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Locally supported biorthogonal wavelets are constructetthe unit interval with respect to which second
order constant coefficient differential operators aresmals a result, the representation of second order
differential operators on the hypercube with respect tadlalting tensor product wavelet coordinates is
again sparse. The advantage of tensor product approximiatibat it yields (nearly) dimension indepen-
dent rates. An adaptive tensor product wavelet method iBeab solve various singularly perturbed
boundary value problems. The numerical results indicabestmess with respect to the singular pertur-
bations. For a two-dimensional model problem, this will bported by theoretical results.

Keywords Adaptive method, tensor product wavelets, optimal corortal complexity, sparse matri-
ces, singular perturbations.

1. Introduction
1.1 Boundary value problem and its representation in tensodpai wavelet coordinates

With | := (0,1) andO := I" for somen € N, given f € H=1(0O) we consider the problem of finding
u € H3(O) such that

n n
a(u,v) ::/ z ajjoudv -+ zibiﬁiuwr Couv= f(v) (ve H}(O), (1.1)
UiT=1 i=

where thes;j, bj andcg > 0 areconstants

Here, in order that we can equip the corresponding functpateas with tensor product wavelet
bases, we consider as domain the hypercube, being a pretoftyproduct domain. The application of
piecewise multi-level tensor product bases on general dwwé a domain decomposition approach is
currently under investigation.

We consider convection-diffusion-reaction equations thay have an anisotropic diffusion tensor
directed essentially along the coordinate axes, and a namirént convection part. The following result
gives conditions under which such equations are well-posed

LEMMA 1.1 For some constand&sA > 0, andK > 0, andcy,...,c, > 0, let

5 rr;cmfr% < | ;ajaa <A rr;cmfr% (E€RM (1.2)
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n 2 n

ZZ—' < Kmax(co,;ci). (1.3)

ThenA, defined by(Au)(v) = a(u,v), defines a boundedly invertible operator betwiigfd), equipped
with “energy-norm”,

n
VIl = \/ [ o+ 3 cnlamv)?,
o m=1

and its duaH ~1(0), equipped with the corresponding dual norm. The operatonafjA|[, [|A~L|| can
be bounded in terms @, A, K (and the Poincaré constant) only, tindependentlpf the &;j, bj, and
G that satisfy the inequalities (1.2) and (1.3).

Proof. Foru e H3(D), a(u,u) > min(1, )|uf|®. Since the spectral norm fa*—J) is < A, we have
VaVS )i

o Sijaidudivl <A fo v/ 3iG(au)?/3¢i(9v)? < Ay/ [p3ici(du)?/ Jo 5 Cj(d;v)% Obviously
| Jo Couv| < /Col|Ul[L,(0)v/ColIVI[L,(o)- By Poincaré’s inequality, for some constéht- 0, || - HEz(D) <

1C 2
Cllar-IIF, () onHg (3), or || [IF ) < fﬂnﬁ SitaGillé-[IF, o). and sof - |7, o) < ngﬁ”m :
. b2 1
With that, || 5 biduvi|L,(o) < [VllLyo)\/ i y/SiGl1aul2, o) < max(1,C)2 VK||V][|jul. Now the
proof is completed by an application of the Lax-Milgram leenm O
Using that
Ho(0) =Ho()@La(D®@--@La()N -+ Nla()®--®La(1) @ Ha(1),

aRiesz basifor H&(D) can be constructed by tensorizing univariate Riesz baseawadlet type. Indeed,
let W = {,: A € O} be a normalized Riesz basis fos(1) that, when re-normalized iH(1), is a
Riesz basis foH2(I). Then, when normalized iff-||, ¥ @ - -- ® W is a Riesz basis fad}(0) (Griebel
& Oswald (1995)). In particular, with thRiesz constants

IZrendralZ, ISrenhunlE,q)

/\L | = |nf Vi ) /\L | = Sup Vi
W oserm - W0 T e Whe
| Sacndhdnl? [Srendrdnl?
M) 1= 0,0 ) B e W60 = S T
0 0£del,(0) Yrenlo IR 0 04£del,(0) 2aenld) Mgy

we have
z|||Z/\e|md |2|T|p:¢\;1®® ®®w$|””|2<ma><(/\L2<|>7/\H3(|))/\Cz('l> (14)
rern |0y Rl @@ g,

(d € £,(0M)) (Dijkemaet al. (2009)).

REMARK 1.1 This result shows that the Riesz constant§ of - - - @ ¥, normalized in|- ||, with respect
to H3 (D) equipped with||-|| are even independent of the space dimensiiitand actually only if)¥
is anorthonormalbasis forL,(1). In the current paper we will not consider such univariateelets.

Min(AL() Az ) Al i) <

REMARK 1.2 Actually, here and in the following, we can allow one orrenq to be zero (when the
correspondindp; are zero as well) as long &+ S, cm > 0. In that caseH&(D) should be read as
the completion o€y (O) with respect to the energy-norm (cf. Hochmuth (2001)).
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Let us denote the normalized tensor product basisifdr) as

W= {P) = mat/l[@m1tr,ll: A € O:= 0"

Note that]|f_ Y, | = | /Co+ Sia Cmly 2 - BY writing

u=u'w:=3 uy,,

Aeld
and with
fr=[f(@r)lreo,
an equivalent formulation of (1.1) is
Au = f. (1.5)

whereA = [a({, P )] pen is the bi-infinite stiffness matrix dd(-, -) with respect té¥.
SinceA: H}(O) — H~1(D) is boundedly invertible, an# is a Riesz basis fddd(0), we have that

A 1 l>(0) — ¢,(0) is boundedly invertible. In particular, from (1.4) we intbat

A< AT M@ AL 1 A )ALE . A< A HIMInAL ) Ay AL S (1.6)

1.2 Linear and nonlinear multi-level tensor product approxtina

The advantage of the representatioruaf tensor product wavelet coordinates is that highly effitie
approximations exist. Let > 2 denote the order of the univariate wavelets. It is well kndkat if u
has mixed derivatives of a sufficiently high orderlis(0), then it can be approximated from the span
of N tensor product wavelets with indices in the so-called ojzgéthsparse-gridindex set, such that
the error inH(O) (with standard norm) ig"(N~(4-Y) (Griebel & Knapek (2000); Bungartz & Griebel
(2004)). So different than with non-tensor product apprtion of orderd, where one can expect at
best a ratéd — 1)/n, the obtained ratd — 1 doesnot deterioratewith increasing, i.e., the so-called
curse of dimensionalitis avoided.

Foru being the solution of an elliptic PDE, generally the reqdib®undedness of its mixed deriva-
tivescannotbe expected. For the Poisson problem, it can be enforceddgoyrireg that the right-hand
side f vanishes to a sufficiently high order at the non-smooth mdré&3. For generic smootli, how-
ever, the aforementioned rate- 1 reduces to} +% (Dauge & Stevenson, 2010, Sect. 6). Yet, as is
shown in Dauge & Stevenson (2010), the best possibledraté can be retrieved by a proper modifi-
cation of the optimized sparse grid index sets invoMimgal refinementsowards the boundary. This
result was shown under the assumption that the correspgpddal wavelet@reuniformly local

The approximation results mentioned so far condieear approximation If u can be approximated
from the spans of a priori selected sets of wavelets withgatthat, as we have seen, can be as large as
(d — 1) — then, obviously, it can be approximated within a tolerafi¢hl—5) by the best approximation
from the span of the be® wavelets, dependent an Due to the Riesz basis property, the latter is
equivalentpnly dependent or(A), to the property that the representatioaf u with respect td¥ can
be approximated ifi,(O) within toleranceZ(N—3) by the best possible vector of lendth known as a
best N-term approximatioior u, and denoted asy.

For s < d, the class of functions that can be approximated within erémice/(N~%) by a linear
combination of bed tensor product wavelets has been shown to be equal to thiegnt®n of certain
tensor product of Besov spaces. We refer to Nitsche (200&eB& Ullrich (2009).
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In this paper, we study families sfngularly perturbedoundary value problems. In particular, we
consider the families whemu,v) is [, n?0u-Ov+uv, [, N201Uud1v+ S, dudv, or [5n?0u-Ov—
n(o1u)v+ uv. The solutions of these problems hayelependent boundary and corners layers that we
expect can be efficiently approximated by tensor productagmation.

For the first family in two space dimensions, a splitting & #olution into a smooth part and edge
and corners layers will be used to derive linear approxiomatates (and with that upper bounds for the
nonlinear rates) i3 (O) equipped with therf-dependent) energy norff||. The rates will be robust
with respect tay. Numerical results will indicate that the same holds truglie other two families.

1.3 The adaptive solution of the boundary value problem

So far we discussed (best) approximatiomdaf the energy-nornj|-|| from spart¥ or, in view of (1.4),
equivalently, that ofi in ¢(0) by finitely supported vectors. Bothandu, however, are only implic-
itly given as solutions of (1.1) and (1.5), respectively.dahenet al. (2001, 2002), adaptive wavelet
schemes were developed for solving (1.5) that, under soméitians, arequasi-optimalmeaning that
they solve (1.5) with ari(0)-rate equal to that of bedt-term approximations, in linear complexity.
We consider a modified version proposed in Gantuetwal. (2007) of the Adaptive Wavelet-Galerkin
Method from Coheret al. (2001), which avoids the so-calledarseningstep.

For ease of presentation, let us assume ghatAT > 0, i.e., that theb; in (1.1) are zero. Other-
wise, the scheme can be applied to the normal equafiowss = A 'f, in which case in the following
discussionA andf should be read a&" A andA ' f on all places.

Given a finite setA C O, let 1, : ¢2(A) — ¢2(0) denote the trivial embedding, so that its adjoint
Pa: 02(0) — £2(A) is the restriction of a vector to its indicesin With Ap := PyAl A andfj := Paf,
the solution ofApup = f is known as the Galerkin approximationudrom ¢>(A). For some suffi-
ciently small parametar € (0,1), the idealized Adaptive Wavelet-Galerkin Method readélsws:

No:=0, Upag -= 0,

fori=12,...do
Find aAi;1 D Aj such that|Px,, (f —Aux, )| = u[/f — Aup, ||, and such that, up to some
absolute multiple#(Ai;+1\ Ai) is minimal among all such; 1.
SolveAn.,Uai; =fai.y-

enddo

Note that in this scheme the residdial Au,,, being zero om\;, plays the role of an a posteriori error
estimator to guide a proper expansion of the/set

Generally, the above scheme cannot be performed exactit. dfiall, generallyf will be infinitely
supported and thus has to be approximated. Secondly, dlgreemg column ofA has infinitely many
non-zeros. Thanks to the properties of wavelets, howesdreag smooth and having vanishing mo-
ments, the sizes of the entriesAfdecay rapidly away from the diagonal. This property has heseal
to design an adaptive approximate matrix-vector multgilan routineAPPLY in which, dependent to
some prescribed overall tolerance, the accuracy with waighcolumn is approximated increases with
the modulus of the corresponding entry in the vector. BR®LY routine is used both for the approxi-
mate computation of the residufal Au,;, and for the repeated approximate multiplications Wiy,
for the iterative solving of the Galerkin probleAp, . us, , = fa,.,. Concerning the latter, note that
generally the number of non-zero entriesNR, ., is not of the order of A; 1.

Near-sparsity oA can be quantified by the conceptgfcomputability. It was shown that if the
value of s* is larger than the rats of bestN-term approximations fou, and (quasi-) bedN-term
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approximations fof can be computed in linear complexity, then the approxinmatioroduced by the
adaptive scheme converge with the best possiblesriaténear complexity (cf. Stevenson (2009)).

In the specific setting of tensor product wavelets, for umifly local, sufficiently smooth univari-
ate wavelets that have sufficiently many vanishing moment§chwab & Stevenson (2008) it was
demonstrated that exceeds the best possible ratdat can be expected, so that the practical adaptive
wavelet scheme is quasi-optimal. This holds also true fiferdintial operators with non-constant, but
sufficiently smooth coefficients.

Practical results with the Adaptive (Tensor Product) Wetir@alerkin Method were reported on in
Dijkemaet al. (2009). Therd_,-orthonormal univariate wavelets were used to arrive at thatkthat is
quasi-optimal, uniformly in the space dimensio(cf. Remark 1.1).

1.4 Custom designed wavelets that lead to sparse stiffnesscemtr

Although the adaptive wavelet scheme described above &-gpémal, our practical experience with
implementing the method learned us that quantitativelyaghyglication of theAPPLY routine is very
demanding, where this routine is also not easy to implemlanthe specific setting of tensor product
wavelets, the bi-infinite stiffness matrix correspondingt.1) reads as

A= D—l[ S aij @ Z(3m. Ojm) + Zbi X Z(8m,0)+co(®) Z(0,0)]D 7,
i m=1 i=1 m=1 m=1

i,j=1

whereD := diag[||@n_ W, ll: A € O],

M when(st) = (0,0)
S, A when(st)=(1,1)
2V =9 6 when(st) = (1.0
—G" when(st)=(0,1)

and

A=y , M= .and Gi=| [{ .
[/w“w)\}/\,uei {/wuw)\])\yeD o {/wuw)\]/\,ueD

Here, and on other places, a (double) “dot” on top of a uratarfunction denotes its (second)
derivative. With a (double) “dot” on top of a linear space ofiariate functions we will denote the
linear space of (second) derivatives of these functions.

The difficulties with theAPPLY routine led us in Dijkema & Stevenson (2010) to constructia un
variate wavelet basis that generates Riesz bases for ash8gbolev spaces, including(l) andHa (1),
and which has the special property to give rise to matrided, andG that all are trulysparse As a
result, the representatignof (1.1) with respect to the-fold tensor product wavelet basis is sparse. So
in this caseA can be applie@xactlyto any (finitely supported) vector at a cost that is lineatsrsup-
port length, and there is no need for a complicated, and gatveely demanding approximate adaptive
matrix-vector multiplication routindPPLY .

The wavelets constructed in Dijkema & Stevenson (2010) éeally supported duals. A number
of theoretical results require uniformly local dual wavsjealthough usually, with some more efforts,
they can be extended to duals that decay sufficiently fastm@fetion the characterization of approx-
imation classes as (intersections of tensor products ofpBepaces, and the proof from Dauge &
Stevenson (2010) that these approximation classes cqirigensections of tensor products of) certain
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weighted Sobolev spaces. Furthermore, for a number of ggijdns, uniformly local dual wavelets
are either necessary or in any case convenient. We thinkeafeheralization of the adaptive wavelet
scheme to nonlinear equations, and the application of wévél data analysis and image compression.
In view of these observations, in this paper we constructles that share the properties with those
from Dijkema & Stevenson (2010), i.e., they will yield magsM, A, andG that all are trulysparse
and that have the additional property that their duals aif@umly local. Moreover, although the order
of the wavelets here will be 5 with 5 vanishing moments, vsith @ vanishing moments in Dijkema &
Stevenson (2010), their condition numbers with respetp mndH* norms will even be slightly better.

REMARK 1.3 True sparsity oA is only valid for differential operators with constant cfi@énts. This
was the only reason to consider constant coefficients frarsthart in (1.1). With the exception of
sparsity ofA, however, all other results in this paper directly geneealo variable, possibly sufficiently
smooth coefficients. Concerning sparsity, for smooth,aldei coefficients, the additional non-zeros
outside the sparsity pattern of a constant coefficient apevéll be orders of magnitude smaller than
those inside this pattern, depending on the levels of thelgtinvolved. For the residual computation
inside the adaptive wavelet scheme, which is the quangigtmost demanding part, it can be envisaged
that they can be ignored, possibly apart from those corredipg to some coarsest levels. A precise
analysis of this phenomenon is outside the scope of this work

The remainder of this paper is organized as follows: In Szdtis shown that our desire to have
sparse stiffness matrices can essentially only be fulfiieactontinuously differentiable wavelets. In
Sect. 3, the general framework is recalled how to constriactiogonal, uniformly local wavelets that
generate Riesz bases for a scale of Sobolev spaces. In S#us #famework is used to construct a
wavelet basis that has the additional property to give nssparse stiffness matrices. The quantitative
stability of the basis is investigated in Sect. 5. In Secth&, Adaptive Wavelet-Galerkin Method is
described. In Sect. 7, approximation rates are derived fopdel reaction-diffusion equation in two
space dimensions. Finally, in Sect. 8 numerical resultpegsented of the Adaptive Wavelet-Galerkin
method applied to various singularly perturbed problems.

For completeness, here and in the remainder of this worlh @it D we will mean thatC can
be bounded by a multiple &, independently of parameters on whickandD may depend, with the
exception 0©,A andK from Lemma 1.1, and the space dimengiqof. remark 1.1). Obviously; > D
is defined aP < C, andC ~ D asC <D andC > D.

2. A minimal smoothness requirement

We would like to find a collection of univariate waveléts= {(, : A € O} such that, withA| € Ng
denoting the level ofs, or that ofA, in any case the following conditions are satisfied:

(1) diamsupmy, <271,

(2) U koo #{IA| = j: k271, (k+1)271] N suppy, # 0} < oo,
(3) Wis Riesz basis fok(l),

@) {wn /I,y A € O} is a Riesz basis fadd(1),

(5) J; gt = O when|[A| — [p]| > M,
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whereM € Ny is some constant, that later will be chosen to be 1. As a corseg, with respect to
a level-wise partition of the wavelet, will be block tridiagonal with, because of (1) and (2), sgars
non-zero blocks. Note that under the assumptions (1) and(&)sparse if and only if (5) is valid.

The additional requirements thiditandG be sparse play no role in this section.

We will refer to the properties (1) and (2) by saying that trevelets aréuniformly) local We will
use this definition of locality also for other collectionsfofctions, in particular for scaling functions.

The following proposition shows that (1)-(5) can only beisfad by piecewise smooth wavelets
when they arglobally continuously differentiable

ProPOSITION2.1 (Dijkema & Stevenson, 2010, Prop.1) If, in addition t9 €1(4), each wavelet is
piecewise smooth with bounded piecewise first and secondadiges, then (5) requires that they are
globally C*.

3. Biorthogonal multi-resolution analyses and wavelets

In order to construct wavelets that, properly scaled, gaedRiesz bases for a range of Sobolev spaces,
in particular forLy(1) andH2(1) (cf. (3) and (4)), we will use the following well-known thesn (cf.
Dahmen (1996); Dahmen & Stevenson (1999); Cohen (2003)).

THEOREM 3.1 (Biorthogonal space decompositions) Let
Vo CVy C - CLy(l), \70C\71C---CL2(|)

be sequences of primal and dual spaces such that

- G
dimVj =dimVj <ew and aj:= inf_ sup Vi, ViDL

) R YILmE Sy 3.1)
029V 02v;ev; Vil IVillo)

~

In addition, for some & y < d, let

i —jd d
IV Vil S22 ML (v W)

(Jackson estimateand .
IVillosay < 25(Ivill,ay  (vi € Vi s€0,y))

(Bernstein estimate)where.#5(1) (s € [0,d]) are Hilbert spaces such tha#’d(l) — L(l) dense,
and, forse (0,d), s#3(1) := [Lz(l),j‘fd(l)]s/d, and let similar estimates be valid at the dual side with

((Vj)j,d,y,225(1)) reading ag(V;);,d, 7,.725(1)).
Then, with®y = {@: k € lp} being a basis fo¥y (scaling functions) an®; = {(;«: k€ J;}

~ L ~ .
(j € N) being uniformL,(1)-Riesz bases for; NV, ‘2" (wavelets), fors € (7, y) the collection
®0UUj€N278j‘IJj

is a Riesz basis far’S(1), where, fors < 0, 7#75(1) := (#~5(1))'.

In view of the notations introduced earlier, we dengjtk) also asA, where|A| = |, @k as Yok
andlpUUjenJj asll.
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The existence of the Riesz bads= @y UUjen Y, for L(1) as in Theorem 3.1 is equivalent to the
existence of another, dual Riesz baéigor Lo(I). Writing this basis correspondingly @& U UjeNW,,

@ is a basis foklp, and@, for V; mvjff U Forse (—y,7), the collection
&’oU UjeNZ_Sjlpj

is a Riesz basis for5(1).
The property (3.1) can be verified by an application of thefaing proposition (cf. e.g. Stevenson
(2003)).

PROPOSITION3.2 Let(Vj)j,(Vj); C L2(1) be nested sequences of finite dimensional spaces, then (3.1)
is equivalent to

e the existence of uniformly bounded (biorthogonal) prajesQ; : La(1) — V;j with ImQ; =V,

~ 1
Im(1 — Q) =V, "2, wherel|Qj |, 1)—L,1) = a;

« the existence of biorthogonal, uniform(1)-Riesz base®; and @; for Vj andVj, respectively.

We will verify (3.1) by constructing biorthogonal scalingrfctions as meant in the second item of
Proposition 3.2. In particular, we will construl,]tand\7j such that they can be equipped with uniformly
local biorthogonal bases. With such bases at hand, under a miltdcadd condition, uniformly local
primalanddual wavelets become available. This is shown in the folhgyiroposition. For a proof we
refer to Carniceet al. (1996); Stevenson (2003).

PROPOSITION3.3 (a). Let the union ofp; and =, 1 (“initial stable completion”) be a uniforrhy(1)-
Riesz basis fo¥/, 1, then N
1= S — (541 PLn P

~ L
is a uniformLy(1)-Riesz basis fov/j.1 NV, t2()

. — v v Gjo —
(b). Writing [®" = 1] = @/ ;MjandM;* = {Gj } ie, @/, =&/ Gjo+ =] ,Gj1, then

T
qu-s—l— J+1G

(c). If @, ¢JJ, and=; . are unlformly local, thet, , 1 is uniformly local.
If CDJ+1 is uniformly local, and\/l ! and thusG; ; are uniformly local (i.e., entries corresponding

to basis functions are zero Whenever their distance is ldhg®m some absolute multiple of ), then
W1 is uniformly local.

4. Biorthogonal multi-resolution analyses that lead to spese stiffness matrices

We shall selectV;);, (V;); that satisfy the conditions of Theorem 3.1 for soyne 1, where#94(1) =
HE (1) N HY(). The pairs(V;,V;) will be equipped with biorthogonal, uniformly local, unifa La(1)-
Riesz base®;, @;. In addition, and that will turn out to be the main poif\t;);, (V;); will be selected
such thav; ¢ CY(I)nHZ(1) and _ )

Vj+Vj+Vj C Vi1 (4.1)

Here, witth (\7,-) we mean the linear space of (second) derivatives of funstioV;.
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Furthermore, a uniformly local “initial stable completio&; 1 will be constructed such thag; U
Zj+1 is a uniformLy(I)-Riesz basis foWj, 1, and such that the basis transformaﬂilljﬁ1 is uniformly
local. As a result, we obtain a wavelet collectigh= @y U U< that, properly scaled, generates
Riesz bases for a range of Sobolev spaces, includi( andHa(1). Furthermore, bott; and the
corresponding dual’i;’J will be uniformly local.

As a consequence of (4.1), we have that/for> |A|+1,

<Lp)\ ’ LI"IJ>L2(
(W W), = <¢’A7¢’u> =
(W W), = —<¢'A7¢'u>|_2< )=

showing that the univariate system matribdsA, andG aresparseas desired.

4.1 Arealization

We do not have a general procedure to construct biorthogouki-resolution analyses that satisfy all
aforementioned conditions, in particular (4.1), but westauict one particular instance. We take

2itl 1 . ,
I_L Py(k2~ Y (k4 1)2- 0Dy nCr () nH(1)

of dimension 52i+1 —2(2i+1 1) —2=3.2i+1 Then

2it1_1 . '
Vi+Vj+VjCZj = I_L Py(k2~ (D), (k4 1)2-(+2))
k=

of dimension 5211, Following the idea of a so-calladtertwining multiresolution analysi€onovan

et al. (1996)), we will select/Hl as the direct sum of; and a subspace @;.1 of dimension 21

so that dinVj.1 = dimVj, 1. Since(Z;); is nested, so i§V;);, and Bernsteln and Jackson estimates are
satisfied at primal and dual side with parametkrsd =5,y = 3, 7= 3, where#5(1) = H (1) nH5(1)
and.#Z5(1) = H3(1).

We start our construction di;); and that of biorthogonal scaling functiods and ®; on aref-
erence macro-elemeht= (—1,1). Since at each level, the functions at the primal side areepiise
polynomials with respect to a partition that is twice as fisele corresponding partition at the dual
side, this reference macro-element comprises two prineahehts, and one dual element.

Let H ={-1,0,1} andL = {—1,— , ,2,1} Fori € H and j € L, let the interpolatory basis
functionsh;, £ € P4(—1,0) x P4(0,1) ﬂCl( ) andéJ € Py(1) be defined by

7,3) = 855, (feH,jel),

cf. Figure 1.

With the aim to construct biorthogonal collections, we vaiiply a number of transformations to
these bases, and enrich the collection at the dual side wigtdditional function.



10 of 28

FiG. 1. Interpolatory basis d#(—1,0) x P4(0,1) NCL(7) (left picture) and that of4 () (right picture), the latter together with the
additional, discontinuous functiofs € P4(—1,0) x P4(0,1) defined in step 2. In this figure, the functiohss, hy, andh; were

multiplied by a factor 13, and the functidi with a factor%‘.

Step 1. We defineh_; and?_; as linear combinations &f_, £ 3. ho, Lo, 3 and_y, £ 4, ho, Lo,
12 1 respectively, such that
<ﬁ—17zj>|_2(i) = <é—17zj>L2(T) = %6—1’3 (j S L)
We sethy (x) = —h_1(—x) and/y(x) = /_1(—x).
= f(_%) =

Step 2. We select’/e from the 5 dimensional spadd € P4(—1,0) x P4(0,1) : f(—1)
f(07)+ f(0%) = f(3) = f(1) = 0} such that

AT o~
([hor 21 o 4] el =0.

531 63 63 531 ; 3 11 3 ;
— n—3 —3% 7> 1, respectively, and

Fixing some scaling of, it has value ~9» — 5% 256" — 1792 | 1
—le(07) = £e(07) = 5, cf. Figure 1.
Step 3.We set ~
67% Ef; [7; -1 é;;
= ~2 2 ~2
lie _ lie ho lie
lo b || b lo
@% t 4 La() Z)

Step 4.For j € {—1,1}, we define
=0 = (0,003 = (03:h0) gy le— (71 L) iy lo— (01,04 ),y

Now setting
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from the definitions in Steps 1-4, we have

CXN (4.2)

O O O O O ONFNIE
Ooo0oocor OO
OCoo0ooRrOOO
cooroOOOO
OcoroOO0OO
NELO OO OO O

The collectionsp anNdCflgre illustrated in Figure 2, and their coefficients in terrhthe interpolatory
basis or in terms o{é_l,é_% e, EO,K% ,¢1} can be found in Tables 1 and 2, respectively.

FIG. 2. Biorthogonal collectionsp and 5 on the reference
respectively.

h_q | /-4 @7% ho lo K% hy | /1
(1) 0 | B | -3 -9 T | 30| 0|0
(oo 1 0 0 0 00
hh | O | O 0 1 0 0 00
lo 0 0 0 0 1 0 0 0
oo 0 0 0 1 00

105 285 45 945 165
hy | 0 | 0| 28 |- 18| % |10
0 0 0 | 55 295 265 | 683351 o | 2B

3072 16 192 3072 12

Table 1. Coefficients of.

Having defined primal and dual collectiofisand® on the reference macro-element, the collections
@; and @; are assembled in the way known from finite elements. Firstctilections® and @ are
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13

01 57% le lo E;ZL 1
A 27 7 1 1
{1 1 352 33 74 352 0
7 0 8775 35 | _ 105 1395
-1 7096 az 5632 25056
= 45 630 45
le | O g |31 | O gg |0
/. 0 315 | 1715 | 735 315 |
0 2816 | 528 352 2816
h 0 1395 | 35 105 8775 0
3 45056 | 44 5632 | 4096
P 1 7 1 27
10| s | s | = 3 |1

Table 2. Coefficients ofb.

lifted to any macro-elemerfik2—(i+1 (k4 2)2-(1+1], and multiplied by 2+1)/2 to compensate for the
change in length.

At the primal side, functions at an interface between two no@&tements that correspond to the
same degree of freedom are connected,hsefrom the left is connected tb_; from the right, and’y
from the left is connected to 3 from the right. In view of the boundary conditions, at the kEsundary
the function/_1 is dropped and at the right boundary so is the function

In view of the discontinuity between elements, at the dud¢ sio degrees of freedom are identi-
fied. Instead a simple basis transformation is applied. Aheaternal interface, the pair of functions
consisting of€1 from the left andf 1 from the right are replaced by the symmetric and anti-symimet
functions?y + 7_1 and—f4 + 1, with double support lengths. Finally, at the left bound@rws mul-
tiplied by 2, and at the right boundaﬁy is multiplied by —2. In view of (4.2), one verifies that the
resulting primal and dual collections, denoted#@sand CDJ, arebiorthogonal

By construction, spa®; = Vj andZ; C V; := span®; C Zj,1. The collections®; and ®; are
uniformly local and uniformlyL,(l)-bounded. As a consequence of these properties, it holds tha
chT il S lcjlle, and similar at the dual side. Together with the biorthoginahis shows thatp,

~ . . . . o @
and®; are uniformly(1)-Riesz bases. E.g., at the dual side, we hi@yg#,, = SUR; 20 %\400 <

le! @illq T 3
18] ®jll,q SUpcﬁéoW SIE @il

Finally, we note that the basis transformations betweenntieepolatory basis fo¥; and the basis
®; are uniformly local.

4.2 Wavelets

In view of Proposition 3.3, in order to define the waveletss isufficient to construcEj; such that
®;U = 1is auniformlLy(l)-Riesz basis foYj, ;. Moreover, in order to obtain uniformly local wavelets
with uniformly local duals, we would like to sele&; 1 such that the basis transformations between
®j,1 and®; U= 1 are uniformly local. Since the basis transformations betwte interpolatory basis
of Vj and the basigp; are uniformly local, the latter condition is equivalent ke ocality of the basis
transformations between the interpolatory basis/fgr and the union of the interpolatory basis gr
and=; .

A Jnatural choice foEj, 1 is the subset of interpolatory basis functions\for; that correspond to the
new degrees of freedom. With this choice, the last mentitasds transformations are uniformly local.
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Indeed, withl, being the canonical interpolation operator o¥tpthe argument is that farj 1 € Vj1
the computation of the splitting;j.1 = Iuj1+ lj+1(uj+1 — ljuj1) requires local quantities only.

Yet, in order to reduce the support size of most of the resylvavelets, we do not simply take
Zj+1 to be the above collection, but we construct it from thatexilbn by applying a uniformly local
transformation with uniformly local inverse. Our aim is tasare that most functions igj; are
orthogonal to those duals scaling functions that corregpmprimal scaling functions that have supports
that extend to more than one macro-element. The resultingleis will then have no components in
the directions of those scaling functions.

Similar to the previous subsection, it is sufficient to spect such thatd U = is a basis for
S5 oPa(p/2,(p+1)/2)nC(i). Then by lifting = to any macro-elemerjk2~(+1) (k+2)2-(+1)]
multiplying it by 2(i+1)/2, and taking the union over all macro-elements, the cobecHj.; is ob-
tained. Since the funcuon values and first order derivatafeany function in= will vanish atdl, no
degrees of freedom will have to be |dent|f|ed over the interéa

LetH = {-1,-3,0,3,1} andL={-1,-3 -1 -1 O,}l,%,f{,l} We define the collectiod :=
{hi:H\HYU{¢{:j e L\L} C zp__2P4(p/2 (p+ 1)/2)0C( 1) as follows

cf. Figure 3. Sas consists of the interpolatory basis functions correspogdd the new degrees of
freedom.

\
‘ [ \

’ . “‘_ / f\
/ \ \ \

~ ! ,/ N (§¥2j ; /’ // \\ \\

L - ) \ \

L N . \ N . / L o\
-1.0 | -0.5 N - \ 0.5 . /10

FiG. 3. The “preliminary” initial stable completioﬁ on the reference element.

We will define= by applying some basis transformatiorlﬁoln view of our aforementioned aim,
we look for = such that most of its elements are orthogqnﬁgp
Step 1.We determinefi% as the best approximation f@, from sparﬁ, ie.,

NI
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and then redefine the obtainééi%} by biorthogonalizing it with{tzl}, ie.,

Fgﬂ N < [iﬂ | [ﬂ >L:<f> F‘gﬂ |

Step 2.We select{fi% , éi%} from sparﬁ N span{ézil}“ﬂ'“) by means of

Eo 1=l (lp. D,mé 3~ Uni,péy (P {5+3)).

Now it holds that spa@ = spans, and the coefficients of in terms ofS are given in Table 3.

by | hy | &4 | 4 hy 4
57231 316773 | —27794688 236519 138180 2619904 103140
E_% 67599950| 638640640| —5457650] —3219590| —65697280| —1779910
E_le 22235 366336 3253977 | —11556 | —1234432 | 127356
f% 127356 1234432 —11556 | 3253977 | —366336 22235
E% —1779910| 65697280 | —3219590| —5457650| —638640640 67599950
E% 103140 | —2619904| 138180 236519 27794688 | 316773

Table 3. The coefficients of the initial stable completidon the reference element, all multiplied by 3262142, in teafs..

Atthis point, we have specified, &71- and=j 1. Using these ingredients, the collections of wavelets
W1 are determined by Proposition 3.3. Next, we redefinethis by applying some basis transfor-
mations to this collection in order to improve its condii'rmg1

By construction, we havé_% 1, él, El 1, é 1 andfis Eil 1, () /.4. This means that

the support of a wavelet resulting froﬁl2 E% or Ei% Eiz is contamed in the union of a macro-

element and its left neighbor (if any), the union of a madeswent and its right neighbor (if any), or
in the macro-element itself. In other words, each interfaetsveen macro-elements is contained in the
interior of the supports of two wavelets that have their sufpin the union of the macro-elements
at both sides of the interface (the “interface waveletsdghemacro-element contains the supports of
four wavelets (the “internal wavelets”), and both macrere¢nts at left and right boundary contain the
support of an additional wavelet (the “boundary wavelets”)

In order to improve the conditioning of the resulting wave|dirst we orthogonalize each group of

four internal wavelets. Then we make the interface and banaavelets orthogonal to the internal
wavelets by subtracting from each interface or boundaryeledy; x all (non-zero) term%‘"kjwji“2 Wik
wherek runs over the (neighboring) internal wavelets. Finally,avéhogonalize each resulting group
of two interface wavelets. All these transformations aml@nd have local inverses, meaning that the
resulting dual wavelets are still uniformly local.

We end up with 8 types of wavelet;, (1< i< 8): Four internal ones (X i < 4), two interface
wavelets (5< i < 6), and a left (= 7) and right boundary wavelet £ 8). These wavelets, scaled
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arbitrarily, are illustrated in Figure 4. To efficiently syify these wavelets in terms of the interpolatory
basis ofy pez Pa(p/2, (p+1)/2) N"CHR), we introducels) (X) := Ys)(2—X). The functiongps), Pe)
were the interface wavelets befafg;) was modified by making it orthogonal i, i.e.,

E‘Z’<6>"”<5>>L2<R> _ 22164193
7

)q"(5)’ where 5):¥(s))L,m) 46639227

Coefficients of{ ;) : 1 <1< 8,i # 6} U{{} in terms of the interpolatory basis, i.e., their function
values at;llZ and derivatives a%Z are given in Tables 4 and 5, and Table 6, respectively. Alsmgs

function values or derivatives can be found from the follegwelations:1)(x) = Y1) (—X), Yr2)(X) =
W2y (—X), Yz (X) = —P3)(—X), Yay(X) = =Wy (—X), Ye)(X) = Yis)(2—X), andz)(X) = Yg) (—X).

Y /\ 0.15¢ / \
[\

/A

/o b LA
I 0.10 [
’ //\ 0.2p /\‘/’(2) Lo / R /\\ 1 /l, Y
-~ ~ | , \ /
(1/7, \ / /\_ N \ AN / / / O.QS \ 1‘

I
\ AN ! N / \ | [N I / 7N
L/ Vo \ N 7 | \ | ‘ VRS

L \ L ! n
10~ 0.5 [ \os ~-1c-10, /) \-05 I | h 7 [os 1.0
| / \ f \ | - ! [N A /
/ / \ / | —0\05’ ! /
\ i
N

/ 3 \ \! Y |
1 | ! ~ /
Lo \y/ Iooaof | / \
\[/ |, VAR
o/ -0.15F
-0.4
N
U \ 75 / 6
St \’ ! / / \\ v ’/\\
/J\\ - [ N R 4 LZETI
b | | | | 1 \ ;
! ;! f\ ‘ [ / \{\
. A R |
I SN N /\\\’ “‘(\M \\ _{ h e =~ e - ! N |- \\\ '
NN VAV Wi T R 7 3 -10 ™05 - e e
N YA 1| nof ! [ _of Vo \
[ V) 17 V! T \ |
[ o \ / ! ‘o —4r /
| \ [
-5t Y H L) —6f \
L | | v V
\J‘ V
\

FiG. 4. The 4 internal wavelets (top row), the 2 interface waegbeottom left), and the left- and right boundary waveléistiom
right).

Finally, in order to improve the conditioning of the basisiorms other than thiex(I)-norm, in our
definition of the wavelet collectio#’, we replace the single-scale badis for \y by a biorthogonal
three-scale basis. We 8ét; := P(1) NHZ(1), V_2 := spaf{x(1 — x)}, V_1 := Px(l), andV_5 := Py(l),
and construct a basis fdf as the union of thé,(l)-orthogonal base§g := X +— x(1—x)} for V_»,

{@, @} for V_; my_iszm and { @, @, ¢} for Vg ﬂ\7_llL2<'>. The resulting basi§@, ..., @}, scaled

arbitrarily, is illustrated in Figure 5, and the coefficierdf {@,..., @} in terms of the interpolatory
basis forV are given in Table 7.
At this point, we have fully specified the wavelet ba#is= {@1,..., @} UUjen®.
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3 2 1 0
i i i
w 308451 — 60949 415475 1155
) 13889536 868096 13889536 54256
m 2499 — 109 4711 0
) 246272 3848 246072
w 443061983 _ 285143417 362748295 _ 9856717
) 36627756800 2289234800 1465110272 28615435
w 148837 _ 66512 1415825 0
4) 9425168 589073 9425168
m 53708555285 | _ 14980898075| 327725985455 | 3690665
5) 166405095424 10400318464| 499215286272 1534272
T 47306075155 | 12393504605 72032214505 315095
6) | 799215286272 31200955392| 499215286272 511424
w 794099332235] _ 37693124645 118474648325 686345
7) 124803821568 7800238848 | — 124803821568 383568
w 28432397675 _ 8137292405 63923442715 686345
8) 124803821568 7800238848 124803821568 383568
Table 4. Values of ), 1 <i<8,i#6}U{Je}at—3,—3,—3.0.
1 1 3 1
4 2 4
(,U — 544659795185 ~ 192581213825 1324982041845 — 55
(5 499215286272 31200955392 | 166405095424 12
Do) | — 23087067595 |~ 1363673615 | 798baB 06505 |55
(6 166405095424 10400318464 | 499215286272 12

Table 5. Values ofs), fis) } at 3. 3. 5. 1.

5. Riesz constants

As shown by Theorem 3.1, fare (-3, 3), our collection, normalized ins#%(1), is a Riesz basis for
that space, and so in particular tor(I) andHa (1). In various estimates, the values of (the quotients of)
the corresponding Riesz constats ), A, /\H&(,), andAH&m play an important role. In Figure 6,

ALz(')

we present numerically computed valuesAfj 3, AL, 1).3: KLy(1),3 = IERRACIORY /\H&“)J, and

ISrenhonl,q)
Y Ael ‘d)\ ‘sz)\ HEZ(”

B Mg
HE(),3 Al HL().0

of the other quant|t|es.

, whereA, ) 5 := inforger,((remin<ay) with analogous definitions

6. Adaptive Wavelet-Galerkin Method

The Adaptive Wavelet-Galerkin Method@\W(WGM ), already mentioned in Sect. 1, is described here in
somewhat more detail. For ease of exposition, we shall asshat the right-hand side= [ ({3 )]xcn

is finite. We shall comment on the general case in Remark 6ate Metails about the Adaptive Wavelet-
Galerkin Method, we refer to Cohest al. (2001); Stevenson (2009).

AWGM [g] — wg :

% Input: € > 0.

% Parametersyu € (0,k(A)~ %) andye (0, uk (A)™1).

i:=0,Ai:=0,wi):=0,r0:=

whi | e |[r?] > & do
Ais1:= EXPANDIA;,r( ,u||r |\]
wD = GALERKIN [Ajy1,w®,[[r®|, yr0]]
ri+d) = f — aw(+d)
i=i+1
enddo

w, = wl)
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~1 ~3 0 3 1
T 502391 502391
Y 0 108512 0 108512 0
v 0 — 29149 — 547 — 29149 0
(2) 7696 1924 7696
v 0 — 412896003 0 212896003 0
(3) 286154350 286154350
I 0 ~ 667982 2402104 ~ 667982 0
(4) 589073 589073 589073
U 0 6471062785 | 1697905 | _ 190667608285 165
(5) 1300039808 | 20336 1300039808 2
h7 0 2249357165 | 447205 | _ 30059475545 165
(6) 1300039808 | 20336 1300039808 2
] 165 | 20152033185 _ 312675 | _ 1055426405 0
(7) 325009952 5084 325000952
U 0 1055426405 | 312675 | _ 40152033185 165
(8) 325009952 5084 325009952

Table 6. Values of /), 1 <i <8 #6}U{{}at—1,-3,0,3,1.

FIG. 5. The three-scale basig : 1 <i < 6} for Vo.

By a call of GALERKIN , the Galerkin system corresponding to the current activeslga index
set is solved within some prescribed tolerance. The prevapproximate Galerkin solution is used as a
starting value of an iterative solver.

GALERKIN [A,w,5,&] — W:
% Input: £,6 > 0, A C O, aw € £(A) with [|f[y — A[pxaw| < &.
% Output: we £o(A) with ||f|a — Alaxa W] < €in O(log(d/€)#A ) operations.

Using thatA 5 is well-conditioned, uniformly im, we have implemented this routine as a Conjugate
Residual iteration with starting vectar.

By a call of EXPAND, the current active wavelet index set is expanded with thatiees where the
current approximate residual has large values. A formatrif@#on of this procedure is given below.
EXPAND|A,g,0] — A :

% Input: A C 0O, afinitely supported € ¢2(0), and a scalaro € [0, [[9][ 7o) ]-
% Output: A C A C O with ||P4g|| > o and such that, up to some absolute multiple,
% #(A \ /) is minimal over all suck\, and the cost of the call i&' (#A U suppg).

Noting that||P;g|| > o is equivalent tg| P, o g||? > 02— [|PAg]%, a setA with minimal A\ A)
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hoy|la] g o]ty | |k
ARALEE A A
o [0 [ g1 i[5 [¥[0
@m| 0l 0] 0 |1 o] 0o
s|l-4lo | g|1]|-3] 5] 0]o
| oo ] & |-1]-2] &2 4]0

Table 7. Coefficients of@ :

N
N
N

o
>

Fic. 6. Smallest (dashed) and largest (dotted) eigenvaluescandition number (solid) of the univariate (scaled) “mass”

N P
(left) and "stiffness”\ /; gy

(right) matrices on leveld§=0,1,....
V1A uenal |ul<d

f Yy
Tl T T, o) A et AL <

can be found by orderinfg, : A € A\ A} by non-increasing modulus, and then by selecting elements
from the head to the tail of this ordered sequence until theran is met. The loglinear complexity of
this implementation can be reduced to a linear complexitgdayorming an approximate sorting, at the
expense of obtainingA for whichA \ A is only minimal up to some absolute factor.

The following result shows that t AVGM is quasi-optimal.

THEOREM®6.1 Forw, := AWGM |[¢], we have thafif — Aw|| < €. If for somes > 0,

ue.o®:={velr(0):|v|ys:= supN3||v—vy| < e},
NeNg

i.e., U is approximated by its bedt-term approximations at rat then both #supw, and, assuming
& < ||f|l, the number of operations used by the call are of osdéf5|u|ié§, only dependent oawhen it

tends to O oo, and on upper bounds fgA || and||A~1|, cf. (1.6) and Lemma 1.1.

REMARK 6.1 For general functions, the vectorf has infinite support. Inside the Adaptive Wavelet-
Galerkin Method, thid has to be approximated with increasing accuracy, see $teng(2009) for
details. Assuming € <75, then if these approximations btonverge at rats, then the overall rate of
the adaptive method is stifl Using thatA is sparse, it can be shown thatif <%, then alsd € /3,
meaning that best-term approximations dfconverge at rate.
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7. Rates for the reaction-diffusion problem

In this section, we consider the problem of findinge H3 (0) such that
an (Up,V) ::/ N?0uy - Ov+upv= f(v) (veH3(D)). (7.2)
]

The bilinear forma, defines a boundedly invertible operator, uniformlyrjn> 0, betweerH2(0)
equipped with the energy norm

1= 11l = /02 sy + 1 120

and its dual equipped with the corresponding dual norm. Hselg = 0 is included WheIH(:)L(D) is
read as the closure 6f (O) with respect to the energy norm.

We consider a univariate wavelet collectiéh= {(, : A € O} that, properly scaled, is a Riesz basis
for Lo(1) andH3(1) (and 1= (|, |,y = 2|y llzq), hasorder d > 1, and has a corresponding
collection of dual wavelet§’ = {@, : A € O} that isuniformly local(i.e., the dual wavelets satisfy (1)
and (2)). An example of such a collecti&his given by the one constructed in Section 4, in which case
d=>5.

We will make the following assumption on the solution of (7.1

Assumption 7.1 The solutionuy, of (7.1) allows for a splitting into

ny ok
n (k)?

Up =Up + Vi kp
2 &

where for|| | < d, [|09Up L) $ 1, anadV, k p is a layer function associated to thth (n—k)-face

of O. Note that a O-face is a vertex and @n- 1)-face is a side. For some constapts > O the layer

functionsV,, x = V), x p associated to thgn — k)-facex; = --- = x = 0 satisfy for||a||» < d andn > 0,
|09V a(x)| S n-evaln, (7.2)

andforke {2,...,n},

2y - ST (arttay) Vg
|‘70Vn,k(x)|5’77(al+"'+ak)min(1 @) S e (7.3)

) ’7 3

where the other layer functions satisfy analogous decasnatds as function of the distance to their
faces. Fomn = 0, the layer functions are zero.

For the two-dimensional case= 2 and sufficiently smooth right-hand side Assumption 7.1 has
been verified in Han & Kellogg (1990). The final corollary iniiH& Kellogg (1990) suggests that;
at the right-hand side of (7.2) should readas Inspection of the proof (in particular (2.6c)) reveals
that (7.2) is correct (cf. also (Apel & Lube, 1998, Lemma 2yhich will be essential. The upper
bounds from Han & Kellogg (1990) for the derivatives of thereer layer functions are actually orders
of magnitude smaller than those allowed by (7.3).
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REMARK 7.1 A generalization of the results from Han & Kellogg (198®yeneral polygons and with

a variable zeroth order part of the differential operatagii®n is given in Kellogg (1995) (cf. (Apel,
1999,§5.3.1) for a discussion of (7.2) witty instead of a| in these cases). The bounds for the corner
singularities in Kellogg (1995) are less favorable than anH& Kellogg (1990), but still orders of
magnitude smaller than those that allowed by (7.3).

To the best of our knowledge, complete proofs of Assumptidrirymore than two dimensions are
not available in the literature.
ForB €[0,1), and/ € Ny, following Nitsche (2005) now let

0F == {A € 0: |A| < L5, dist(supp ,01)F < 211}, (7.4)

This seﬂ]ﬁ3 contains ali’s with |A| < ¢ as well as, fo3 > 0, A’s on higher levels, up tqf—ﬁ, when the
supports of the corresponding dual wavelets are suffigieftlse to O or 1. Nevertheless, for any fixed
Bel01),#F <2
Considering the corresponding collection of tensor protavelets¥ = {g, : A € O=0"}, let,
forv>1,
ng = {08 cme NG, vyym + (1- v)miaxm <[/}

Forv =1, B =0, this settlfv is the familiarsparse gridindex set. The set shrinks with increasing
and grows with increasing. For any fixed3 € [0,1),

g [ 120 ifu=1,
Ay, = { 20 ifu>1

Let us denote Witlﬁ’fv the biorthogonal projectar= 5, .guy ¥, — Yaco? ¥ defined orlL,(0).
’ 0

For k € Np, 8 > 0, theweighted Sobolev space‘gﬂ) is defined as the space of all measurable
functionsu for which, with weightwg (x) := (x(1—x))®, the norm

1
k 2

— — (i) 2d
lullgy = lullg, Lz [1we0u (x) x]

is finite. We have the following error estimates:
THEOREM7.2 ((Dauge & Stevenson, 2010, Thm. 4.3)) (a). Bar [0,d) and € (%,1),

n-1_
lu=Pf Ul S €727 ulln gqy (UE @LHE()),

if B>1- 2 orue H}(D).
(b). Forf € [0,d), B € (§,1), andv € [1, 7%;),

n
Ju=PP Ul S 279D TS ul2,
GvEIHA(E) ngl ®i:1Hg_5mimin(1,6)<'>

d
forallue Ny @1 HE 5 mine) (1) MHG(O).
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The bounds from this theorem involve weighted Sobolev navmswith weights that, for@ > 1,
vanish at the whole a#d. Whereas for non-singularly perturbed elliptic probleniwgmooth coeffi-
cients and a smooth right-hand side — which have solutiatsaite smooth up to the non-singular parts
of the boundary—, there is no advantage of weights that kiatithose parts of the boundary, to arrive
at favorable results for singularly perturbed elliptic Iplems, it is essential that these weights vanish at
the whole of the boundary because of the developments ofdaoytayers. By combining the decay
estimates (7.2), (7.3) with Theorem 7.2, we arrive at thiofghg result:

THEOREM7.3 Let Assumption 7.1 be valid. Then for aqy- 0, there exists a sequend@y )neny € O
with #0n < N such that for the solution of (7.1) it holds that

inf U —wil. < (logN)-DE+dN—d 4 p3-cN—(d-1),
WnESpan{w,\:AeDN}m N ’7”|n~( gN) n

Proof. Theorem 7.2 implies that for ar§yc [1,d), fori € {1,2} there exists a sequen(ﬁf\i,))NeN ca
with #I:Ifq') < N such that for the corresponding biorthogonal projectomsecall itP§\',), it holds that

1
lu= P ullL (o) < (logN) ™ D(3+d) d||U||g>n HI() (ue el Hg(),

Ju— PR U0y SN 1\/ S Iy e € ThaElaH 5, (HNHIE),

To see how the first estimate follows from Thm. 7.2(a), not thith N := 2#1:If7l ~ (M12¢ we have

N2z <2/ <N, and sof"z 279 < ¢(-DEHIN- < (jogN)(-D(z+dN-d,

The f|rst estimate gives the proof of the theorenyfet 0 (which is not fully trivial since all wavelets
vanish at the boundary), and in the following we consigler O.

SinceW is, properly scaled, a Riesz basis foi(0) andH2(0), we infer that for the biorthogonal

projectorPy onto the span of the wavelefs, with A € EI§\,1) U Df\f), it holds that

(n-1)(3+d)—d (d-1)
lu—Puull, < (logN)! ullon mg( y+nN \/Z ||u||®n s () (7.5)

(Ue M ®LHY 5 (1) NHg(D)).
We apply (7 5) to the solution, of (7.1). In view of Assumption 7.1, it suffices to show that fo
suitabled € [1,d), and all layer function¥), x,

HVka”@in:ng(U S (7.6)
n ) -
E <n 2—
p:l”V”,k”@in:ng—épi(l) ~ n . (77)
Setting
2d—-1
W=y

we have (s 1ogn [ %€ /M2y = 4. Taking® >d— 3, also [£11°91|y8n-d12dy < 1, and so in
view of (7.2), we conclude thaf, ; satisfies (7.6).
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To show that fok > 2, Vi , satisfies (7.6), in view of (7.3) it suffices to show that
1k 1-K41-kd__
/ ...y~ 2+T)Hy||2 21T e vVI/n | 2qy
(0,1)k
< /ﬁ|rk6+17‘E‘Jrrfkdnf(lf‘z@rr)efyr/n|2rk71dr <1
or that, for some suitable> 0 independent ofy,
/C”“Og”‘ |rkO+1- S 4Tkdp — (1§41 2k 1y <

O ~Y )

which holds true whe® > max(d — 1:5,d - 3).

Similarly, since for > d — ¢, focdn“ogm y9~In=912dy < n=172¢, in view of (7.2)V, 1 satisfies
(7.7).

Since forg > max(d — 1,d — 3 + &), J&|rké-5+T-kdp-(-3+Dev/n12rk-1dr < n1, in view of
(7.3)Vykforke {2,---,n} satisfies (7.7), even fay = 1. O

REMARK 7.2 Theorem 7.3 can be slightly improved to the statement tha

inf U —will. < (logN)PDE+IN-9 1 n3llogn(d- 2N~ (@1, -8
Wnespan{%:)«eIZIN}m L nl””'\“( gN) nz{logn| (7.8)

To see this, letp be a smooth function of0, »), with g =0 on[0,1] and@ = 1 on [2,). With
rp = rp(x) being the distance of to the pth (n — 2) face ofd, we split

2(3)
Up = U +Up,  whereuf(x) := uy(x) Dl @(rp/n). (7.9)

From (7.2) and (7.3), we infer thaf, uy allow for a splitting into
(

2p

ok

S
Vn,k.w

Ms
@

(k)2
Z nkp’

where for{|allo < d, [|07U||L (o) <1 andv

||M3

k

||
st

Kp Vi > p are layer functions associated to {ite (n—k)

face of0. The layer functlonsiRk =VF R o VS Vnsk , associated to then —k)-facex; = --- =xc=0
satisfy for||o|» < d andn > 0

|09V (x)] S 0~ eVl (7.10)
and forke {2,...,n},

|09V (x)| S n~(exrrad (7.12)
wherev,sfk vanishes outside afi(n) neighborhood ok; = --- = x, =0, and

2, .ax2\1-Kiro N —
IdaVﬁk(X)lSn*“ﬁ'“*“k)min(l,im) A AT

n I



ADAPTIVE TENSOR PRODUCT WAVELET SCHEME 23 0of 28

where the other layer functions satisfy analogous decamatgs as function of the distance to their
faces.

n\ ok
(Note that other than with say the splitting uf into U, + zf,”zlv,].l.p and zgzzzgﬁf Vi kpr the
splitting of u, into uﬁ anduﬁ preserves the zero boundary conditions.)
In addition to(0M)y and (0®)y, we construct a sequen¢B® )y ¢ O with #0F < N, and

consider the biorthogonal projectBy onto the span of the wavelegs, with A € I:If\,l> U Elff) U Dﬁ).
SinceW¥ is a Riesz basis foc,(0), in view of the results from the proof of Theorem 7.3, in ortier
establish the improved bound (7.8) it suffices to show that

(1 =Py lys S 02 flogn|*= 2N~

Similarly, sinceW is, properly scaled, a Riesz basis fé(0), for the latter it suffices to show that
10 =P )US lhyr oy S 072N,
(1= PR U 2oy < 2 [logn 42N, (7.13)

wherePﬁ) is the biorthogonal projector onto the span of the wavalg{swith A € Elﬁ”. Because the
expansion oﬁ% does not contain layer functions associate(hte 1)-faces, the first result follows from
the proof of Thm. 7.3 (cf. the last line of its proof).

It is sufficient to show (7.13) foN = 2¢ and/ € Ng. Following the idea of a so-calleghishkin mesh
(Shishkin (1987)), with. € N such that

2-"'canllogn| = 1,
we set .
07 :={A e 0:[A| < ¢or|A| < Land distsuppdi, ,d1) < cgn|logn|}.

Then ;ﬁ',? ~ 2! (uniformly in n > 0). Note that the difference between the “regular” lef@nd the
highest level of the the indices irm’,g7 isindependent of (but dependent on), whereas in the definition
of [Ié3 in (7.4) this difference was a multiple éf(independent ofy).

With P} denoting the biorthogonal projector onto spgi : A € U] }, for u € HI(1) NHE(1) we
have

||u—|5/7u|\fz(|> ~ 2 (@) o0+ > (@, W,
IA[>L {¢<|A|<L:suppl, €(canllogn|,1—cqnllogn|)}

—Ld 2 —/d 2
S 4 ulloq) +47ullbacyniiogn).1-coniiogn))

— 4=y 12
~4 HUHH\?%(I) (714)
with weightwd being thedth power ofwy, := ! on(can|logn|,1-canllogny), Similarly,
n nllogn| elsewhere on.l
forue HI() NHZ (1),
lu=PMulZsy =~ 5 4@ w0 P+ > ANy, w2
A[>L {e<|A[<L:suppp, €(canllogn|.1—cqnllogn|)}
(7.15)

<S4
Wd,

n

1D
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Forv > 1, we set
07y = (MO - m € NG, vsIam + (1 v) maxm < ¢},

and IetﬁZV denote the biorthogonal projector onto spgmy : A € IEIZV}. Using (7.14) and (7.15), the
arguments that led to Theorem 7.2 show thatfer®! HY(1) NHZ(D),

o n—1 —d¢
[u—Pyyull o) SZ2 ||U||®p:1H§% 0

and, in the current setting most importantly,

n
lu—P? Ul S 274" ull?,
L (=) ng ®i:1H;‘,’;5mi(l)
whenv € [1, ;%5).
Since for any > 1, #IjZV ~ 2 uniformly in n > 0, for proving(7.13) it remains to show that for all
layer functions/,

n
IVEIZ < nYlogn[*-t. (7.16)
n;l nk ®i:1H:,s—5mi(l>

For k > 2, (7.11) shows that the left-hand side@n*2|logn|2*d-1)). Fork = 1, recalling that
Jesnliogn| In~de™/1|2dy = %, from (7.10) one infers the bound (7.16).

Let us briefly compare (7.8) with error bounds from the litera for the same problem. In Apel &
Lube (1998), a Galerkin finite element method of ordes considered with respect to an anisotropic
grid of Shishkin type. The upper bound for the errofjifj] that is derived reads as a multiple of

N~ +n2|logn[d-2N~F. (7.17)

The fact that our error bound (7.8) is obtained by esseptiaiblacingN by N" is due to the use of
tensor product approximation.

The curse of dimensionality visible in (7.17) is partly cinsvented in Liuet al. (2009) where a
two-scale sparse grid method is considered for problem (7 1. upper bound for the error from that
paper derived fod = 2 reads as a multiple of

2(d-1)
N=#%1 4 nZ[logn|d—IN~mT . (7.18)

The results from both Apel & Lube (1998) and Léti al. (2009) are derived under Assumption 7.1
with theadditional conditiorthat the right-hand sidé of (7.1) satisfies certain compatibility conditions
of sufficiently high order — fon = 2 the first being that the right-hand silezanishes at the corners of
O —, which ensure that € C%(3) for sufficiently largek. In effect, it means that in that case it can be
assumed thal% =01n (7.9) so that (7.12) does not have to be taken into accdMatemphasize that
our results are valigvithout compatibility conditionen the data.

Finally, we note that the rates demonstrated given by (fe8)ealized automatically by thedaptive
Wavelet Galerkin Method, which converges with the best jpdssate in linear complexity.
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8. Numerical Results

We consider the families of singularly perturbed boundaiye problems

(=n?A+1)u, =f onD=(0,1)?,

{ u; =0 ondg, (8.1)
—(n?02+092)up =f onD,

{ up; =0 ondQ, (8.2)

and

(=n?A—noi+Nu, =f onO,
{ up =0 onodQ, 83)

wheref (x,y) = (1—x)(1—Y).
Solutions of these problems fgr= 102 are illustrated in Figure 7. Note th&tdoes not vanish

FiG. 7. (Approximate) solutions of the problems (8.1), (8.2)a8.3) forn =102,

at all corners, and therefore does not satisfy compatibiinditions. So the solution,, exhibits all
possible kinds of edge and corner singularities.

In Figures 8, 9, and 10, the results are presented of the Agapensor Product Wavelet Method
applied to the problems (8.1), (8.2), and (8.3). In all caskes support length of the computed
approximationw vs. thel,(0)-norm of its residual|f — Aw|| is given, wheré is the representation
of the right-hand side andl = A, is the bi-infinite stiffness matrix with respect to the tenpooduct
wavelets. Since we apply the univariate wavelets from Sethe matrixA is sparse Note thaf|f — Aw ||
is equivalent to the error iw" ¥ in the energy-nornfj|-|| corresponding to the problem, uniformly in
n > 0. For the third, non-symmetric problem, the Adaptive Terdmduct Wavelet Method is applied
to the normal equations"Au = A 'f.

The numerical results illustrate the robustness of the tagamethod with respect to the singular
perturbation proven for problem (8.1), and indicate thisusiness for problems (8.2) and (8.3). Since
for problem (8.1), only starting from approximately®liinknowns the error is decreasing with decreas-
ing 11, the results give no indication about the sharpness of thad¢7.8) as function dll andn.

For our convenience, we have choseto be a low order polynomial so that the resulting vector
f is finitely supported. A a consequence, fpe 0, the representation of the solutiar= f for (8.1)
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FiG. 8. #suppv vs. ||f — Aw|| for problem (8.1) for, at height 16 from left-to-right,n = 1,102,104,108,0. The slope of the
triangle is the, fom # 0, best possible asymptotic ratet.

and (8.3), ou(x,y) = %(1 —X)y(1—y)(y—2) for (8.2), is somewhat exceptionally close to a sparse one
since the integral ofi vanishes against all dual wavelets above the lowest leaghtive their supports
inside the open box0,1). Therefore, our results fay = 0, and so for smalh andN not very large,
are somewhat better than generally can be expected. To getpaession of the error with a generic
smoothf, the harmless approximation error for a smooth functiohhaishes at the boundary should
be added.

Figure 11 illustrates which wavelets were selected by thapide Tensor Product Wavelet Method.
To give an impression of the strength of the local refinenfenproblem (8.2)5) = 10~ and #supw =
65635, the maximum level of a univariate wavelet presertténeixpansion is 29. The cardinality of the
smallest “full-grid” approximation that contains this vedet, i.e., an approximation from spaf, :
|A1],|A2| <29}, is~ 10'°.
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the triangle is the, fon # 0, best possible asymptotic ratet.
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FIG. 11. Centers of the supports of the wavelets selected by daptive Tensor Product Wavelet Method. Left problem (8.1),
n =10* and #supw = 10291. Right problem (8.2); = 10~* and #supw = 10190.
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