‖,1)

. ε−1/s
i ‖u‖1/s

A s, the proof is completed by using the linear decrease ofεi as function
of i. ⊓⊔

Remark 6.Although for anys∈ (0, s̄], APPLY [·,ε] : A s → A s is bounded, even
uniformly in ε, there is no guarantee that by a repeated application the‖ · ‖A s

(quasi-) norm of the iterands does not grow beyond any bound.This was the reason
to add coarsening to this inexact Richardson iteration. Numerical experiments have
shown that indeed generallyCOARSE is needed to ensure optimality of the inexact
Richardson iteration.

3.3 The routinesCOARSE and APPLY

The obvious implementation ofCOARSE[w,ε] → wε would be to order the ele-
ments ofw by non-increasing modulus, and then to definewε as the smallest pos-
sible head ofw such that the discarded tail has norm not larger thanε. Unfortu-
nately, withM := #suppw, this ordering requiresO(M logM) operations, so that
linear complexity cannot be realized. This is the reason that in [CDD01, CDD02]
on many places the suboptimal complexity of the sorting was taken into account
separately. Later, this problem was solved independently by Barinka and Metselaar
in [Bar05, Met02], who proposed to apply an approximate “bucket” sorting:

BUCKETSORT [w,ε] → (w[p])1≤p≤P :
% Input:w ∈ ℓ0, ε > 0.
% Output: A distribution of the (largest) elements ofw over P “buckets”.
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• Let P be the smallest positive integer with2−P/2‖w‖∞
√

#suppw ≤ ε.
• Store the indices ofw in one of the P buckets, depending on the modulus of the

corresponding coefficient to be in( 1√
2
‖w‖∞,‖w‖∞] (first bucket),(1

2‖w‖∞, 1√
2
‖w‖∞],

. . . , or (2−P/2‖w‖∞,2−(P−1)/2‖w‖∞], and discard them otherwise.
Let w[p] denote the restriction ofw to indices in bucket p.

The number of bucketsP is max(1,⌈2log2(‖w‖∞
√

#suppw/ε)⌉). This number is
chosen so that‖w−∑P

p=1w[p]‖ ≤ ε. This means that for the task of finding a (quasi)
minimal Λ such that‖w−w|Λ‖ ≤ ε, these coefficients can be discarded anyway.
This suggest the following coarsening routine:

COARSE[w,ε] → wε :
% Input:w ∈ ℓ0, ε > 0.

(w[p])1≤p≤P := BUCKETSORT [w,ε]
Build wε by extracting indices from the buckets, starting with the first bucket and
when it got empty continuing with the second one and so on, andwithin each
bucket in arbitrary order, until‖w−wε‖ ≤ ε.

Note that for smallε, the number of buckets can be larger than #suppw. Although
then necessarily some buckets are empty, the computationalcost of the call cannot
be bounded on some absolute multiple of #suppw alone. This cost, however, can be
bounded on some absolute multiple of #suppw plus the number of buckets. Further,
since squared coefficients within one bucket differ at most afactor 2, #suppwε is at
most twice as large as the length of the shortest approximation tow within tolerance
ε. We conclude that the above implementation realizes all properties ofCOARSE
that were mentioned in its description in the previous section (if necessary, consult
[GHS07, Remark 2.3]).

To define a validAPPLY routine, we have to assume thatB can be sufficiently
well approximated by computable sparse matrices. We will assume to have available
sequences(ej) j∈N0,(c j) j∈N0 ⊂ R, (B( j)) j∈N0 ⊂ L (ℓ2, ℓ2), such that

• ‖B−B( j)‖ ≤ ej , lim j→∞ ej = 0,
• the number of non-zeros in each column ofB( j), as well as the number of opera-

tions needed to compute them, is bounded byc j ,
• B(0) = 0 (and thus‖B‖ ≤ e0), c0 = 0 and supj∈N0

c j+1/c j < ∞.

So the fasterej decays as function ofc j , the closer isB to a computable sparse
matrix. This motivates the following definition:

Definition 2. Fors∗ > 0, B will be called to bes∗-computablewhen for anys< s∗,
supj ejcs

j < ∞.

By specifying an approximate matrix-vector multiplication routineAPPLY , next
we will show that ans∗-computable matrixB is s̄-admissible for any ¯s< s∗.

In theAPPLY routine proposed in [DSS08] and recalled below, for someP suf-
ficiently largew is split into ∑P

p=1w[p] plus its tailw−∑P
p=1w[p], after which for
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1≤ p≤ P, Bw[p] is approximated byB( jp)w[p], where (usually)jp grows with de-
creasingp. On the tailw−∑P

p=1w[p], and possibly also on somew[p] with p close to
P, B is simply approximated by the zero operator. So the basic idea is to approximate
columns ofB that correspond to large entries in the input vectorw more accurately
that those that correspond to entries that are small. This means thatAPPLY is an
adaptive routine, which depends non-linearly on the inputw.

A difference with the corresponding original routine proposed in [CDD01] is that
instead of the splitting ofw into buckets, each of them containing all entries ofw
with modulus in a certain range, therew was chopped into parts with prescribed
lengths. Secondly, and more importantly, instead of takingas in [CDD01] an a pri-
ori distribution of the accuracies of the approximations ofB over the parts, which
distribution was chosen to yield an error below the prescribed tolerance in a worst
case scenario, to enhance its quantitative performance, the current implementation
is based on a minimization of the cost for yielding an error below the tolerance using
a posteriori information.

APPLY [w,ε] → zε :
% Input:w ∈ ℓ0 andε > 0.

1. [(w[p])p] := BUCKETSORT [w,ε/(2e0)]

2. Compute the smallestℓ ∈ N0 with

δ := e0‖w−
ℓ

∑
p=1

w[p]‖ ≤ ε/2.

3. Determinej ∈ Nℓ
0 such that∑ℓ

p=1ej p‖w[p]‖ ≤ ε − δ and cj p . cj̃ p
(p = 1, . . . , ℓ),

wherej̃ ∈ Nℓ
0 is the solution of

ℓ

∑
p=1

cj̃ p
#suppw[p] → min!,

ℓ

∑
p=1

ẽj p
‖w[p]‖ ≤ ε − δ . (20)

4. Compute

zε :=
ℓ

∑
p=1

B(j p)w[p].

In practice, the cost of solving the exact solution (i.e.,j = j̃ ) of the small opti-
mization problem in 3 is neglectable. By using thatℓ = O(| logε|) (see the proof
of Theorem 2) below), and by deriving some a priori bounds for‖j̃‖∞, we expect it
to be possible to prove that these cost are indeed always neglectable compared to
the other cost of the algorithm. Instead of doing so, however, we show how to find
analytically a near optimum in 2 common situations: If for some constantsC andD,
c j = C2 j/s∗ andej = D2− j , so thatB is s∗-computable, then
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j̃ p = log2





( ‖w[p]‖
#suppw[p]

) s∗
s∗+1 ∑ℓ

q=1‖w[q]‖
1

s∗+1 (#suppw[q])
s∗

1+s∗

(ε − δ )/D





is the solution of (20) when minimization is performed overRℓ. If for some con-
stantsC, D andω > 0, c j = C j/ω andej = D2− j , so thatB is even∞-computable,
then

j̃ p = log2

(‖w[p]‖∑ℓ
q=1#suppw[q]

#suppw[p](ε − δ )/D

)

is the solution of (20) when minimization is performed overRℓ. Assuming thesẽj p

are non-negative, by rounding them up to the nearest value inN0 one obtains a valid
j .

Theorem 2. zε := APPLY [w,ε] satisfies‖Bw−zε‖≤ ε. If B is s∗-computable, then
for any s< s∗,

#suppzε . ε−1/s‖w‖1/s
A s, (21)

where the number of operations required by the call is bounded by some absolute
multiple of

ε−1/s‖w‖1/s
A s +#suppw+1. (22)

In other words,B is s̄-admissible for anȳs< s∗.

Proof. The estimates‖B‖‖w−∑ℓ
p=1w[p]‖ ≤ δ and∑ℓ

p=1‖B−B(j p)‖‖w[p]‖ ≤ ε−δ
show the first statement.

Let s∈ (0,s∗) and selects< s1 < s2 < s∗.
As we have seen, the cost of the callBUCKETSORT [w,ε/(2e0)] is bounded

by an absolute multiple of #suppw plus the number of buckets, the latter being not
larger than max(1,⌈2log2(‖w‖∞

√
#suppw/(ε/(2e0))⌉), so that the cost of the call

is bounded by an absolute multiple of #suppw+1+ ε−1/s‖w‖1/s
A s.

With τ := (1
2 +s)−1, Lemma 2 shows that

#suppw[p] ≤ #{λ ∈ ∇ : |wλ | > 2−p/2‖w‖∞} . 2pτ/2‖w‖−τ
∞ ‖w‖τ

A s,

so that

‖w[p]‖ . 2−p/2‖w‖∞

√

#suppw[p] . 2−psτ/2‖w‖1−τ/2
∞ ‖w‖τ/2

A s .

The proof will be completed once we have shown that there exists somej ∈ Nℓ
0

with ∑ℓ
p=1ej p‖w[p]‖ ≤ ε −δ and∑ℓ

p=1cj p#suppw[p] . ε−1/s‖w‖1/s
A s. Forℓ = 0 there

is nothing to prove, so we assume thatℓ > 0.
First, we derive an upper bound forℓ determined in step 2 ofAPPLY . By defini-

tion of ℓ, we have

ε/2 < e0‖w−
ℓ−1

∑
p=1

w[p]‖ = e0

√

∞

∑
p=ℓ

‖w[p]‖2 . e02−ℓsτ/2‖w‖1−τ/2
∞ ‖w‖τ/2

A s ,
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or
2ℓτ/2‖w‖−τ

∞ ‖w‖τ
A s . ε−1/s‖w‖1/s

A s. (23)

Note that here we used the notationw[p] also to denote the restriction ofw to indices
in buckets beyond those that were generated by the callBUCKETSORT [w,ε/(2e0)].

Next, letJ ≥ ℓ be defined as the smallest integer such that

ℓ

∑
p=1

2−(J−p)s1τ/2‖w[p]‖ ≤ ε − δ . (24)

In case thatJ > ℓ, from s1 > swe have

ε/2≤ ε − δ <
ℓ

∑
p=1

2−(J−1−p)s1τ/2‖w[p]‖

<
ℓ

∑
p=1

2−(J−1−p)s1τ/22−psτ/2‖w‖1−τ/2
∞ ‖w‖τ/2

A s

synthesis. 2−(J−1−ℓ)s1τ/22−ℓsτ/2‖w‖1−τ/2
∞ ‖w‖τ/2

A s

≤ 2−(J−1)sτ/2‖w‖1−τ/2
∞ ‖w‖τ/2

A s ,

or
2Jτ/2‖w‖−τ

∞ ‖w‖τ
A s . ε−1/s‖w‖1/s

A s. (25)

From (23) we see that the upper bound onJ given by (25) is also valid whenJ = ℓ.
Now we selectj p as to be the smallest integer such thatej p ≤ 2−(J−p)s1τ/2.

Then (24) shows that indeed∑ℓ
p=1ej p‖w[p]‖ ≤ ε − δ . Because of supj ejc

s2
j < ∞

and supj c j+1/c j < ∞, we havecj p . cj p−1 . e−1/s2
j p−1 < 2(J−p)(s1/s2)(τ/2). From (25),

we conclude that

ℓ

∑
p=1

cj p#suppw[p] .
ℓ

∑
p=1

2(J−p)(s1/s2)τ/22pτ/2‖w‖−τ
∞ ‖w‖τ

A s

. 2(J−ℓ)(s1/s2)τ/22ℓτ/2‖w‖−τ
∞ ‖w‖τ

A s

. 2Jτ/2‖w‖−τ
∞ ‖w‖τ

A s . ε−1/s‖w‖1/s
A s,

which completes the proof. ⊓⊔

3.4 Non-coerciveB

If B is non-coercive, then the Richardson iteration may not converge, and so the
inexact Richardson iteration does not apply. A general applicable remedy is to apply
the inexact Richardson iteration to thenormal equations
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B⊤Bu = B⊤f.

Clearly,B⊤B is symmetric, positive definite, and boundedly invertible with ‖B⊤B‖=
‖B‖2 and‖(B⊤B)−1‖ = ‖B−1‖2. In order to conclude that the inexact Richardson
iteration applied to the normal equations is (quasi-) optimal, what is left to show is
that for some ¯s≥ smax, B⊤B is s̄-admissible, and that we have a valid routine for
approximating the right-hand sideB⊤f in the sense of Remark 5. Proposition 3 from
[CDD02, Sect. 7] given below shows that both conditions are fulfilled whenB and
B⊤ ares̄-admissible for some ¯s≥ smax.

Concerning the latter, from Theorem 2, recall thatB is s̄-admissible for some
s̄≥ smax when it iss∗-computable for somes∗ > smax. The results demonstrating
s∗-computability ofB, that will be given in Sect. 5, are symmetric in the sense that
they also shows∗-computability ofB⊤ for the same value ofs∗.

Proposition 3. (a). If B andB⊤ are s̄-admissible, then so isB⊤B. With theAPPLY
routines forB andB⊤ denoted asAPPLYB andAPPLYBT , respectively, and with
e0 being an upper bound for‖B‖, a validAPPLY for B⊤B is given by

[w,ε] 7→ zε := APPLYB⊤ [APPLYB[w,ε/(2e0)],ε/2].

(b). For ε > 0, gε := APPLYB⊤ [RHS[ε/(2e0)],ε/2] satisfies‖B⊤f − gε‖ ≤ ε.
If B andB⊤ are s̄-admissible, then whenever for some s∈ (0, s̄], u ∈ A s, it holds

that #suppgε . ε−1/s‖u‖1/s
A s, with the cost of producing it being bounded by some

absolute multiple ofε−1/s‖u‖1/s
A s +1.

Proof. (a).

‖B⊤Bw−zε‖≤ ‖B⊤(Bw−APPLYB[w,ε/(2e0)])‖+ε/2≤‖B‖ε/(2e0)+ε/2≤ ε.

Let s∈ (0, s̄]. Putting tε := APPLYB[w,ε/(2e0)], from B being s̄-admissible, we

know that #supptε . ε−1/s‖w‖1/s
A s, and that the cost of producing it is bounded

by some absolute multiple ofε−1/s‖w‖1/s
A s + #suppw + 1. Moreover, Proposition 1

shows that‖tε‖A s . ‖w‖A s, uniformly in ε (and inw).

FromB⊤ beings̄-admissible, we know that #suppzε . ε−1/s‖tε‖1/s
A s . ε−1/s‖w‖1/s

A s,
and that the cost of producing it fromtε is bounded by a constant multiple of

ε−1/s‖tε‖1/s
A s + #supptε + 1 . ε−1/s‖w‖1/s

A s + 1. We conclude that indeedB⊤B is
s̄-admissible.

The proof of (b) is similar to that of (a). ⊓⊔

3.5 Alternatives for the Richardson iteration

As already appears from Lemma 3, the quantitative performance of the approximate
Richardson scheme will depend on the spectral condition number of the matrix be-
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ing inverted. In this respect, the approach, for non-coercive B, of applying the in-
exact Richardson iteration to the normal equations, which gives rise to a squared
condition number, might not always be the best possible choice.

For (symmetric) saddle point problems, as the Stokes equations from Sect. 2.2.3,
as alternatives, in [CDD02] it was proposed to apply the inexact Richardson iteration
to the reformulation introduced in [BP88] of the saddle point problem as a symmet-
ric positive definite system, or to the Schur complement system (if necessary after
first switching to the augmented Lagrangian formulation). In the latter case, each
iteration requires the application of the Schur complementoperator, and so in par-
ticular, the solution of an elliptic system. Necessarily, these systems can only be
solved approximately, in which case the resulting scheme isknown as the inex-
act Uzawa iteration. With the inner elliptic problems beingsolved with an adaptive
wavelet method, (quasi-) optimality of the overall scheme in the sense of Theorem 1
was demonstrated in [DDU02].

Also in cases where the Richardson scheme applies directly to Bu = f, one may
think of applying a more advanced iterative method. For symmetric and positive
definiteB, in [CU05, DFR+07b] it was shown that an approximateSteepest De-
scentmethod, with appropriate tolerances for the inexact matrix-vector and right-
hand side evaluations, is (quasi-) optimal. Since the asymptotic convergence rate of
the optimally damped Richardson iteration is equal to that of the Steepest Descent
method, the main advantage of the latter scheme lies in the fact that it frees the user
of the task of providing accurate estimates of the extremal eigenvalues ofB.

For B being only coercive, instead of the Steepest Descent method, theMinimal
Residualmethod (see e.g. [Saa03]) might be applied. We envisage that(quasi-) op-
timality of an approximate Minimal Residual method can be proven along the same
lines as for the Steepest Descent method. Since forB being only coercive it is even
less obvious how to choose the damping parameter in the Richardson scheme, the
advantage of the approximate Minimal Residual method is likely even bigger.

Even more advanced schemes than the Steepest Descent or Minimal Residual
method areKrylov subspacemethods, like the Conjugate Gradient method for sym-
metric positive definite systems. Clearly, in the infinite dimensional setting, these
schemes can only be applied with inexact evaluations of the residuals. Numerical
results are reported in [BK08]. With a suitable choice of thetolerances for these
inexact evaluations, the approximate Conjugate Gradient method has been shown
to converge ([vS04]). Yet, as far as we know, in the infinite dimensional setting it
has not been proven that there exists a choice of the tolerances such that the result-
ing scheme is not only convergent but also (quasi-) optimal.Indeed, recall that the
tolerances determine the support lengths of the iterands (except immediately after
coarsening), and with that the cost of the algorithm. So in view of this observation,
it is not necessarily true that a faster converging iteration gives rise, when applied
approximately, to a quantitatively better performing adaptive wavelet scheme.

In the next section, we will study the Adaptive Wavelet-Galerkin Method pro-
posed in [CDD01] and later modified in [GHS07]. As we will see,unlike the meth-
ods we discussed so far, this scheme cannot be viewed as an inexact evaluation of
some convergent iterative scheme applied to the bi-infinitematrix vector problem.
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4 Adaptive wavelet schemes II: The Adaptive Wavelet-Galerkin
Method ([CDD01, GHS07])

Throughout this section we will assume thatB is symmetric and positive definite,
i.e.,B = B⊤ > 0. Onℓ2(∇), we define

||| · ||| := 〈B·, ·〉 1
2 .

Remark 7.If B is not symmetric and positive definite, then the scheme presented
here can be applied to the normal equationsB⊤Bu = B⊤f, meaning that in the fol-
lowing everywhereB should be read asB⊤B andf asB⊤f.

For anyΛ ⊂∇, with ℓ2(Λ) we will mean the subspace ofv∈ ℓ2(∇) with supports
in Λ . The trivial embedding ofℓ2(Λ) into ℓ2(∇) will be denoted byIΛ , and its
adjoint with respect to〈·, ·〉, i.e., the operator that replaces coefficients outsideΛ by
zeros, will be denoted byPΛ . We set

BΛ := PΛ BIΛ .

Using thatB is symmetric and positive definite, one verifies that for anyΛ ⊆ ∇,

‖B−1
Λ ‖− 1

2‖ · ‖ ≤ ||| · ||| ≤ ‖BΛ‖
1
2‖ · ‖ on ℓ2(Λ),

‖B−1
Λ ‖− 1

2 ||| · ||| ≤‖BΛ · ‖ ≤ ‖BΛ‖
1
2 ||| · ||| on ℓ2(Λ),

as well as‖BΛ‖ ≤ ‖B‖ and‖B−1
Λ ‖ ≤ ‖B−1‖, which properties will be used often in

the following.

4.1 The Adaptive Wavelet-Galerkin Method (AWGM) in a idealized
setting

The solutionuΛ ∈ ℓ2(Λ) of BΛ uΛ = PΛ f is known as theGalerkin approximation
to u from ℓ2(Λ). With respect to||| · |||, it is the best approximation tou from this
subspace.

The idea of the AWGM is to loop over the following 2 steps: Given Λ ⊂ ∇,
compute the Galerkin approximationuΛ . EnlargeΛ to a setΛ̃ ⊂ ∇ such that for
some constantρ < 1, |||u−uΛ̃ ||| ≤ ρ |||u−uΛ |||. This loop is similar to the one that
underlies the Adaptive Finite Element Method (AFEM), wherethe enlargement ofΛ
corresponds to mesh-refinement. The AFEM is discussed by R. Nochetto in another
chapter of this book.

In the AFEM, a refinement that guarantees error reduction is obtained by com-
puting an a posteriori error estimator, being the square root of the sum of local error
indicators associated to the elements, and by refining thoseelements that carry the
largest error indicators and whose joint sum can be bounded from below on a con-
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stant multiple of the total squared a posteriori error estimator (this is known as the
so-calledbulk criterion). The AWGM works according to the same principle, with
the role of the a posteriori error estimator being played by the residualf −BuΛ ,
where for the moment we ignore the fact that this residual cannot be computed ex-
actly.

The next lemma, being [CDD01, Lemma 4.1], shows convergenceof the AWGM.
Although in this lemmaw can be a general function inℓ2(Λ), we have in mind it to
be (an approximation to) the Galerkin approximationuΛ .

Lemma 5. Let µ ∈ (0,1], w ∈ ℓ2(Λ) andΛ ⊂ Λ̃ ⊂ ∇ such that

‖PΛ̃ (f −Bw)‖ ≥ µ‖f −Bw‖. (26)

Then, foruΛ̃ ∈ ℓ2(Λ̃) being the solution ofBΛ̃ uΛ̃ = PΛ̃ f, we have

|||u−uΛ̃ ||| ≤ [1− µ2κ(B)−1]
1
2 |||u−w|||.

Proof. We have

|||uΛ̃ −w||| ≥ ‖B‖− 1
2‖B(uΛ̃ −w)‖ ≥ ‖B‖− 1

2‖PΛ̃ (f −Bw)‖
≥ ‖B‖− 1

2 µ‖f −Bw‖ ≥ µκ(B)−
1
2 |||u−w|||.

The proof of is completed by using the Galerkin orthogonality

|||u−w|||2 = |||u−uΛ̃ |||2 + |||uΛ̃ −w|||2. ⊓⊔

In Lemma 5,Λ̃ is some enlargement ofΛ such that the bulk criterion (26) is sat-
isfied. The natural approach is to constructΛ̃ by gathering the indices of thelargest
elements in modulus of the residual. In [CDD01], the corresponding practical algo-
rithm –i.e., with the inexact solution of the arising Galerkin systems and the inexact
evaluation of the residuals using theAPPLY andRHS routines– was shown to be
(quasi-) optimal by the addition of a recurrent applicationof COARSE, similar to
the inexact Richardson iteration from Sect. 3.

In the next lemma, being [GHS07, Lemma 2.1], it is shown that whenµ is taken
to be sufficiently small, then the cardinality of the expansionΛ̃\Λ can be controlled.
This lemma will be the key to show that the algorithm from [CDD01] without a
recurrent coarsening of the iterands is already (quasi-) optimal (coarsening will still
be used to find the large entries from the approximate residuals). Later, basically the
same technique was used to show that the standard adaptive finite element method,
so without coarsening, is (quasi-) optimal, see [Ste07].

Lemma 6. If, in the situation of Lemma 5,µ < κ(B)−
1
2 andΛ̃ ⊃ Λ is thesmallest

set satisfying(26), then

#(Λ̃\Λ) ≤ min{N : |||u−uN||| ≤ [1− µ2κ(B)]
1
2 |||u−w|||}. (27)
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Proof. For anN as in the right-hand side of (27), letΛ̆ := Λ
⋃

suppuN. Then, for
the solution ofBΛ̆ uΛ̆ = PΛ̆ f, we have|||u−uΛ̆ ||| ≤ |||u−uN|||, and so by Galerkin
orthogonality

|||uΛ̆ −w||| ≥ µκ(B)
1
2 |||u−w|||,

giving

‖PΛ̆ (f −Bw)‖ = ‖BΛ̆ (uΛ̆ −w)‖ ≥ ‖B−1‖− 1
2 |||uΛ̆ −w|||

≥ ‖B−1‖− 1
2 µκ(B)

1
2 |||u−w||| ≥ µ‖f −Bw‖.

By our assumption oñΛ , we conclude that #(Λ̃\Λ) ≤ #(Λ̆\Λ) ≤ N. ⊓⊔

Lemmas 5 and 6 suggest the following routine:

exact-AWGM:
% Parameter:µ ∈ (0,κ(B)−

1
2 ).

Λ0 := /0, uΛ0 := 0,
for i = 1,2, . . . do

find the smallestΛi+1 ⊃ Λi with ‖PΛi+1(f −BuΛi )‖ ≥ µ‖f −BuΛi‖
solveBΛi+1uΛi+1 = PΛi+1f

enddo

Proposition 4. For (uΛi )i produced byexact-AWGM, we have

|||u−uΛi ||| ≤ [1− µ2κ(B)−1]i/2|||u|||,

and if for some s> 0, u ∈ A s, then

#suppuΛi . ‖u−uΛi−1‖−1/s‖u‖1/s
A s.

Proof. For 0≤ k≤ i, Lemma 5 shows that|||u−uΛi ||| ≤ ρ i−k|||u−uΛk ||| whereρ :=

[1− µ2κ(B)−1
] 1

2 , which in particular shows the first statement.

Assuming thatu∈A s for somes> 0, withσ := [1−µ2κ(B)]
1
2 , Lemma 6 shows

that

#(ΛΛΛk\ΛΛΛk−1) ≤ min{N : |||u−uN||| ≤ σ |||u−uΛk−1|||}

≤ min{N : ‖u−uN‖ ≤ ‖B‖− 1
2 σ |||u−uΛk−1|||}

≤ [‖B‖− 1
2 σ |||u−uΛk−1|||]−1/s‖u‖1/s

A s,

by ||| · ||| ≤ ‖B‖ 1
2‖ · ‖ and the definition of‖ · ‖A s.

By combining both estimates, fori ∈ N we have
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#suppuΛi ≤ #ΛΛΛ i =
i

∑
k=1

#(ΛΛΛk\ΛΛΛk−1) ≤ ‖B‖1/2sσ−1/s‖u‖1/s
A s

i

∑
k=1

|||u−uΛk−1|||−1/s

≤ ‖B‖1/2sσ−1/s‖u‖1/s
A s|||u−uΛi−1|||−1/s

i

∑
k=1

(ρ i−k)1/s

≤ κ(B)1/2s σ−1/s

1−ρ1/s
‖u−uΛi−1‖−1/s‖u‖1/s

A s, (28)

by ‖ · ‖ ≤ ‖B−1‖ 1
2 ||| · |||. ⊓⊔

In view of the definition ofA s, note that the bound on #suppuΛi derived in
Proposition 4 is, up to some constant multiple, the generally best possible one.
That is, not taking into account the computational cost, theroutineexact-AWGM
is (quasi-) optimal.

4.2 Practical scheme

In this subsection, we turnexact-AWGM into a practical scheme by

• computing residuals only approximately,
• allowing that for the enlargementΛi+1 of Λi , which satisfies the “bulk criterion”,

#(Λi+1\Λi) is only minimal up to some constant multiple,
• solving the arising Galerkin problems only approximately.

The following proposition extends Lemmas 5 and 6 to this setting.

Proposition 5. Let δ ∈ (0,α), γ > 0 be constants such thatµ := α+δ
1−δ < κ(B)−

1
2

andγ < (1−δ )(α−δ )
1+δ κ(B)−1. GivenΛ ⊂ ∇ andw ∈ ℓ2(Λ), let r ∈ ℓ2(∇) be such that

‖f −Bw− r‖≤ δ‖r‖. (29)

LetΛ ⊂ Λ̃ ⊂ ∇ be such that
‖PΛ̃ r‖ ≥ α‖r‖ (30)

and such that, up to some absolute multiple,#(Λ̃\Λ) is minimal among all such̃Λ .
Let w̃ ∈ ℓ2(Λ̃ ) be an approximation touΛ̃ such that

‖PΛ̃ f −BΛ̃ w̃‖ ≤ γ‖r‖. (31)

Then it holds that1

|||u− w̃||| ≤ ρ |||u−w|||, (32)

whereρ :=
[

1−
(α−δ

1+δ
)2κ(B)−1 + γ2

(1−δ )2 κ(B)
] 1

2 < 1, and

1 Under the milder conditionγ < 1
3(α −δ )κ(B)−

1
2 , a more complicated proof ([Gan06, Proposi-

tion 3.2.2] or [GHS07, Theorem 2.7]) shows (32) for anotherρ < 1.
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#(Λ̃\Λ) . min{N : |||u−uN||| ≤ [1− µ2κ(B)]
1
2 |||u−w|||}.

Proof. From‖f −Bw‖ ≤ (1+ δ )‖r‖ and‖PΛ̃ r‖ ≤ ‖PΛ̃ (f −Bw)‖+ δ‖r‖, we have
‖PΛ̃ (f −Bw)‖ ≥ (α − δ )‖r‖ ≥ α−δ

1+δ ‖f −Bw‖, so that Lemma 5 shows that

|||u−uΛ̃ ||| ≤ [1− (α−δ
1+δ )2κ(B)−1]

1
2 |||u−w|||. (33)

We have

|||uΛ̃ − w̃||| ≤ ‖B−1‖ 1
2‖PΛ̃ f −BΛ̃ w̃‖ ≤ ‖B−1‖ 1

2 γ‖r‖
≤ ‖B−1‖ 1

2 γ
1−δ ‖f −Bw‖ ≤ γ

1−δ κ(B)
1
2 |||u−w|||.

The last two displayed formulas together with|||u− w̃|||2 = |||u−uΛ̃ |||2+ |||uΛ̃ − w̃|||2
show (32). The condition onγ shows thatρ < 1.

Let Λ ⊂ Λ̂ ⊂ ∇ be the smallest set with

‖PΛ̂ (f −Bw)‖ ≥ µ‖f −Bw‖.

Then

µ‖r‖ ≤ µ‖f −Bw‖+ µδ‖r‖≤ ‖PΛ̂ (f −Bw)‖+ µδ‖r‖≤ ‖PΛ̂ r‖+(1+ µ)δ‖r‖

or ‖PΛ̂ r‖ ≥ (µ − (1+ µ)δ )‖r‖= α‖r‖. We conclude that

#(Λ̃\Λ) . #(Λ̂\Λ) ≤ min{N : |||u−uN||| ≤ [1− µ2κ(B)]
1
2 |||u−w|||},

where the last inequality follows from Lemma 6 using thatµ < κ(B)−
1
2 . ⊓⊔

The selection of aΛ̃ as in (30) will be performed by a call of the following
routine.

EXPAND[Λ , r ,α] → Λ̃ :
% Input:Λ ⊂ ∇, #Λ < ∞, r ∈ ℓ0, α ∈ [0,1].

r̄ := COARSE[r |∇\Λ ,
√

1−α2‖r‖]
Λ̃ := Λ ∪supp̄r

Proposition 6. Λ̃ := EXPAND[Λ , r ,α] satisfiesΛ̃ ⊃ Λ , ‖PΛ̃ r‖ ≥ α‖r‖, and

#(Λ̃\Λ) . min{#(Λ̆\Λ) : ‖PΛ̆ r‖ ≥ α‖r‖, Λ ⊂ Λ̆ ⊂ ∇}.

The number of operations used by the callEXPAND[Λ , r ,α] is bounded by some
absolute multiple of#Λ +#suppr +1.

Proof. We have‖r −PΛ̃ r‖ = ‖r |∇\Λ − r̄‖ ≤
√

1−α2‖r‖, which is equivalent to
‖PΛ̃ r‖ ≥ α‖r‖. The properties ofCOARSE imply the statement about the work as
well as that
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#(Λ̃\Λ) = #supp̄r . min{#Λ̄ : Λ̄ ⊂ ∇\Λ , ‖r |∇\Λ −PΛ̄ (r |∇\Λ )‖ ≤
√

1−α2‖r‖}
= min{#Λ̄ : Λ̄ ⊂ ∇\Λ , ‖PΛ∪Λ̄ r‖ ≥ α‖r‖},

which completes the proof. ⊓⊔

The arising Galerkin systems will be solved approximately by the application
of an iterative scheme. Since the (approximate) solution ofthe previous Galerkin
system will be used as the starting vector, a uniformly bounded number of iterations
will suffice. Each iteration requires the application ofBΛ . Although this matrix is
close to being sparse, generally its number of non-zero entries is not of the order of
#Λ . Therefore, the iterative scheme will be executed only approximately. Below we
consider the simplest option of applying an inexact Richardson iteration.

GALERKIN [Λ ,w̄Λ ,δ ,ε] → wΛ :
% Input:δ ,ε > 0, Λ ⊂ ∇, #∇ < ∞, w̄Λ ∈ ℓ2(Λ) with ‖PΛ f −BΛ w̄Λ‖ ≤ δ .
% Parameters:ρ ,α,e0 ∈ R, K ∈ N such that‖Id−αB‖ ≤ ρ < 1, 2ρK ≤ ε/δ ,
% and‖B‖ ≤ e0.

v(0) := w̄Λ
for i = 1, . . . ,K, do

v(i) := v(i−1) + αPΛ (RHS[ ρ iδ
2αKe0

]−APPLY [v(i−1), ρ iδ
2αKe0

])

enddo
wΛ := v(K)

The following proposition is essentially [CDD01, Prop. 6.7].

Proposition 7. wΛ := GALERKIN [Λ ,w̄Λ ,δ ,ε] satisfies‖PΛ f −BΛ wΛ‖ ≤ ε. Let
B bes̄-admissible, and for some s∈ (0, s̄], u ∈ A s. Then the cost of the call can be
bounded on some absolute multiple of

η(δ/ε)(δ−1/s‖u‖1/s
A s + δ−1/s‖w̄Λ‖1/s

A s +#Λ +1),

whereη : (0,∞) → [1,∞) is some non-decreasing function.

Proof. For someδ1, . . . ,δK ∈ ℓ2(Λ) with ‖δi‖ ≤ ρ iδ
Ke0

,

‖PΛ f −BΛ v(K)‖ = ‖(Id−αBΛ )K(PΛ f −BΛ v(0))+BΛ

K

∑
i=1

(Id−αBΛ )K−iδi‖

≤ ρKδ +e0

K

∑
i=1

ρK−i ρ iδ
Ke0

≤ ε

(cf. proof of Theorem 1). The statement about the cost follows from the ¯s-admissibility
of B and the assumptions onRHS, in particular (16), Corollary 1 and Proposition 1,
as well as from the fact thatK < ∞ depending onδ/ε. ⊓⊔
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Remark 8.The above implementation ofGALERKIN can be improved. Instead of
computingPΛ RHS[η ] for a decreasing sequence ofη ’s, it is better to compute once
an approximation̄fΛ ∈ ℓ2(Λ) with ‖PΛ f− f̄Λ‖≤η for the final accuracyη (actually,
then an even less accurate approximation suffices). Further, instead of approximat-
ing the application ofBΛ by using theAPPLY routine and by afterwards restricting
the result toΛ , obviously it is better not to compute any entry with index outside
Λ . Also with these improvements, the routine remains quantitatively demanding be-
cause of the relatively expensive adaptive approximate matrix vector applications.

A more efficient Galerkin routine can be constructed using adefect correction
principle. LetB̃Λ be afixedsparse matrix with‖Id−BΛ B̃−1

Λ ‖ ≤ ε/δ . Existence of
such a matrix follows by assumings∗-computability ofB. Then

wΛ := w̄Λ + B̃−1
Λ (PΛ f −BΛ w̄Λ )

satisfies

‖PΛ f −BΛ wΛ‖ = ‖(Id−BΛ B̃−1
Λ )(PΛ f −BΛ w̄Λ )‖ ≤ ε

δ δ = ε.

By taking B̃Λ to be somewhat more accurate, say with‖Id−BΛ B̃−1
Λ ‖ ≤ ε/(2δ ),

room is left to compute the initialdefectPΛ f −BΛ w̄Λ approximately, and to ap-
proximate the application of̃B−1

Λ . The first task requires single calls ofRHS and
APPLY , and for the second task a few iterations of a fast iterative method can be
applied, e.g., the conjugate residual method. Details can be found in [GHS07].

We are ready to formulate the practical AWGM. It works according to the prin-
ciples outlined in Proposition 5. The tasks (30) and (31) arerealized by calls of the
routinesEXPAND andGALERKIN , respectively. The first task (29) amounts to
finding an approximation of the residual of the current iterand with arelativeerror
not larger thanδ . This will be implemented by initially approximating this residual
with an absolutetolerance equal to some multipleθ of the norm of the previous
residual. If this tolerance turns out to be too large, in the sense that it is not less than
δ times the norm of the so computed residual, in an inner loop itis halved until the
criterion is met.

In view of obtaining a quantitatively efficient implementation, one would like to
choose thisθ not too small, but sufficiently small such that “usually” oneresidual
computation suffices. It can, however, never be excluded that by sheer chance at an
early stage the (favourable) situation is encountered thatthe current iterandu(i) is
equal or exceptionally close to the solutionu . Then the algorithm will continue
halving the tolerance until the norm of the computed residual plus tolerance is not
larger than the targetε, showing that the true residual is not larger thanε. Since
in this case there is no point in expanding the index set or computing the Galerkin
solution more accurately, this behaviour of the algorithm is desired.

AWGM [ε,ε−1] → uε :
% Input:ε,ε−1 > 0.
% Parameters:α,δ ,γ,θ such thatδ ∈ (0,α), α+δ

1−δ < κ(B)−
1
2 , θ > 0 and

% γ ∈
(

0, (1−δ )(α−δ )
1+δ κ(B)−1

)

.



30 Rob Stevenson

i := 0, u(i) := 0, Λi := /0
do ζ := θεi−1

do ζ := ζ/2, r (i) := RHS[ζ/2]−APPLY [u(i),ζ/2]

if εi := ‖r (i)‖+ ζ ≤ ε then uε := u(i) stop endif
until ζ ≤ δ‖r (i)‖
Λi+1 := EXPAND[Λi , r (i),α]

u(i+1) := GALERKIN [Λi+1,u(i),εi ,γ‖r (i)‖]
i := i +1

enddo

Theorem 3 ([GHS07]).Let ε−1,ε > 0, then foruε := AWGM [ε,ε−1] we have that

‖f −Buε‖ ≤ ε. If for some s> 0, u ∈ A s, then#suppuε . ε−1/s‖u‖1/s
A s. If, addi-

tionally, B is s̄-admissible, s≤ s̄ andε . ε−1 h ‖f‖, then the number of operations

used by the callAWGM [ε,ε0] is bounded by an absolute multiple ofε−1/s‖u‖1/s
A s.

In other words, ifs̄≥ smax, then this AWGM is (quasi-) optimal.

Proof. By definition ofεi , we have

‖f −Bu(i)‖ ≤ εi , (34)

so thatεi is a valid parameter for the later callGALERKIN [Λi+1,u(i),εi ,γ‖r (i)‖].
Sinceζ is halved in each iteration, if the inner loop does not terminate because

of ζ ≤ δ‖r (i)‖, then at some point it will terminate because ofεi ≤ ε.
If the inner loop terminates because ofζ ≤ δ‖r (i)‖, then, because ofδ < 1,

εi h ‖r (i)‖ h ‖f −Bu(i)‖ (35)

and‖f −Bu(i)− r (i)‖ ≤ ζ ≤ δ‖r (i)‖. Since after the subsequent calls ofEXPAND
andGALERKIN , ‖PΛi+1r

(i)‖ ≥ α‖r (i)‖ and‖PΛi+1f(i)−BΛi+1u(i+1)‖ ≤ γ‖r (i)‖, an
application of Proposition 5 shows that, withρ < 1 from that proposition,

|||u−u(i+1)||| ≤ ρ |||u−u(i)||| (36)

and
#(Λi+1\Λi) . min{N : |||u−uN||| ≤ [1− µ2κ(B)]

1
2 |||u−u(i)|||}. (37)

Becauseεi = ‖r (i)‖+ ζ ≤ ‖f −Bu(i)‖+ 2ζ ≤ ‖f −Bu(i)‖+ 2θεi−1, from (35)
and (36), we conclude that eventually the inner loop, and thus the algorithm, will
terminate because ofεi ≤ ε. By (34), this proves the first statement of the theorem.

Fully analogous to the proof of Proposition 4, from (36) and (37) we conclude
that if for somes> 0, u ∈ A s, then

#suppu(i+1) ≤ #Λi+1 . ‖u−u(i)‖−1/s‖u‖1/s
A s. (38)

With K denoting the value ofi at termination, i.e.,uε = u(K), if K = 0 then
#suppuε = 0, and the second statement of the theorem is obviously true.If K > 0,
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then this second statement follows fromε < εK−1 h ‖u−u(K−1)‖ and (38). Together
with Lemma 1, the same arguments also show that

‖u(i)‖A s . ‖u‖A s. (39)

Now let B be s̄-admissible for some ¯s≥ s, and letε . ε−1 h ‖f‖. By definition
of s̄-admissibility and Corollary 1, withCi denoting the cost of the evaluation of
r (i) := RHS[ζ/2]−APPLY [u(i),ζ/2], we have

#suppr (i) . Ci . (ζ/2)−1/s‖u‖1/s
A s +1+(ζ/2)−1/s‖u(i)‖1/s

A s +#suppu(i) +1

. ζ−1/s‖u‖1/s
A s + ε−1/s

i−1 ‖u‖1/s
A s, (40)

by (39) and, fori > 1, by (38), (35) andεi−1 . ε0 h ‖f‖ . ‖u‖A s (and thus 1.

ε−1/s
i−1 ‖u‖1/s

A s), and, fori = 0, by #suppu(0) = 0 andε−1 . ‖f‖ . ‖u‖A s.
To proceed, we claim that for 0≤ i < K, at termination of the inner loop,ζ & εi .

Indeed, if the inner loop terminates at the first evaluation of the until-clause,
thenζ = θεi−1 & εi , the latter fori = 0 being valid by assumption. Otherwise, at
the previous evaluation of theuntil-clause, we had‖f −Bu(i)‖ ≤ ‖r (i)‖+ ζ <
(δ−1 + 1)ζ . Since thisζ is twice the final one, (35) shows that the latter satisfies
ζ & εi .

From the above claim, (40) and the successive halvings ofζ starting fromζ =
θεi−1, we conclude that for 0≤ i < K, at termination of the inner loop

#suppr (i) . C̄i . ε−1/s
i ‖u‖1/s

A s,

whereC̄i denotes thetotal cost of the inner loop that produced thisr (i). Proposi-
tions 6 and 7 show that the cost of subsequent calls ofEXPAND andGALERKIN
is bounded by an absolute multiple of #Λi + ε−1/s

i ‖u‖1/s
A s . ε−1/s

i ‖u‖1/s
A s and, since

εi . γ‖r (i)‖, of #Λi+1 . ε−1/s
i ‖u‖1/s

A s, respectively.
Fromεi . ρ i− jε j (i ≤ j), being a consequence of (36) and (35), and, whenK > 0,

εK−1 > ε, we may conclude that the total cost of the callAWGM [ε,ε0] is bounded

by an absolute multiple ofε−1/s‖u‖1/s
A s, once we have shown that the cost of the

final run of the inner loop can be bounded an absolute multipleof this expression.
For this goal, it suffices to show that at termination of this last inner loop,ζ & ε.

If this inner loop terminates by the first evaluation of theif-clause, then
ζ = θεK−1 & ε, for K = 0 by assumption. Otherwise, the previous value ofζ ,
being twice the final one, satisfies both‖r (i)‖+ ζ > ε and ζ ≥ δ‖r (i)‖, and so
(1+ δ−1)ζ > ε, with which the proof is completed. ⊓⊔
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4.3 Discussion

As we have seen, both the adaptive inexact Richardson schemeRich from Sect. 3
and the Adaptive Wavelet Galerkin MethodAWGM discussed in the present sec-
tion are (quasi-) optimal. Practical experiments, see [GHS07] and [DHS07, Sect. 4],
show that theAWGM is quantitatively more efficient. One reason could be the need
for coarsening inRich. Indeed, without coarsening generally this algorithm turns
out not to be (quasi-) optimal. This means that in between twocoarsening steps,
the error as function of the support size does not decay with the optimal rate. As
a consequence, in each coarsening step many previously computed coefficients are
thrown away. Another possible explanation is that in both algorithms, the expansion
of the current wavelet index set via an approximate residualcomputation is the most
costly part. In view of this, given such an index set, it seemsmost efficient to com-
pute a (near) best approximation from the span of the corresponding wavelets, being
the Galerkin approach.

Apart from the aforementioned references, practical experiments with (variants
of) the AWGM can be found in [BBC+01, Bar01, BK06, BK08]. Numerical re-
sults with (variants of) the adaptive inexact Richardson scheme applied to the Schur
complement of the Stokes equations (Uzawa scheme) can be found in [DUV02].

5 The approximation of operators in wavelet coordinates by
computable sparse matrices

From the main theorems 1 and 3, recall that the inexact Richardson iterationRich
and the Adaptive Wavelet Galerkin MethodAWGM applied toBu = f are (quasi-)
optimal under the condition thatB is s̄-admissible (cf. Definition 1) for some
s̄≥ smax. Consequently, if either of the adaptive wavelet schemes isapplied to the
normal equations, bothB andB⊤ have to be ¯s-admissible for some ¯s≥ smax. With
B being a boundedly invertible operator betweenX andY ′, recall thatsmax is the
generally best possible approximation rate from spanΨX of a function inX . Fur-
thermore, from Theorem 2, recall that ifB is s∗-computable (cf. Definition 2), then
it is s̄-admissible for any ¯s < s∗. In view of these results, our task is therefore to
shows∗-computability ofB and possiblyB⊤ for somes∗ > smax.

The question whetherB (andB⊤) is s∗-computable for somes∗ > smax depends
on the operatorB and the wavelets at hand. So far, apart from the boundedly in-
vertibility of B, we only assumed thatΨX andΨY are Riesz bases forX andY ,
respectively. In this section, we study the issue ofs∗-computability forB resulting
from a scalar PDEor a system of PDE’son a domainΩ ⊂ Rn, and forΨX and
ΨY being collections of commonly applied, locally supported,piecewise smooth
wavelets. In Section 7, we comment on the case ofΨX andΨY being collections
of tensor product wavelets.
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Also for classes forsingular integral operatorsand suitable waveletss∗-computability
with s∗ > smax is valid. We refer to [Ste04, GS06b, DHS07] and on the chapter
“Rapid Solution of Boundary Integral Equations” by H. Harbrecht and R. Schneider
in this book.

5.1 Near-sparsity of partial differential operators in wavelet
coordinates

This subsection is devoted to the question how well the representationB of a partial
differential operator with respect to wavelet bases can be approximated by sparse
matrices. We will not be concerned with the question how to compute, or more
generally, how to approximate the entries of these sparse matrices, and at which cost.
These issues will be postponed to the next subsections. Our current task motivates
the following definition.

Definition 3. For s∗ > 0, B ∈ L (ℓ2, ℓ2) will be called to bes∗-compressiblewhen
we have available sequences(ej) j∈N0,(c j) j∈N0 ⊂ R, (B( j)) j∈N0 ⊂ L (ℓ2, ℓ2), such
that

• ‖B−B( j)‖ ≤ ej , lim j→∞ ej = 0,
• the number of non-zero entries in each column ofB( j) is bounded byc j ,
• B(0) = 0 (and thus‖B‖ ≤ e0), c0 = 0 and supj∈N0

c j+1/c j < ∞.

and such that for anys< s∗, supj ejcs
j < ∞.

So compared to the definition ofs∗-computability (Definition 2), the only difference
is that we do not require that number of operations needed tocomputethe non-zero
entries in each column ofB( j) is bounded byc j .

For someαl ∈ Nn
0 (l ∈ {1,2}), we consider the representation as a bi-infinite

matrix of a bounded linear operatorE : H |α1|
0 (Ω) → (H |α2|

0 (Ω))′ defined by

(Eu1)(u2) =

∫

Ω
g∂ α1u1∂ α2u2 (ul ∈ H |αl |

0 (Ω)),

with respect to wavelet collections

Ψ (l) = {ψ(l)
λ : λ ∈ ∇} ⊂ H |αl |

0 (Ω).

We will assume that the coefficientg is sufficiently smooth.
In this paper, we do not discuss theconstructionof wavelet bases on domains,

but refer to the numerous papers written on that topic. Some references are included
at the end of this subsection. Following standard conventions,|λ | ∈ N0 will denote

the level of the waveletψ(l)
λ . Here thinking of the wavelets beingnormalized in

L2(Ω) and constructed usingdyadicdilations, fors≥ 0 up to some upper bound
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determined by the smoothness of the wavelets, it holds that‖ψ(l)
λ ‖Hs(Ω) h 2s|λ |. In

view of this, we investigate the approximation of

E :=
[

2−|µ||α1|−|λ ||α2|(Aψ(1)
µ )(ψ(2)

λ )
]

λ ,µ∈∇

by sparse matrices.
The representation of a scalar PDE will result into a sum of such matrices (where,

because of the eventual normalization of the wavelets in higher order Sobolev
norms, matrices corresponding to lower order terms will be multiplied from left
and right by diag[2−|λ |s]λ∈∇ or diag[2−|λ |t ]λ∈∇ for somes,t ≥ 0 with s+ t > 0) and
the representation of a system of PDE’s will consist of blocks, each of them being a
sum of such matrices.

We will assume that the wavelets arelocal, locally finiteandpiecewise smooth,
where for an easy treatment of the quadrature issue, we assume that the wavelets
from both collections are piecewise smooth with respect to the samepartitions,
moreover which arenestedas function of the level (for the general case, see

[SW08]): We assume that for allk ∈ N0, there exists a collection{Ω (ν)
k : ν ∈ Ok}

of disjoint, uniformly shape regular, open subdomains, with Ω = ∪ν∈OkΩ (ν)
k ,

diam(Ω (ν)
k ) h 2−k andΩ (ν)

k being the union of someΩ (ν̃)
k+1. These subdomains will

be such that suppψ(l)
λ (l ∈ {1,2}), which is assumed to be connected, is the union of

a uniformly bounded number ofΩ (ν)
|λ | (locality), and such that eachΩ (ν)

k has non-

empty intersection with the supports of a uniformly boundednumber ofψ(l)
λ with

|λ |= k (locally finiteness). Typical examples of theΩ (ν)
k aren-cubes orn-simplices,

or smooth images of such. We assume thatψ(l)
λ |Ω (ν)

|λ |
is smooth with, for anyγ ∈ Nn

0,

sup
x∈Ω (ν)

|λ |

|∂ γ ψ(l)
λ (x)| . 2|λ |(

n
2+|γ|) (41)

(piecewise smoothness), the latter being a consequence of the smoothness ofψ(l)
λ |Ω (ν)

|λ |
,

the normalization of the wavelets inL2(Ω) and their construction using dyadic di-

lations. Note that the singular support ofψ(l)
λ is part of the skeleton∪ν∈Ok∂Ω (ν)

|λ | .
We will also need that the wavelets satisfy someglobal smoothnessconditions:

For some
N0∪{−1} ∋ r l ≥ |αl |−1,

we assume that
‖ψ(l)

λ ‖Wt
∞(Ω) . 2|λ |(

n
2+t) (t ∈ [0, r l +1]). (42)

For r l > −1, this estimate follows from (41) whenψ(l)
λ ∈Cr l (Ω).

We assume that the wavelets havecancellation properties of order̃dl ∈N0, mean-
ing that
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∣

∣

∫

Ω
uψ(l)

λ
∣

∣ . 2−|λ |t‖u‖
Wt

∞(suppψ(l )
λ )

‖ψ(l)
λ ‖L1(Ω) (t ∈ [0, d̃l ],u∈Wt

∞(Ω)). (43)

Actually, with some constructions, here suppψ(l)
λ should read as a neighbourhood

of suppψ(l)
λ with diameter 2−|λ |. For convenience we ignore this fact, but our results

extend trivially to this situation.
Finally, for anyγ ≤ αl , γ 6= αl , we assume the homogeneous Dirichlet boundary

conditions
∂ γ ψ(l)

λ = 0 at∂Ω , (44)

actually being a consequence of our earlier assumption thatΨ (l) ⊂ H |αl |
0 (Ω).

We split
E = E(r) +E(s),

whereE(r)
λ ,µ = Eλ ,µ when either|λ | > |µ | and suppψ(2)

λ ⊂ Ω̄ (ν)
|µ| for someν ∈ O|µ|

or |λ | < |µ | and suppψ(1)
µ ⊂ Ω̄ (ν)

|λ | for someν ∈ O|λ |, andE(r)
λ ,µ is zero otherwise.

So E(r) contains theregular entriesof E, i.e., the non-zero entries for which the
the interior of the support of the wavelet on the higher leveldoes not intersect the
singular support of the wavelet on the lower level. The remaining singular entries
are gathered inE(s). As we will see, the size of the singular entries decays less fast
as function of the difference in the levels of the indices than with the regular entries,
but this will be compensated by a smaller increase of their number.

We writeE(r) = (E(r)
ℓ,k)ℓ,k∈N0, whereE(r)

ℓ,k = (E(r)
λ ,µ)|λ |=ℓ,|µ|=k and similarlyE(s) =

(E(s)
ℓ,k)ℓ,k∈N0.

Proposition 8. The number of non-zero entries in each row ofE(r)
ℓ,k (E(s)

ℓ,k) or column

of E(r)
k,ℓ (E(s)

k,ℓ) is bounded by an absolute multiple of2max(k−ℓ,0)n (2max(k−ℓ,0)(n−1)).
With

ρr := d̃2 + |α2|, ρs := 1
2 +min(d̃2 + |α2|, r1 +1−|α1|),

for |λ | > |µ |, we have

|E(s)
λ ,µ |. ‖g‖

W
ρs−1/2
∞ (Ω)

2−(
∣

∣|λ |−|µ|
∣

∣)( n−1
2 +ρs), |E(r)

λ ,µ |. ‖g‖Wρr
∞ (Ω)2

−(
∣

∣|λ |−|µ|
∣

∣)( n
2+ρr )

The same statement is valid for|λ | < |µ | when (α1,α2, r1, d̃2) is replaced by
(α2,α1, r2, d̃1) in the definitions ofρr andρs.

Proof. The first statement follows by the localness and locally finiteness of both
wavelet collections, and concerningE(s), by their piecewise smoothness.

Whenr1+1≤ |α1|+ |α2|, select aγ ≤α2 with |α1+γ|= r1+1 and so|α2−γ|=
|α1|+ |α2|− (r1 +1). Using (44) for the case that suppψ(2)

λ ∩suppψ(1)
µ ∩∂Ω 6= /0,

integration by parts, vol(suppψ(2)
λ ) . 2−|λ |n and (42) show that
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|Eλ ,µ | = 2−|µ||α1|−|λ ||α2||
∫

suppψ(2)
λ

(−1)|γ|∂ γ (g∂ α1ψ(1)
µ )∂ α2−γψ(2)

λ |

. 2−|µ||α1|−|λ ||α2|‖g‖
W

r1+1−|α1|∞ (Ω)
2−|λ |n2|µ|(

n
2+r1+1)2|λ |(

n
2+|α1|+|α2|−(r1+1))

= ‖g‖
W

r1+1−|α1|∞ (Ω)
2−(|λ |−|µ|)( n

2+r1+1−|α1|).

For r1 + 1 > |α1|+ |α2| by additionally using that theψ(2)
λ haved̃2 vanishing

moments ((43)) and taking into account thatψ(1)
µ ∈Wr1+1

∞ (Ω) ((42)), we have

|Eλ ,µ | = 2−|µ||α1|−|λ ||α2||
∫

suppψ(2)
λ

(−1)|α2|∂ α2(g∂ α1ψ(1)
µ )ψ(2)

λ |

. 2−|µ||α1|−|λ ||α2|2−|λ |min(d̃2,r1+1−|α1|−|α2|)

×‖∂ α2(g∂ α1ψ(1)
µ )‖

W
min(d̃2,r1+1−|α1|−|α2|)∞ (suppψ(2)

λ )
‖ψ(2)

λ ‖L1(Ω)

. 2−|µ||α1|−|λ ||α2|2−|λ |min(d̃2,r1+1−|α1|−|α2|)

×‖g‖
W

min(d̃2+|α2|,r1+1−|α1|)∞ (Ω)
2|µ|(

n
2+min(d̃2+|α1|+|α2|,r1+1)2−|λ | n

2

h ‖g‖
W

min(d̃2+|α2|,r1+1−|α1|)∞ (Ω)
2−(|λ |−|µ|)( n

2+min(d̃2+|α2|,r1+1−|α1|)),

which completes the proof of the first estimate.

Finally, when suppψ(2)
λ ⊂ Ω̄ (ν)

|µ| for someν ∈ O|µ|, by estimatingE(r)
λ ,µ as above,

but now applying (41) for sufficiently largeγ instead of (42), we obtain the second
estimate. ⊓⊔

In the next proposition, we construct sparse approximationfor matrices likeE(r)

or E(s).

Proposition 9. Let C = (Cℓ,k)ℓ,k∈N0 with Cℓ,k = (Cλ ,µ)|λ |=ℓ,|µ|=k be such that for
some q∈ N0 and ρ > 0, the number of non-zero entries in each row ofCℓ,k or
column ofCk,ℓ is bounded by an absolute multiple of2max(k−ℓ,0)q and

|Cλ ,µ | . 2−
∣

∣|λ |−|µ|
∣

∣( q
2+ρ).

Then withC( j) constructed fromC by droppingCλ ,µ when

∣

∣|λ |− |µ |
∣

∣ > j/ρ ,

we have
‖C−C( j)‖ . 2− j ,

where the number of non-zero entries per row and column ofC( j) is bounded by
some absolute multiple of

max(2q j/ρ , j/ρ).



Adaptive wavelet methods for solving operator equations: An overview 37

Proof. By two applications of the Schur lemma, we have

‖Cℓ,k‖2 ≤ max
|λ |=ℓ

∑
|µ|=k

|Cλ ,µ | ·max
|µ|=k

∑
|λ |=ℓ

|Cλ ,µ | . 4−(ℓ−m)ρ ,

‖C−C( j)‖2 ≤ max
ℓ

∑
{k:|ℓ−k|> j/ρ}

‖Cℓ,k‖ ·max
k

∑
{ℓ:|ℓ−k|> j/ρ}

‖Cℓ,k‖ . 4− j . ⊓⊔

So the result of the last proposition shows thatC andC⊤ ares∗-compressible
with

s∗ = ρ/q

(or s∗ = ∞ whenq = 0). We exemplify our findings concernings∗-compressibility
in the model case of an (elliptic) scalar PDE of order 2m:

Example 3.For some bounded domainΩ ⊂ Rn, with n ≥ 2, andm∈ N, let B :
Hm

0 (Ω) → Hm
0 (Ω)′ be defined as

(Bu)(v) =

∫

Ω
∑

|α |,|β |≤m

aα ,β ∂ αu∂ β v,

with coefficients such thatB is boundedly invertible and that are sufficiently smooth.
Let ΨX = ΨY = {ψλ : λ ∈ ∇} ⊂ Hm

0 (Ω) be a dyadic wavelet collection, nor-
malized inL2(Ω), such that for someN ∋ d > m, d̃ ∈ N0, N0∪{−1} ∋ r ≥ m−1,

a). infvi∈span{ψλ :|λ |≤i}‖u−vi‖Hm(Ω) . 2−(d−m)i‖u‖Hd(Ω) (u∈ Hd(Ω)∩Hm
0 (Ω)),

b). the wavelets are local, locally finite and piecewise smooth (and thus satisfy (41)),
c). the wavelets are inCr(Ω) (and thus satisfy (42) withr l = r),
d). the wavelets have cancellation properties of orderd̃ ((43)),
e). {2−|λ |mψλ : λ ∈ ∇} is a Riesz basis forHm

0 (Ω).

The representation ofB with respect to the wavelet basis from e) reads as

B := ∑
|α |,|β |≤m

[

2−(|λ |+|µ|)m
∫

Ω
aα ,β ∂ α ψµ∂ β ψλ

]

λ ,µ∈∇.

Due to the scaling factor 2−(|λ |+|µ|)m, one may verify that it suffices to analyze the
s∗-compressibilty of the highest order terms. By applying Propositions 8 and 9 to
those terms, we infer thatB andB⊤ ares∗-compressible with

s∗ = min
( d̃+m

n
,

1
2 +min(d̃+m, r +1−m)

n−1

)

.

As a consequence of the dyadic construction, we have that #{λ ∈ ∇ : |λ | ≤ i}h 2ni,
which together with a) shows that

smax =
d−m

n
.
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We conclude thats∗ > smax whend̃ > d−2mand
r+ 3

2−m
n−1 > d−m

n (the third condition
d̃+m≥ r +1−m follows already from the first one using that alwaysr ≤ d−2).

On (0,1)n, or on a smooth image of that,biorthogonal splinewavelets can be
constructed that satisfy a)-e) for arbitrarỹd ≥ d with d + d̃ even andr = d− 2
([DS98]). Because ofr = d−2, the conditions fors∗ > smax read asd̃ > d−2mand
d−m

n > 1
2.

For general domains, these wavelets can be applied in combination with non-
overlappingdomain decompositiontechniques. The existing techniques fall into 2
categories: With the technique based onextension operatorsproposed in [DS99b],
all above conditions can be satisfied. The condition number of the resulting basis,
however, turns out to increase rapidly withd. The other technique amounts to a
continuousgluing of multiresolution analyses over the interfaces between patches,
see [DS99a, CTU99]. As a result, wavelets with supports thatextend to more than
one patches are only continuous, and thus ford > 2 not in Cd−2, resulting in a
reduced value ofs∗. For problems of order 2m= 2, this limitation can be overcome
with a construction of wavelets that havepatchwise vanishing moments, see [HS06].

5.2 The approximate computation of the significant entries

For a non-constant coefficientg, generally the entries ofE(r) andE(s) have to be
approximated by suitable quadrature. In this subsection, we show that such approxi-
mations can be made that keep the error on the same level, while taking in each row
and columnon averageO(1) operations per entry. This means these matrices are
s∗-computable for the same value ofs∗ as they were shown to bes∗-compressible.
The key observation is that this restriction on the work doesallow to spend quite
some operations, up to the number of entries in the row or column, to the approx-
imation of the few largest entries with indices that have equal level, as long as the
work per entry decays sufficiently fast as function of the difference in the levels of
the indices. For simplicity, we exclude the special, although easy case thatq = 0 in
Proposition 9. Since withE(s) the role ofq is played byn−1, we thus assume that
n > 1.

Proposition 10.LetC andC( j) be as in Proposition 9 assuming that q> 0. Suppose
that for some constantsξ ,ω > 0, ξ 6= ω , for any λ ,µ ∈ ∇ one can compute an
approximationC̃λ ,µ to Cλ ,µ in O(N) operations with

|Cλ ,µ − C̃λ ,µ | . N−ω 2−
∣

∣|λ |−|µ|
∣

∣( q
2+ξq). (45)

Now for someσ ∈ (1,ξ/ω) whenξ > ω , and σ ∈ (ξ/ω ,1) whenξ < ω , and
θ ≤ min(1,σ), build C̃( j) by approximating each non-zero entry ofC( j) as above by
taking

N = Nj ,λ ,µ h max
(

1,2q jθ/ρ−
∣

∣|λ |−|µ|
∣

∣σq)
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operations. Then the work for computing each row or column ofC̃( j) is bounded by
some absolute multiple of2q j/ρ , and

‖C( j)− C̃( j)‖ .

{

2−q jωθ/ρ whenξ > ω ,

2−q j(ξ+(θ−σ)ω)/ρ whenξ < ω .
(46)

In particular, takingθ = min(1,σ), we have‖C( j)− C̃( j)‖ . 2−q jmin(ω,ξ )/ρ .

Proof. The work per row or column is bounded by an absolute multiple of

j/ρ

∑
i=0

2iq max
(

1,2q jθ/ρ−iσq) h 2q j/ρ +2q jθ/ρ
j/ρ

∑
i=0

2iq(1−σ)

h 2q j/ρ +2q jθ/ρ max(1,2q j(1−σ)/ρ) h 2q j/ρ ,

because ofθ ≤ min(1,σ).
Taking into account the selection ofNj ,λ ,µ , two applications of the Schur lemma

show that

‖C( j)
ℓ,m− (C̃( j)

λ ,µ)|λ |=ℓ,|µ|=m‖2 . 2|ℓ−m|q(2q jθ/ρ−|ℓ−m|σq)−2ω2−|ℓ−m|(q+2ξq)

= 2−2q jθω/ρ2−|ℓ−m|2q(ξ−σω),

‖C( j)− C̃( j)‖ . ∑
0≤i≤ j/ρ

2−q jθω/ρ2−iq(ξ−σω),

which shows (46). ⊓⊔

Comparing Propositions (9) and (10), we see that in order to prove our earlier
claim thatC = E(r) or C = E(s) ares∗-computable for the same value ofs∗ as they
were shown to bes∗-computable, it suffices to have available a family of quadrature
formulas satisfying (45) with

min(ω ,ξ ) ≥ ρ and max(ω ,ξ ) > ρ .

Below, under some mild additional assumption ((48)), we verify this by showing
that for anya,b > 0, we can construct a family of approximations(Ẽλ ,µ,N)N∈N,

whereẼλ ,µ,N requiresO(N) evaluations ofg∂ α1ψ(1)
µ ∂ α2ψ(2)

λ , such that for some
t ∈ N,

|Eλ ,µ − Ẽλ ,µ,N| . N−a2−
∣

∣λ |−|µ|
∣

∣( n
2+b)‖g‖Wt

∞(Ω). (47)

This means that (45) is valid withω = a andξ = b/n or ξ = (b+ 1
2)/(n−1) for

q = n or q = n−1, respectively.
Without loss of generality let us assume that

|λ | ≥ |µ |.
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Suppose that for anyk ∈ N0 andν ∈ O
(ν)
k , there exists a sufficiently smooth trans-

formation of coordinatesκ , with derivatives bounded uniformly ink andν, such
that for somee∈ N, and all|λ | = k,

ψ(2)
λ ◦κ |

κ−1(Ω (ν)
k )

∈ Pe−1. (48)

In the following, for notational convenience, without lossof generality we takeκ =
id.

To approximate an integral
∫

Ω (ν)
k

f , for anyp∈N we consider internal, uniformly

stable, composite quadrature rulesQ
Ω (ν)

k ,N
( f ) of fixed order(i.e, the degree of poly-

nomial exactness plus one)p, andvariable rank N. The rankN of a composite
quadrature formula denotes the number of subdomains on which the elementary
quadrature formula is applied. Since the orderp of Q

Ω (ν)
k ,N

is fixed, the number of

abscissae in the composite ruleQ
Ω (ν)

k ,N
is O(N). For such rules, the following error

estimate is valid

|
∫

Ω (ν)
k

f −Q
Ω (ν)

k ,N
( f )| . vol(Ω (ν)

k )N−p/ndiam(Ω (ν)
k )p‖ f‖

Wp
∞ (Ω (ν)

k )
(49)

(e.g., see [GS06a,§2]).
To find an upper bound for the quadrature error when these rules are applied

with integrand 2−|µ||α1|−|λ ||α2|g∂ α1ψ(1)
µ ∂ α2ψ(2)

µ , we have to bound the expression

(∂ ρ g)(∂ σ ∂ α1ψ(1)
µ )(∂ τ ∂ α2ψ(2)

λ ) for all multi-indices with |ρ + σ + τ| ≤ p. Since

g is assumed to be sufficiently smooth,|λ | ≥ |µ | and ∂ τ ∂ α2ψ(2)
λ vanishes when

|τ + α2| ≥ e, by invoking (41) we see that the worst case occurs whenρ = 0 and
|τ + α2| = z := min(e−1, p+ |α2|), and thus when|σ | = p−z+ |α2|, yielding

2−|µ||α1|−|λ ||α2|‖g∂ α1ψ(1)
µ ∂ α2ψ(2)

λ ‖
Wp

∞ (Ω (ν)
k )

.

2(|µ|+|λ |) n
2 2|µ|(p−z+|α2|)2|λ |(z−|α2|)‖g‖

Wp
∞(Ω (ν)

k )
.

By substituting this result into (49), using that diam(Ω (ν)
k ) h 2−|λ | and vol(Ω (ν)

k ) h

2−|λ |n, by takingp satisfying

p≥ max(na,b−|α2|+e−1)

and by summing over the uniformly bounded number ofΩ (ν)
k that make up suppψ(2)

λ
we end up with (47).

This completes the proof of our claim made at the beginning ofthis subsection
that thatC = E(r) or C = E(s) ares∗-computable for the same value ofs∗ as they
were shown to bes∗-computable.
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Remark 9.The estimate for the quadrature error obtained by summing the error es-

timates for the quadrature errors over thoseν with Ω (ν)
ℓ ⊂ suppψ(2)

λ can be orders

of magnitude too pessimistic. The point is that it has not been used thatψ(2)
λ is

a wavelet and thus is oscillating, which causes cancellation of errors, in particu-

lar whenψ(1)
µ is smooth on the interior of suppψ(2)

λ , i.e, when it concerns aregu-
lar entry. For that case, much sharper estimates can be found in [SW08], see also
[BBD+02].

5.3 Trees

Although, as we demonstrated, it can be done whilst retaining optimal computa-
tional complexity, the approximate computation using quadrature of the required
entries of the stiffness matrix that may involve wavelets onlargely different levels is
a rather delicate process. Such computations can be avoidedby restricting to wavelet
approximations where the underlying index sets form a tree.In this subsection, we
briefly indicate the main ingredients of this approach.

We restrict ourselves to the case thatΨ =ΨX =ΨY = {ψλ : λ ∈ ∇} is a Riesz
basis forX = Y . Apart from wavelets, here we will need scaling functions. Aset
Φk ⊂ X is called a collection of scaling functions on levelk when span{ψλ : |λ | ≤
k} = spanΦk. We assume that theΦk are (uniformly) local and locally finite (cf.
definitions in Subsec. 5.1), and that each waveletψλ is a linear combination of a
uniformly bounded number of scaling functions on level|λ | (and that suppψλ is
connected).

We equip the index set∇ with a tree structure by assigning to eachλ ∈ ∇ with
|λ | > 0 aparentµ with |µ | = |λ |−1 and suppψλ ∩ suppψµ 6= /0. By our assump-
tions, the number of children of any parent is uniformly bounded. We callΛ ⊂ ∇ a
tree, when allλ ∈ ∇ with |λ | = 0 are inΛ (the “roots”), and when wheneverλ ∈ ∇
with |λ | > 0 is inΛ then so is its parent.

Analogously to (2), we define approximation classesA s, and corresponding
(quasi-) norms‖ · ‖A s, where we now consider only bestN-term approximations
uN to u ∈ ℓ2 whose supports, apart from having a length not larger thanN, form a
tree. ForX being a Sobolev space, it has been shown that the resulting classes are
only slightly smaller than those one obtains with unconstrained bestN-term approx-
imation, see [CDDD01] for details.

The reason to consider tree approximation is that anyw ∈ ℓ0 whose support
forms a tree, can be expressed as a linear combination ofK scaling functions, where
K . #suppw and where the supports of any two scaling functions in this expan-
sion can only intersect when their difference in levels is not larger than 1. More-
over, this scaling function representation can be found inO(#suppw) operations,
see [DSX00b].

As an application, now letB ∈ L (ℓ2, ℓ2) be s∗-compressible, let the support
of w ∈ ℓ0 form a tree, and letε > 0 be given. Then as shown in [DHS07], using
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the near bestN-term tree approximation algorithm from [BD04], treesΛ j ⊂ ·· · ⊂
Λ2 ⊂ Λ1 ⊂ suppw can be found such that, withw[p] := w|Λp\Λp+1

(Λ j+1 := /0) and

suitable jp ∈ N0, zε := ∑ j
p=1B( jp)w[p] satisfies‖Bw− zε‖ ≤ ε and, for anys <

s∗, #suppzε . ε−1/s‖zε‖−1/s
A s , where the cost of determining suppzε is bounded by

some absolute multiple ofε−1/s‖zε‖−1/s
A s + #suppw + 1. What is more, taking the

construction of the sparse matricesB( j) into account, for both partial differential and
singular integral operators, suppzε forms a tree.

Instead of approximating the required entries of the involved matricesB( jp), this
opens another possibility to approximateBw. Since‖Bw− zε‖ ≤ ε is shown by
estimating‖Bw − zε‖ ≤ ∑ j

p=1‖B − B( jp)‖‖w[p]‖, and by bounding‖B − B( jp)‖
by summing over upper bounds for the entries ofB that were dropped in the
definition of B( jp), one infers that also‖Bw− (Bw)|suppzε‖ ≤ ε as well as that
‖Bw− (Bw)|Λ̄‖ ≤ ε, whereΛ̄ := suppw∪suppzε is a tree.

Now with Φ̄ denoting the collection of the single scale functions with spanΦ̄ =
{ψλ : λ ∈ Λ̄} andTΛ̄ the corresponding basis transformation from multiscale to
single scale representation, we haveB|Λ̄×Λ̄ = T⊤

Λ̄ B(Φ̄ ,Φ̄)TΛ̄ , thus withB(Φ̄ ,Φ̄)

being the single-scale representation ofB|Λ̄×Λ̄ . Since(Bw)|Λ̄ = T⊤
Λ̄ B(Φ̄ ,Φ̄)TΛ̄ w,

in order to construct a validAPPLY , what is left is to approximate the multiplica-

tion with B(Φ̄ ,Φ̄) in O(ε−1/s‖zε‖−1/s
A s +#suppw+1) operations, while keeping the

error on the level of a multiple ofε. For partial differential operators, the advantage
is that non-zeros entries ofB(Φ̄ ,Φ̄) only involve pairs of scaling functions on equal
or consecutive levels. For singular integral operators, toapproximate the multipli-
cation withB(Φ̄ ,Φ̄) one may think of the application ofpanel clustering([HN89])
or multipole expansions([GR87]).

Finally, whereas for the optimal adaptive solution oflinear operator equations,
the restriction to tree approximations is not really necessary, for such a solution
of nonlinear operator equations it seems indispensable (see [CDD03a]).Indeed,
note that for a nonlinear operator of the formf (v)(x) = g(v(x)), the evaluation of
f (w⊤Ψ)(x) already requires a number of operations of the order of the number of
wavelets in the expansion that are non-zero inx. If suppw is a tree, however, then
after transformation to the locally finite single scale representation, any of such a
point evaluations can be done inO(1) operations.

6 Adaptive frame methods

6.1 Introduction

A drawback of wavelet methods for solving operator equations is the rather com-
plicated construction of wavelet bases on non-product domains. As was already
mentioned at the end of Sect. 5.1, the usual construction is via a non-overlapping
decomposition of then-dimensional domain or manifold into subdomains, each of
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them being a smooth parametric image of then-dimensional unit cube. Loosely
speaking, wavelets or scaling functions constructed on this n-cube are lifted to the
subdomains, after which those functions that do not vanish at an interface between
subdomains are either continuously connected to functionsfrom neighbouring sub-
domains or are smoothly extended into these subdomains. Apart from the fact that
these constructions are not that easy to implement, anotherdisadvantage is that the
condition numbers of the resulting bases are quite somewhatlarger than that of the
corresponding bases on then-cube.

As an alternative, forX being a Sobolev space, in [Ste03] it was suggested to
use anoverlappingdomain decomposition, and to defineΨX simply as the union
of the wavelet bases on the subdomains. By a proper choice of the bases on these
subdomains, the span ofΨX will be dense inX , but due to the overlap regions,
it cannot be a basis forX . Instead it will be aframe for X . In [DFR07a], such a
frame was called anaggregated wavelet frame.

6.2 Frames

Let X be a separable Hilbert space. A collectionΨ = {ψλ : λ ∈ ∇} ⊂ X is called
a framefor X when theanalysis operator

F : X
′ → ℓ2 : g 7→ [g(ψλ )]λ∈∇,

is a boundedly invertible mapping betweenX ′ andits rangeranF . From Sect. 2,
recall that its adjoint, known as thesynthesis operator, reads as

F
′ : ℓ2 → X : c 7→ c⊤Ψ .

We set theframe constants

ΛΨ := ‖F‖X ′→ℓ2
, λΨ := inf

06=g∈X ′

‖Fg‖ℓ2

‖g‖X

.

The compositionF ′F : X ′ → X is boundedly invertible with‖F ′F‖X ′→X =
Λ2

Ψ and‖(F ′F )−1‖X →X ′ = λ−2
Ψ .

The collectionΨ̃ := (F ′F )−1Ψ is a frame forX ′, known as the canonical
dual frame, with analysis operator̃F := F (F ′F )−1 and frame constantsλ−1

Ψ and
Λ−1

Ψ . FromF ′F̃ = I , one infers that anyv∈X has a representationv= v⊤Ψ with
Λ−1

Ψ ≤‖v‖ℓ2/‖v‖X ≤ λ−1
Ψ , actually a property that is equivalent toΨ being a frame

with frame constantsΛΨ andλΨ . Note that generally a representation ofv∈ X in
frame coordinates is not unique (unlessΨ is a Riesz basis).

We haveℓ2 = ranF ⊕⊥ kerF ′ andQ := F̃F ′ is the orthogonal projector onto
ranF . The frameΨ is a Riesz basis forX if and only if kerF ′ = 0 or equivalently
ranF = ℓ2.
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Many examples of frames can be given. Besides aggregated wavelet frames, here
we only mention curvelets ([CD04]) and shearlets ([LLKW05]).

For a givenf ∈ X ′ and a boundedly invertibleB∈ L (X ,X ′), let us consider
the problem of findingu∈ X such that

Bu= f . (50)

Writing u = F ′u for someu ∈ ℓ2, thisu solves

Bu = f, (51)

where
B := FBF

′, f := F f .

Obviously, we have‖B‖ ≤ Λ2
Ψ‖B‖X →X ′ . With respect to the decomposition

ℓ2 = ranF ⊕⊥ kerF ′, B is of the form
[B0 0

0 0

]

. FromF̃B−1F̃ ′B = BF̃B−1F̃ ′ =
Q, we conclude thatB0 = B|ranF : ranF → ranF is boundedly invertible with
‖B−1

0 ‖ ≤ λ−2
Ψ ‖B−1‖X ′→X . Finally, we note that forv,w ∈ ranF ,

〈B0v,w〉 = 〈Bv,w〉 = 〈FBF
′v,w〉 = (Bv)(w), (52)

wherev = F ′v andw = F ′w, or equivalently becausev,w ∈ ranF , v = F̃v and
w = F̃w.

6.3 The adaptive solution of an operator equation in frame
coordinates

In case the operatorB in (50) is symmetric and positive definite, one may think of
applying the adaptive wavelet Galerkin approach discussedin Sect. 4 ontoBu = f
from (51). Since, however, for a “true” frame,B has a non-trivial kernel, forΛ ( ∇
the generalized condition number ofB|Λ×Λ , i.e., the quotient of its largest and its
smallest non-negative eigenvalue, can be arbitrarily large. This makes this approach
unfeasible.

Therefore, we return to the damped Richardson iteration discussed in Sect. 3.1.
Denoting itsith iterand asu(i), and withu somesolution ofBu = f, we have

u−u(i) = (I −αB)(u−u(i−1)),

which, due to the non-trivial kernel ofB, shows no convergence. By applyingQ,
however, we obtain

Q(u−u(i)) = (I −αB0)Q(u−u(i−1)).
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If B is symmetric and positive definite or only coercive, then in view of (52),
analogously to the analysis from Sect. 4, we infer that by a proper choice ofα,
‖I −αB0‖ < 1. Sinceu−F ′u(i) = F ′Q(u−u(i)), we conclude linear convergence
of F ′u(i) to u in X . For non-coerciveB, the iteration can be applied to the normal
equations.

When applying the damped Richardson iteration with an inexact evaluation of
the matrix-vector multiplication and that of the right-hand sidef, then, with a proper
choice of decaying tolerances, for the resulting iterationa linear decrease of the
projected errorQ(u−u(i)) can still be shown. These inexact evaluations, however,
generally produce error components that are in kerF ′. Since kerF ′ = kerB, these
error components will not be changed by subsequent Richardson steps. Although
these error components do not affect the projected error, generally they do affect the
A s-norms of the iterands, and with that, the cost of the applications of theAPPLY
routine.

In spite of this, in [Ste03] it was proved that the algorithmRich, as given in
Sect. 3.2 but with a modified choice of the tolerances (see [Ste03] for details), is
again (quasi-) optimal in the sense of Theorem 1:Given anε > 0, it produces an
uε with ‖Q(u− uε)‖ ≤ ε. If for some s> 0, Bu = f hassomesolutionu ∈ A s,

then#suppuε . ε−1/s‖u‖1/s
A s. If, additionally, for somēs> s,B is s̄-admissible and

Q : A s̄→A s̄ is bounded, then the number of operations used by the call is bounded

by an absolute multiple ofε−1/s‖u‖1/s
A s. In order words, ifs̄> smax, with smax defined

similarly as in the basis case(see Sect. 1.1), then this inexact Richardson iteration
is (quasi-) optimal.

The additional condition thatQ : A s̄ → A s̄ is bounded is satisfied whenQ is s̄-
admissable (cf. Definition 1 and Proposition 1), which in turn is satisfied when, for
somes∗ > s̄, Q is s∗-compressible (cf. Definitions 2, 3 and Theorem 2, and realize
that the question about cost of computing entries ofQ is not relevant, sinceQ does
not enter the algorithm, but its boundedness inA s is only needed for the proof of
optimality).

Unfortunately, although we expect it to hold more generally, in the aggregated
wavelet frame case so far thes∗-compressibility ofQ was proved (in [Ste03,§4.3])
only in the case that the wavelets on each subdomain areL2-orthogonal and that,
before aggregation, they were multiplied by a smooth function that is positive on
the subdomain and that vanishes outside the subdomain. Numerical results reported
in [DFR+07b] indicate (quasi-) optimality in other cases. In [DFR07a], the bound-
edness ofQ : A s̄ → A s̄ was shown for time-frequency localized Gabor frames.

Sufficient fors̄-admissability ofB is that it iss∗-computable for somes∗ > s̄. For
aggregated wavelet frames, a proof ofs∗-compressiblity ofB can follows the same
lines as in Sect. 5.1 for the basis case. In the aggregated wavelet frame case, the
approximate computation using quadrature of the significant entries ofB is a harder
task. Indeed, wavelets from different subdomains whose supports overlap will be
piecewise smooth with respect to different underlying partitions. Nevertheless, in
[SW08], for partial differential operators with smooth coefficients,s∗-computability
for ans∗ > smax was demonstrated.
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Thinking of a symmetric and positive definiteB, the selection of a suitable damp-
ing parameterα for the Richardson iteration requires estimating the smallest non-
negative eigenvalue ofB. Other than in the Riesz basis case whereB has no zero
eigenvalues, in the true frame case it is difficult to estimate this eigenvalue numer-
ically. In [DFR+07b], it was shown that an approximate steepest descent iteration,
which does not require information about the spectrum ofB, is (quasi-) optimal
under the same conditions as the approximate Richardson iteration.

6.4 An adaptive Schwarz method for aggregated wavelet frames

Let B ∈ L (X ,X ′) be symmetric and positive definite, whereX is a Sobolev
space with positive smoothness index on a domainΩ . Let Ψ be an aggregated
wavelet frame being the union of wavelet basesΨ1, . . . ,Ψm on overlapping subdo-
mainsΩ1, . . . ,Ωm, respectively. Each of these bases is a Riesz basis of the corre-
sponding Sobolev space on the subdomain, with homogeneous Dirichlet boundary
conditions on the internal boundary.

The partition of the domain into overlapping subdomains, orthat of the frame
into the different Riesz systems, suggest the application of a Schwarz method to
solveBu = f, being the representation of the operator equationBu = f in frame
coordinates. An multiplicative adaptive Schwarz method was studied in [SW09].

Let B = (Bkℓ)1≤k,ℓ≤m andv = (vk)1≤k≤m denote the corresponding partitions of
the system matrixB and any vector of frame coordinates, respectively. Then the
(exact) multiplicative Schwarz algorithm reads as follows:

for i = 1,2, . . . do
for k = 1 to mdo

solveBkku
(i)
k = fk−∑k−1

ℓ=1 Bkℓu
(i)
ℓ −∑m

ℓ=k+1Bkℓu
(i−1)
ℓ

enddo
enddo

Using the general theory of Schwarz methods (e.g. see [Xu92]), one shows that
F ′u(i) = u(i)⊤Ψ converges linearly tou in X .

The idea behind an inexact, adaptive variant is to find an approximation tou(i)
k by

the application of an adaptivewaveletmethod on subdomainΩk (either of inexact
Richardson type or an adaptive wavelet Galerkin method). Bya suitable choice of
decaying tolerances, the resulting method will still be linearly convergent.

For eachk, the sequence(u(i)
k )i of approximate solutions of the subdomain prob-

lems onΩk converges to someuk, that depends on the choice of the initial vectors

(u(0)
ℓ )1≤ℓ≤m. With u beingsomerepresentation ofu, i.e.,u⊤Ψ = u, it is not clear that

the splittingu = uk +(u−uk) is smoothness preserving, in the sense that ifu ∈A s,
thenuk ∈ A s with ‖uk‖A s . ‖u‖A s. From our considerations about the cost of the
APPLY routine that is part of the adaptive wavelet method, it is however clear that
such a smoothness preservation would be needed to conclude (quasi-) optimality of
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the resulting method. Actually, numerical experiments indicated that generally this
splitting is not smoothness preserving.

In order to solve this problem, again consider the systemBkku
(i)
k = fk−∑k−1

ℓ=1 Bkℓu
(i)
ℓ

−∑m
ℓ=k+1Bkℓu

(i−1)
ℓ . Note that if, before solving, coefficients from(u(i)

ℓ )1≤ℓ≤k−1 and

(u(i−1)
ℓ )k+1≤ℓ≤m that correspond to wavelets that are fully supported inΩk are

modified, in particular, aredeleted, then this will not change the approximation

u(i)⊤Ψ = ∑k
ℓ=1u(i)⊤

ℓ Ψℓ + ∑m
ℓ=k+1u(i−1)⊤

ℓ Ψℓ after this solving, although the vectors

(u(i)
ℓ )1≤ℓ≤k and(u(i−1)

ℓ )k+1≤ℓ≤m generally do change. For this process, but then with
an inexact adaptive solving, it was shown that if the sizes ofthe overlap regions are
sufficiently large compared to the maximal diameter of the support of any wavelet,
then the aforementioned splittingis smoothness preserving. Using this result, the
overall method was shown to be (quasi-) optimal assuming that B is s̄-admissable
for some ¯s≥ smax (cf. the discussion in Sect. 6.3). The boundedness ofQ : A s̄→A s̄

is not required.
Note that the method with the deletion of the coefficients that correspond to

wavelets associated to other subdomains, but that are fullysupported in the cur-
rent subdomain is actually closer to the original Schwarz method from [Sch90] than
the method we described first. Indeed, what is left after thisdeletion process is es-
sentially only boundary data for the problem on the current subdomain. The method
with deletion is also cheaper to implement since it requiresthe computation of less
entries in the system matrix corresponding to pairs of wavelets associated to differ-
ent subdomains. Recall that the quadrature problem to approximate those entries is
more demanding.

Numerical results reported in [SW09] show that quantitatively this multiplicative
adaptive Schwarz method is much more efficient that the adaptive steepest descent
method described in Sect. 6.3.

7 Adaptive methods based on tensor product wavelet bases

7.1 Tensor product wavelets

Let Ω be a product domain, i.e.,Ω = Ω1×·· ·×Ωn, then fort ≥ 0,

Ht(Ω)= Ht(Ω1)⊗L2(Ω2)⊗·· ·⊗L2(Ωn)∩·· ·∩L2(Ω1)⊗·· ·⊗L2(Ωn−1)⊗Ht(Ωn)

For t 6∈ N0 + 1
2, the same holds true withHt(Ω) reading asHt

0(Ω) andHt(Ωi) as
Ht

0(Ω). Similar statements involving boundary conditions of lower order, or with
boundary conditions on a part of the boundary (of product type) are also valid
([DS09a]).

Now for 1≤ i ≤ n, let Ψ (i) = {ψ(i)
λ : λ ∈ ∇i} ⊂ Ht(Ωi) be a Riesz basis for

L2(Ωi) that, when normalized inHt(Ωi), is a Riesz basis forHt(Ωi). Wavelet bases
are known to have this property for a range oft. Then using above characterization
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of Ht(Ω), it can be shown (cf. [GO95]) that the tensor product waveletbasis

ΨΨΨ := Ψ (1) ⊗·· ·⊗Ψ (n) = {ψψψλλλ := ψ(1)
λ1

⊗·· ·ψ(n)
λn

: λλλ ∈ ∇∇∇ := ∇(1) ×·· ·×∇(n)}

is a Riesz basis forHt(Ω).
Note that the widths of the support of a tensor product wavelet measured in the

coordinate directions can differ to an arbitrarily large extend. Furthermore, other
than with a (standard) wavelet basis, there exists no multiresolution analysis onΩ
such that (biorthogonal) complement spaces are spanned by asubset ofΨΨΨ .

In spite of these differences, tensor product wavelet basescan be applied in adap-
tive wavelet algorithms. In order to show that these algorithms give (quasi-) optimal
results, what is needed to verify is that the representationof the operator under
consideration in tensor product wavelet coordinates can besufficiently well approx-
imated by computable sparse matrices in relation to the bestpossible convergence
rate that can be expected. That is, what is needed to check is whethers∗ > smax, with
smax being defined in Sect. 1.1 ands∗ from Definition 2 in Sect. 3.3.

7.2 Non-adaptive approximation

Let Ωi be a domain of dimensionni andΨ (i) be a wavelet basis of orderdi > t,
cf. Example 1. Then it is well-known that a sufficiently smooth function onΩ can
be approximated inHt(Ω) from the sequence of spaces(span{ψψψλλλ : ∑n

i=1 |λi | ≤
ℓ})ℓ with ratesmax = maxi

di−t
ni

, up to some log-factors (the error bound reads as

N
−maxi

di−t
ni (logN)q for someq > 0 with N being the number of unknowns). This

type of approximation is known assparse-gridor hyperbolic crossapproxima-
tion (see [Zen91, DKT98, BG04]). Fort > 0, the aforementioned log-factors can
even be removed by considering slightly modified approximation spaces, known
asoptimized sparse-gridspaces ([GK00]). In particular, from now on thinking of
n1 = . . . = nn = 1 andd1 = . . . = dn =: d > t, a sufficiently smooth function on
ann-rectangle is approximated inHt for t > 0 by optimized sparse grids with rate
smax = d− t. That is, the so-called “curse of dimensionality” – the factthat with
standard wavelet (or finite element) approximation the rateis inversely proportional
with the space dimension – is completely removed.

7.3 BestN-term approximation and regularity

Sparse grid approximation isnon-adaptive, and the aforementioned high conver-
gence rate requires a smoothness of the function being approximated that the solu-
tion of an operator equation may not possess. Indeed, in [DS09a] it was shown that
for the Poisson problem on then-rectangle with homogeneous Dirichlet boundary
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conditions and a smooth right-hand side, the optimized sparse grid convergence rate
in H1 is 1

2 + 1
n, instead ofsmax = d− 1 that would be obtained when the solution

was sufficiently smooth. Only if the right-hand side vanishes to a sufficiently high
order at the non-smooth parts of the boundary, the best possible rate is obtained.

The requirements to approximate a function on then-rectangle with a certain rate
s≤ smax = d− t with best N-term approximationfrom the tensor product basis, i.e.,
the requirements for the function to be inA s, are (much) milder than the require-
ments to obtain this rate with (optimized) sparse grid approximation. Fors< smax, a
characterization ofA s in terms of intersections of tensor products of Besov spaces
was given in [Nit06]. Following earlier work in [Nit05], fort ∈ N in [DS09a] it
was shown that if a functionu on then-rectangle has partial derivatives up to order
nd in certain weightedL2 spaces, with weights that vanish at the boundary, then
u ∈ A d−t . What is more, additionally it was shown that the solution ofan elliptic
boundary value problem of order 2t on then-rectangle with smooth coefficients,
homogeneous Dirichlet boundary conditions and a smooth right-hand side satisfies
these regularity conditions.

Here we emphasize that for sufficiently largen andd, a rated− t cannot be re-
alized with bestN-term standard wavelet approximation. Indeed, with wavelets of
orderd̂, in n space dimensions the best possible rate isd̂−t

n . A (near) characterization

of A
d̂−t

n can be given in terms of certain Besov spaces. It is known, however, that
for n ≥ 3, the solution of an elliptic boundary value problem has limited smooth-
ness in this scale of Besov spaces. In other words, one cannotsimply choose the
rate at one’s convenience by increasing the orderd̂. In any case in three dimensions,
with finite elements of order̂d one can realize the best possible rated̂−t

3 by includ-
ing anisotropicrefinements towards the boundary ([Ape99]). The tensor product
wavelet approach has the unique additional feature that theratesmax does not dete-
riorate with an increasing space dimension.

7.4 s∗-computability

In order to conclude that the adaptive tensor product wavelet method converges at
the same rate as the sequence of bestN-term approximations with respect to the ten-
sor product basis in linear complexity, it is needed thats∗ > smax= d− t. For bound-
ary value problems with homogeneous Dirichlet boundary conditions and smooth
coefficients and piecewise smooth, sufficiently globally smooth univariate wavelets
with sufficiently many vanishing moments, this has been verified in [SS08]. Think-
ing of the arbitrarily stretched supports of the tensor product wavelets, one might
consider it as counterintuitive that an operator is better compressible in a tensor
product wavelet basis than it is in a standard wavelet basis.The key is that the sizes
of the entries decay exponentially as function of thesumof the absolute differences
in levels of the tensor product wavelets involved. Compressiblity of integrodifferen-
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tial operators has been investigated in [Rei08].

7.5 Truly sparse stiffness matrices

Recently, in [DS09b] a univariate wavelet basis of cubic Hermite splines was con-
structed that has the property that any second order boundary value problem with
constant coefficients and homogeneous Dirichlet boundary conditions on then-cube
with respect to then-fold tensor product basis istruly sparse. As a consequence, the
application of an adaptive wavelet method simplifies enormously. Indeed, the ap-
plication of the stiffness matrix to any finitely supported vector can be performed
exactly in linear complexity. Also with non-constant, smooth coefficients, the appli-
cation of this basis in the adaptive wavelet Galerkin methodis advantageous. For the
approximate residual computation, being the most time consuming part of the algo-
rithm, entries outside the nonzero pattern of a constant coefficient operator, except
those that correspond to wavelets on a few coarsest levels, are an order of magnitude
smaller than those inside this pattern, and so can be discarded.

7.6 Problems in space high dimension

We have seen that the sequence of approximations produced byan adaptive tensor
product wavelet method converges with the samerate as the sequence of bestN-
term approximations with respect to the tensor product basis. This does not exclude
the possibility that the quotient of the error produced by the adaptive method and
that of the bestN-term approximation of the same length grows with increasing
n. Actually, generally in any case any available upper bound for this quotient will
grow exponentially as function ofn. A reason is that various estimates to bound
the error for the adaptive method depend critically on the condition number of the
n-fold tensor product basis. If and only if the univariate wavelets are chosen to be
L2-orthogonal, this condition number is bounded uniformly inn, whereas it grows
exponentially inn otherwise.

In [DSS08], then-fold tensor product of the univariate piecewise polynomial
L2-orthogonal wavelet basis from [DGH96] is applied to solve constant coefficient
elliptic boundary value problems on then-rectangle. For this case, it was shown that
even thefactor that the adaptive method might lose compared to the bestN-term
approximations is bounded by an absolute constant. Experiments for the Poisson
problem on then-cube with right-hand side 1 show, however, that the bestN-term
approximations themselves still suffer from another, although much milder curse
of dimensionality. Although for any dimensionn, the rate of approximation inH1

is d− 1, the number of unknowns needed to achieve a relative error below some
given tolerance grows exponentially withn. Apparently, the constantC in the error
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boundCNd−1 grows exponentially withn. In view of the result from [NW08] saying
that the approximation of a general infinitely differentiable multivariate function is
intractable, this exponential growth of the constant is not surprising.

Likely, to approximate a function in high space dimensions,with the current
hardware think of dimensions higher than say 8-10, one should exploit more
information about the function than only that it is the solution of a boundary
value problem with somegeneral smooth right-hand side. As demonstrated in
[Gra04, BM02, HK07], a class of functions that can be accurately approximated
in high space dimensions are the solutions of boundary valueproblems with right-
hand sides that can be well approximated by a small number of separable functions.

7.7 Non-product domains

The application of tensor product wavelet bases is not restricted to Sobolev spaces
Ht(Ω) with t ≥ 0 whereΩ is product domain. Indeed, recall that the commonly
applied approaches to construct wavelet bases on a non-product domain start with
writing this domain as a non-overlapping union of subdomains, each of them being
a smooth parametric image of then-cube. With the approach based on extension
operators, wavelet bases on then-cube are lifted to the subdomains, after which
those that do not vanish at an interface between subdomains are smoothly extended
into neighbouring subdomains. This approach can be appliedverbatim to tensor
product wavelet bases on then-cube.

Using anon-overlappingdomain decomposition, one may also think of con-
structing an aggregated frame based on tensor product wavelet bases on the subdo-
mains. In the general case, however, where the underlying partitions in the overlap
regions are not aligned, the compressibility of the resulting system matrix will be
too low.

7.8 Other, non-elliptic problems

We considered well-posed linear operator equations of the formB : X →X ′, where
X = Ht(Ω) or Ht

0(Ω) andΩ is a product domain. In this case,Ht(Ω) is an in-
tersection of tensor product of Sobolev spaces. Well-posedoperator equationsB :
X → Y ′, whereX andY are of this type arise more generally. We mention here
the “unfolding” of ellipticn-scale homogenization problems (cf. [AB96, HS05]) as
well as the higher dimensional partial differential equations for the mean field, two-
point correlation and possibly higher order moments of the random solution of an
elliptic PDE with stochastic input data (cf. e.g. [ST03, HSS08, vPS06]).
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Another example is given by the space-time variational formulation of the
parabolic initial boundary value problem presented in Sect. 2.2.4. In this caseX =
L2(0,T)⊗H1

0(Ω)∩H1(0,T)⊗H−1(Ω) andY = (L2(0,T)⊗H1
0(Ω))×L2(Ω).

A classical approach to the numerical solution of the parabolic initial boundary
value problem is theMethod of Lines, which reduces the problem by spatial semidis-
cretization to a system of coupled ordinary differential equations to be solved nu-
merically in(0,T). Conversely, in Rothe’s Method the problem is reduced by time
semidiscretization to a sequence of coupled spatial, elliptic problems to be solved.
Both these approaches, and the more recently proposed discontinuous Galerkin
method are essentially time marching methods. The ultimateaim of adaptive meth-
ods is to achieve an approximate solution with an error belowa prescribed tolerance
at the expense of, up to an absolute multiple, minimal amountof computer time and
storage. Due to the character of time stepping this seems hard to realize and, unlike
for elliptic problems, so far no optimality results seem to be known.

In [SS09], the aforementioned spacesX andY were equipped with tensor prod-
uct wavelet bases. The resulting system matrix was proven tobe sufficiently com-
pressible and so the adaptive wavelet method applied to the simultaneously space-
time variational formulation converges with the rate as that of the bestN-term ap-
proximations. While keeping discrete solutions on all timelevels is prohibitive for
time marching methods, thanks to the use of tensor product bases, with the method
in [SS09] there is no penalty in complexity because of the additional time dimen-
sion.
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