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The adaptive tensor product wavelet scheme: Sparse matrices and the
application to singularly perturbed problems
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Locally supported biorthogonal wavelets are constructed on the unit interval with respect to which second
order constant coefficient differential operators are sparse. As a result, the representation of second order
differential operators on the hypercube with respect to theresulting tensor product wavelet coordinates is
again sparse. The advantage of tensor product approximation is that it yields (nearly) dimension indepen-
dent rates. An adaptive tensor product wavelet method is applied to solve various singularly perturbed
boundary value problems. The numerical results indicate robustness with respect to the singular pertur-
bations. For a two-dimensional model problem, this will be supported by theoretical results.

Keywords: Adaptive method, tensor product wavelets, optimal computational complexity, sparse matri-
ces, singular perturbations.

1. Introduction

1.1 Boundary value problem and its representation in tensor product wavelet coordinates

With I := (0,1) and2 := In for somen ∈ N, given f ∈ H−1(2) we consider the problem of finding
u∈ H1

0(2) such that

a(u,v) :=
∫

2

n

∑
i, j=1

ai j ∂iu∂ jv+
n

∑
i=1

bi∂iuv+c0uv= f (v) (v∈H1
0(2)), (1.1)

where theai j , bi andc0 > 0 areconstants.
Here, in order that we can equip the corresponding function spaces with tensor product wavelet

bases, we consider as domain the hypercube, being a prototype of a product domain. The application of
piecewise multi-level tensor product bases on general domains via a domain decomposition approach is
currently under investigation.

We consider convection-diffusion-reaction equations that may have an anisotropic diffusion tensor
directed essentially along the coordinate axes, and a non-dominant convection part. The following result
gives conditions under which such equations are well-posed.

LEMMA 1.1 For some constantsδ ,∆ > 0, andK > 0, andc1, . . . ,cn > 0, let

δ
n

∑
m=1

cmξ 2
m 6

n

∑
i, j=1

ai j ξiξ j 6 ∆
n

∑
m=1

cmξ 2
m (ξ ∈ R

n) (1.2)
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n

∑
i=1

b2
i

ci
6 K max(c0,

n

∑
i=1

ci). (1.3)

ThenA, defined by(Au)(v) = a(u,v), defines a boundedly invertible operator betweenH1
0(2), equipped

with “energy-norm”,

|||v||| :=
√

∫

2

c0v2 +
n

∑
m=1

cm(∂mv)2,

and its dualH−1(2), equipped with the corresponding dual norm. The operator norms|||A|||, |||A−1||| can
be bounded in terms ofδ , ∆ , K (and the Poincaré constant) only, thusindependentlyof theai j , bi, and
ci that satisfy the inequalities (1.2) and (1.3).

Proof. Foru∈H1
0(2), a(u,u) > min(1,δ )|||u|||2. Since the spectral norm of

(

ai j√
ci
√

cj

)

i j
is 6 ∆ , we have

|∫
2 ∑i, j ai j ∂iu∂ jv| 6 ∆

∫

2

√

∑i ci(∂iu)2
√

∑ j c j(∂ jv)2 6 ∆
√

∫

2 ∑i ci(∂iu)2
√

∫

2 ∑ j c j(∂ jv)2. Obviously

|
∫

2
c0uv| 6√c0‖u‖L2(2)

√
c0‖v‖L2(2). By Poincaré’s inequality, for some constantC > 0, ‖ · ‖2L2(2) 6

C‖∂i · ‖2L2(2) onH1
0(2), or ‖ ·‖2L2(2) 6 C

∑n
m=1 cm

∑n
i=1ci‖∂i · ‖2L2(2), and so‖ ·‖2L2(2) 6

max(1,C)
max(c0,∑n

m=1cm) |||·|||
2.

With that, ‖∑i bi∂iuv‖L2(2) 6 ‖v‖L2(2)

√

∑i
b2

i
ci

√

∑i ci‖∂iu‖2L2(2)
6 max(1,C)

1
2
√

K|||v||||||u|||. Now the

proof is completed by an application of the Lax-Milgram lemma. �

Using that

H1
0(2) = H1

0(I)⊗L2(I)⊗·· ·⊗L2(I)∩ ·· · ∩L2(I)⊗·· ·⊗L2(I)⊗H1
0(I),

aRiesz basisfor H1
0(2) can be constructed by tensorizing univariate Riesz bases ofwavelet type. Indeed,

let Ψ = {ψλ : λ ∈ ∇} be a normalized Riesz basis forL2(I) that, when re-normalized inH1(I), is a
Riesz basis forH1

0(I). Then, when normalized in|||·|||, Ψ ⊗·· ·⊗Ψ is a Riesz basis forH1
0(2) (Griebel

& Oswald (1995)). In particular, with theRiesz constants

λL2(I) := inf
06=d∈ℓ2(∇)

‖∑λ∈∇ dλ ψλ ‖2L2(I)

‖d‖2
ℓ2(∇)

, ΛL2(I) := sup
06=d∈ℓ2(∇)

‖∑λ∈∇ dλ ψλ ‖2L2(I)

‖d‖2
ℓ2(∇)

,

λH1
0 (I) := inf

06=d∈ℓ2(∇)

|∑λ∈∇ dλ ψλ |2H1(I)

∑λ∈∇ |dλ |2|ψλ |2H1(I)

, ΛH1
0 (I) := sup

06=d∈ℓ2(∇)

|∑λ∈∇ dλ ψλ |2H1(I)

∑λ∈∇ |dλ |2|ψλ |2H1(I)

,

we have

min(λL2(I),λH1
0 (I))λ

n−1
L2(I)

6
|||∑λλλ∈∇n dλλλ ψλ1

⊗·· ·⊗ψλn|||
2

∑λλλ∈∇n |dλλλ |2|||ψλ1
⊗·· ·⊗ψλn|||

2 6 max(ΛL2(I),ΛH1
0 (I))Λ

n−1
L2(I)

(1.4)

(d ∈ ℓ2(∇n)) (Dijkemaet al. (2009)).

REMARK 1.1 This result shows that the Riesz constants ofΨ⊗·· ·⊗Ψ , normalized in|||·|||, with respect
to H1

0(2) equipped with|||·||| are even independent of the space dimensionn if (and actually only if)Ψ
is anorthonormalbasis forL2(I). In the current paper we will not consider such univariate wavelets.

REMARK 1.2 Actually, here and in the following, we can allow one or more ci to be zero (when the
correspondingbi are zero as well) as long asc0 + ∑n

m=1cm > 0. In that caseH1
0(2) should be read as

the completion ofC∞
0 (2) with respect to the energy-norm (cf. Hochmuth (2001)).
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Let us denote the normalized tensor product basis forH1
0(2) as

Ψ := {ψψψλλλ :=⊗n
m=1ψλm/|||⊗n

m=1ψλm||| : λλλ ∈ ∇∇∇ := ∇n}.

Note that|||⊗n
m=1ψλm|||=

√

c0 + ∑n
m=1cm|ψλm|2H1(I)

. By writing

u = u⊤Ψ := ∑
λλλ∈∇∇∇

uλλλ ψψψλλλ ,

and with
f := [ f (ψψψλλλ )]λλλ∈∇∇∇,

an equivalent formulation of (1.1) is
Au = f. (1.5)

whereA = [a(ψψψ µµµ ,ψψψλλλ )]λλλ ,µµµ∈∇∇∇ is the bi-infinite stiffness matrix ofa(·, ·) with respect toΨ .
SinceA : H1

0(2)→H−1(2) is boundedly invertible, andΨ is a Riesz basis forH1
0(2), we have that

A : ℓ2(∇∇∇)→ ℓ2(∇∇∇) is boundedly invertible. In particular, from (1.4) we inferthat

‖A‖6 |||A|||max(ΛL2(I),ΛH1
0 (I))Λ

n−1
L2(I), ‖A

−1‖6 |||A−1|||(min(λL2(I),λH1
0 (I))λ

n−1
L2(I)

)−1. (1.6)

1.2 Linear and nonlinear multi-level tensor product approximation

The advantage of the representation ofu in tensor product wavelet coordinates is that highly efficient
approximations exist. Letd > 2 denote the order of the univariate wavelets. It is well known that if u
has mixed derivatives of a sufficiently high order inL2(2), then it can be approximated from the span
of N tensor product wavelets with indices in the so-called optimized sparse-gridindex set, such that
the error inH1

0(2) (with standard norm) isO(N−(d−1)) (Griebel & Knapek (2000); Bungartz & Griebel
(2004)). So different than with non-tensor product approximation of orderd, where one can expect at
best a rate(d−1)/n, the obtained rated−1 doesnot deterioratewith increasingn, i.e., the so-called
curse of dimensionalityis avoided.

Foru being the solution of an elliptic PDE, generally the required boundedness of its mixed deriva-
tivescannotbe expected. For the Poisson problem, it can be enforced by requiring that the right-hand
side f vanishes to a sufficiently high order at the non-smooth partsof ∂2. For generic smoothf , how-
ever, the aforementioned rated− 1 reduces to1

2 + 1
n (Dauge & Stevenson, 2010, Sect. 6). Yet, as is

shown in Dauge & Stevenson (2010), the best possible rated−1 can be retrieved by a proper modifi-
cation of the optimized sparse grid index sets involvinglocal refinementstowards the boundary. This
result was shown under the assumption that the corresponding dual waveletsareuniformly local.

The approximation results mentioned so far concernlinear approximation. If u can be approximated
from the spans of a priori selected sets of wavelets with rates– that, as we have seen, can be as large as
(d−1) – then, obviously, it can be approximated within a toleranceO(N−s) by the best approximation
from the span of the bestN wavelets, dependent onu. Due to the Riesz basis property, the latter is
equivalent,only dependent onκ(A), to the property that the representationu of u with respect toΨ can
be approximated inℓ2(∇∇∇) within toleranceO(N−s) by the best possible vector of lengthN, known as a
best N-term approximationfor u, and denoted asuN.

For s< d, the class of functions that can be approximated within a toleranceO(N−s) by a linear
combination of bestN tensor product wavelets has been shown to be equal to the intersection of certain
tensor product of Besov spaces. We refer to Nitsche (2006); Sickel & Ullrich (2009).
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In this paper, we study families ofsingularly perturbedboundary value problems. In particular, we
consider the families wherea(u,v) is

∫

2
η2∇u ·∇v+uv,

∫

2
η2∂1u∂1v+ ∑n

i=2 ∂iu∂iv, or
∫

2
η2∇u ·∇v−

η(∂1u)v+uv. The solutions of these problems haveη-dependent boundary and corners layers that we
expect can be efficiently approximated by tensor product approximation.

For the first family in two space dimensions, a splitting of the solution into a smooth part and edge
and corners layers will be used to derive linear approximation rates (and with that upper bounds for the
nonlinear rates) inH1

0(2) equipped with the (η-dependent) energy norm|||·|||. The rates will be robust
with respect toη . Numerical results will indicate that the same holds true for the other two families.

1.3 The adaptive solution of the boundary value problem

So far we discussed (best) approximation ofu in the energy-norm|||·||| from spanΨ or, in view of (1.4),
equivalently, that ofu in ℓ2(∇∇∇) by finitely supported vectors. Bothu andu, however, are only implic-
itly given as solutions of (1.1) and (1.5), respectively. InCohenet al. (2001, 2002), adaptive wavelet
schemes were developed for solving (1.5) that, under some conditions, arequasi-optimal, meaning that
they solve (1.5) with anℓ2(∇∇∇)-rate equal to that of bestN-term approximations, in linear complexity.
We consider a modified version proposed in Gantumuret al. (2007) of the Adaptive Wavelet-Galerkin
Method from Cohenet al. (2001), which avoids the so-calledcoarseningstep.

For ease of presentation, let us assume thatA = AT > 0, i.e., that thebi in (1.1) are zero. Other-
wise, the scheme can be applied to the normal equationsA⊤Au = A⊤f, in which case in the following
discussion,A andf should be read asA⊤A andA⊤f on all places.

Given a finite setΛ ⊂ ∇∇∇, let IΛ : ℓ2(Λ )→ ℓ2(∇∇∇) denote the trivial embedding, so that its adjoint
PΛ : ℓ2(∇∇∇)→ ℓ2(Λ) is the restriction of a vector to its indices inΛ . With AΛ := PΛ AI Λ andfΛ := PΛ f,
the solution ofAΛ uΛ = fΛ is known as the Galerkin approximation tou from ℓ2(Λ). For some suffi-
ciently small parameterµ ∈ (0,1), the idealized Adaptive Wavelet-Galerkin Method reads as follows:

Λ0 := /0, uΛ 0 := 0,
for i = 1,2, . . . do

Find aΛ i+1⊃Λ i such that‖PΛ i+1(f−AuΛ i )‖> µ‖f−AuΛ i‖, and such that, up to some
absolute multiple,#(Λi+1\Λi) is minimal among all suchΛi+1.
SolveAΛ i+1uΛ i+1 = fΛ i+1.

enddo

Note that in this scheme the residualf−AuΛ i , being zero onΛ i , plays the role of an a posteriori error
estimator to guide a proper expansion of the setΛ i .

Generally, the above scheme cannot be performed exactly. First of all, generallyf will be infinitely
supported and thus has to be approximated. Secondly, generally any column ofA has infinitely many
non-zeros. Thanks to the properties of wavelets, however, as being smooth and having vanishing mo-
ments, the sizes of the entries ofA decay rapidly away from the diagonal. This property has beenused
to design an adaptive approximate matrix-vector multiplication routineAPPLY in which, dependent to
some prescribed overall tolerance, the accuracy with whichany column is approximated increases with
the modulus of the corresponding entry in the vector. ThisAPPLY routine is used both for the approxi-
mate computation of the residualf−AuΛ i , and for the repeated approximate multiplications withAΛ i+1

for the iterative solving of the Galerkin problemAΛ i+1uΛ i+1 = fΛ i+1. Concerning the latter, note that
generally the number of non-zero entries inAΛ i+1 is not of the order of #Λ i+1.

Near-sparsity ofA can be quantified by the concept ofs∗-computability. It was shown that if the
value of s∗ is larger than the rates of bestN-term approximations foru, and (quasi-) bestN-term
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approximations forf can be computed in linear complexity, then the approximations produced by the
adaptive scheme converge with the best possible rates in linear complexity (cf. Stevenson (2009)).

In the specific setting of tensor product wavelets, for uniformly local, sufficiently smooth univari-
ate wavelets that have sufficiently many vanishing moments,in Schwab & Stevenson (2008) it was
demonstrated thats∗ exceeds the best possible rates that can be expected, so that the practical adaptive
wavelet scheme is quasi-optimal. This holds also true for differential operators with non-constant, but
sufficiently smooth coefficients.

Practical results with the Adaptive (Tensor Product) Wavelet-Galerkin Method were reported on in
Dijkemaet al. (2009). ThereL2-orthonormal univariate wavelets were used to arrive at a method that is
quasi-optimal, uniformly in the space dimensionn (cf. Remark 1.1).

1.4 Custom designed wavelets that lead to sparse stiffness matrices

Although the adaptive wavelet scheme described above is quasi-optimal, our practical experience with
implementing the method learned us that quantitatively theapplication of theAPPLY routine is very
demanding, where this routine is also not easy to implement.In the specific setting of tensor product
wavelets, the bi-infinite stiffness matrix corresponding to (1.1) reads as

A = D−1
[ n

∑
i, j=1

ai j

n
⊗

m=1

~Z(δim,δ jm)+
n

∑
i=1

bi

n
⊗

m=1

~Z(δim,0)+c0

n
⊗

m=1

~Z(0,0)
]

D−1,

whereD := diag
[

|||⊗n
m=1ψλm||| : λλλ ∈ ∇∇∇

]

,

~Z(s, t) :=















~M when(s,t) = (0,0)
~A when(s,t) = (1,1)
~G when(s,t) = (1,0)

−~G⊤ when(s,t) = (0,1)

and
~A :=

[

∫

I
ψ̇µ ψ̇λ

]

λ ,µ∈∇
, ~M :=

[

∫

I
ψµψλ

]

λ ,µ∈∇
,and ~G :=

[

∫

I
ψ̇µψλ

]

λ ,µ∈∇
.

Here, and on other places, a (double) “dot” on top of a univariate function denotes its (second)
derivative. With a (double) “dot” on top of a linear space of univariate functions we will denote the
linear space of (second) derivatives of these functions.

The difficulties with theAPPLY routine led us in Dijkema & Stevenson (2010) to construct a uni-
variate wavelet basis that generates Riesz bases for a rangeof Sobolev spaces, includingL2(I) andH1

0(I),
and which has the special property to give rise to matrices~M, ~A, and~G that all are trulysparse. As a
result, the representationA of (1.1) with respect to then-fold tensor product wavelet basis is sparse. So
in this case,A can be appliedexactlyto any (finitely supported) vector at a cost that is linear in its sup-
port length, and there is no need for a complicated, and quantitatively demanding approximate adaptive
matrix-vector multiplication routineAPPLY .

The wavelets constructed in Dijkema & Stevenson (2010) haveglobally supported duals. A number
of theoretical results require uniformly local dual wavelets, although usually, with some more efforts,
they can be extended to duals that decay sufficiently fast. Wemention the characterization of approx-
imation classes as (intersections of tensor products of) Besov spaces, and the proof from Dauge &
Stevenson (2010) that these approximation classes contain(intersections of tensor products of) certain
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weighted Sobolev spaces. Furthermore, for a number of applications, uniformly local dual wavelets
are either necessary or in any case convenient. We think of the generalization of the adaptive wavelet
scheme to nonlinear equations, and the application of wavelets in data analysis and image compression.

In view of these observations, in this paper we construct wavelets that share the properties with those
from Dijkema & Stevenson (2010), i.e., they will yield matrices~M, ~A, and~G that all are trulysparse,
and that have the additional property that their duals are uniformly local. Moreover, although the order
of the wavelets here will be 5 with 5 vanishing moments, vs. 4 with 4 vanishing moments in Dijkema &
Stevenson (2010), their condition numbers with respect toL2 andH1 norms will even be slightly better.

REMARK 1.3 True sparsity ofA is only valid for differential operators with constant coefficients. This
was the only reason to consider constant coefficients from the start in (1.1). With the exception of
sparsity ofA, however, all other results in this paper directly generalize to variable, possibly sufficiently
smooth coefficients. Concerning sparsity, for smooth, variable coefficients, the additional non-zeros
outside the sparsity pattern of a constant coefficient operator will be orders of magnitude smaller than
those inside this pattern, depending on the levels of the wavelets involved. For the residual computation
inside the adaptive wavelet scheme, which is the quantitatively most demanding part, it can be envisaged
that they can be ignored, possibly apart from those corresponding to some coarsest levels. A precise
analysis of this phenomenon is outside the scope of this work.

The remainder of this paper is organized as follows: In Sect.2 it is shown that our desire to have
sparse stiffness matrices can essentially only be fulfilledby continuously differentiable wavelets. In
Sect. 3, the general framework is recalled how to construct biorthogonal, uniformly local wavelets that
generate Riesz bases for a scale of Sobolev spaces. In Sect. 4, this framework is used to construct a
wavelet basis that has the additional property to give rise to sparse stiffness matrices. The quantitative
stability of the basis is investigated in Sect. 5. In Sect. 6,the Adaptive Wavelet-Galerkin Method is
described. In Sect. 7, approximation rates are derived for amodel reaction-diffusion equation in two
space dimensions. Finally, in Sect. 8 numerical results arepresented of the Adaptive Wavelet-Galerkin
method applied to various singularly perturbed problems.

For completeness, here and in the remainder of this work, with C . D we will mean thatC can
be bounded by a multiple ofD, independently of parameters on whichC andD may depend, with the
exception ofδ ,∆ andK from Lemma 1.1, and the space dimensionn (cf. remark 1.1). Obviously,C & D
is defined asD . C, andC h D asC . D andC & D.

2. A minimal smoothness requirement

We would like to find a collection of univariate waveletsΨ = {ψλ : λ ∈ ∇} such that, with|λ | ∈ N0

denoting the level ofψλ or that ofλ , in any case the following conditions are satisfied:

(1) diamsuppψλ . 2−|λ |,

(2) supj ,k∈N0
#{|λ |= j : [k2− j ,(k+1)2− j ]∩suppψλ 6= /0}< ∞,

(3) Ψ is Riesz basis forL2(I),

(4) {ψλ /‖ψ̇λ‖L2(I) : λ ∈ ∇} is a Riesz basis forH1
0(I),

(5)
∫

I ψ̇λ ψ̇µ = 0 when||λ |− |µ ||> M,



ADAPTIVE TENSOR PRODUCT WAVELET SCHEME 7 of 28

whereM ∈ N0 is some constant, that later will be chosen to be 1. As a consequence, with respect to
a level-wise partition of the wavelets,~A will be block tridiagonal with, because of (1) and (2), sparse
non-zero blocks. Note that under the assumptions (1) and (2), ~A is sparse if and only if (5) is valid.

The additional requirements that~M and~G be sparse play no role in this section.
We will refer to the properties (1) and (2) by saying that the wavelets are(uniformly) local. We will

use this definition of locality also for other collections offunctions, in particular for scaling functions.
The following proposition shows that (1)-(5) can only be satisfied by piecewise smooth wavelets

when they areglobally continuously differentiable.

PROPOSITION2.1 (Dijkema & Stevenson, 2010, Prop.1) If, in addition to (1) – (4), each wavelet is
piecewise smooth with bounded piecewise first and second derivatives, then (5) requires that they are
globallyC1.

3. Biorthogonal multi-resolution analyses and wavelets

In order to construct wavelets that, properly scaled, generate Riesz bases for a range of Sobolev spaces,
in particular forL2(I) andH1

0(I) (cf. (3) and (4)), we will use the following well-known theorem (cf.
Dahmen (1996); Dahmen & Stevenson (1999); Cohen (2003)).

THEOREM 3.1 (Biorthogonal space decompositions) Let

V0⊂V1⊂ ·· · ⊂ L2(I), Ṽ0⊂ Ṽ1⊂ ·· · ⊂ L2(I)

be sequences of primal and dual spaces such that

dimVj = dimṼj < ∞ and α j := inf
06=ṽj∈Ṽj

sup
06=vj∈Vj

|〈ṽ j ,v j〉L2(I)|
‖ṽ j‖L2(I)‖v j‖L2(I)

& 1. (3.1)

In addition, for some 0< γ < d, let

inf
vj∈Vj
‖v−v j‖L2(I) . 2− jd‖v‖

H d(I) (v∈H
d(I))

(Jackson estimate), and
‖v j‖H s(I) . 2 js‖v j‖L2(I) (v j ∈Vj , s∈ [0,γ))

(Bernstein estimate), whereH s(I) (s∈ [0,d]) are Hilbert spaces such thatH d(I) →֒ L2(I) dense,
and, fors∈ (0,d), H s(I) := [L2(I),H d(I)]s/d, and let similar estimates be valid at the dual side with
((Vj) j ,d,γ,H s(I)) reading as((Ṽj) j , d̃, γ̃,H̃ s(I)).

Then, withΦ0 = {φ0,k : k ∈ I0} being a basis forV0 (scaling functions) andΨj = {ψ j ,k : k ∈ Jj}
( j ∈N) being uniformL2(I)-Riesz bases forVj ∩Ṽ

⊥L2(I)

j−1 (wavelets), fors∈ (−γ̃,γ) the collection

Φ0∪∪ j∈N2−s jΨj

is a Riesz basis forH s(I), where, fors< 0, H s(I) := (H̃ −s(I))′.

In view of the notations introduced earlier, we denote( j,k) also asλ , where|λ | = j, φ0,k asψ0,k

andI0∪∪ j∈NJj as∇.



8 of 28

The existence of the Riesz basisΨ := Φ0∪∪ j∈NΨj for L2(I) as in Theorem 3.1 is equivalent to the
existence of another, dual Riesz basisΨ̃ for L2(I). Writing this basis correspondingly as̃Φ0∪∪ j∈NΨ̃j ,

Φ̃0 is a basis for̃V0, andΨ̃j for Ṽj ∩V
⊥L2(I)

j−1 . Fors∈ (−γ, γ̃), the collection

Φ̃0∪∪ j∈N2−s jΨ̃j

is a Riesz basis forH̃ s(I).
The property (3.1) can be verified by an application of the following proposition (cf. e.g. Stevenson

(2003)).

PROPOSITION3.2 Let(Vj) j ,(Ṽj) j ⊂ L2(I) be nested sequences of finite dimensional spaces, then (3.1)
is equivalent to

• the existence of uniformly bounded (biorthogonal) projectorsQ j : L2(I)→ Vj with ImQ j = Vj ,

Im(I −Q j) = Ṽ
⊥L2(I)
j , where‖Q j‖L2(I)→L2(I) = α−1

j ,

• the existence of biorthogonal, uniformL2(I)-Riesz basesΦ j andΦ̃ j for Vj andṼj , respectively.

We will verify (3.1) by constructing biorthogonal scaling functions as meant in the second item of
Proposition 3.2. In particular, we will constructVj andṼj such that they can be equipped with uniformly
local biorthogonal bases. With such bases at hand, under a mild additional condition, uniformly local
primalanddual wavelets become available. This is shown in the following proposition. For a proof we
refer to Carniceret al. (1996); Stevenson (2003).

PROPOSITION3.3 (a). Let the union ofΦ j andΞ j+1 (“initial stable completion”) be a uniformL2(I)-
Riesz basis forVj+1, then

Ψj+1 := Ξ j+1−〈Ξ j+1,Φ̃ j〉L2(I)Φ j

is a uniformL2(I)-Riesz basis forVj+1∩Ṽ
⊥L2(I)
j .

(b). Writing
[

Φ⊤j Ξ⊤j+1

]

= Φ⊤j+1M̌ j andM̌−1
j =

[

G j ,0

G j ,1

]

, i.e.,Φ⊤j+1 = Φ⊤j G j ,0 + Ξ⊤j+1G j ,1, then

Ψ̃⊤j+1 = Φ̃⊤j+1G⊤j ,1.

(c). If Φ j , Φ̃ j , andΞ j+1 are uniformly local, thenΨj+1 is uniformly local.
If Φ̃ j+1 is uniformly local, andM̌−1

j and thusG j ,1 are uniformly local (i.e., entries corresponding

to basis functions are zero whenever their distance is larger than some absolute multiple of 2− j ), then
Ψ̃j+1 is uniformly local.

4. Biorthogonal multi-resolution analyses that lead to sparse stiffness matrices

We shall select(Vj) j , (Ṽj) j that satisfy the conditions of Theorem 3.1 for someγ > 1, whereH d(I) =
H1

0(I)∩Hd(I). The pairs(Vj ,Ṽj) will be equipped with biorthogonal, uniformly local, uniform L2(I)-
Riesz basesΦ j , Φ̃ j . In addition, and that will turn out to be the main point,(Vj) j , (Ṽj) j will be selected
such thatVj ⊂C1(I)∩H1

0(I) and
Vj + V̇j + V̈j ⊂ Ṽj+1. (4.1)

Here, withV̇j (V̈j ) we mean the linear space of (second) derivatives of functions inVj .
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Furthermore, a uniformly local “initial stable completion” Ξ j+1 will be constructed such thatΦ j ∪
Ξ j+1 is a uniformL2(I)-Riesz basis forVj+1, and such that the basis transformationM̌−1

j is uniformly
local. As a result, we obtain a wavelet collectionΨ = Φ0∪∪ j∈NΨj that, properly scaled, generates
Riesz bases for a range of Sobolev spaces, includingL2(I) andH1

0(I). Furthermore, bothΨj and the
corresponding duals̃Ψj will be uniformly local.

As a consequence of (4.1), we have that for|µ |> |λ |+1,

〈ψλ ,ψµ〉L2(I) = 0,

〈ψ̇λ , ψ̇µ〉L2(I) =−〈ψ̈λ ,ψµ〉L2(I) = 0,

〈ψλ , ψ̇µ〉L2(I) =−〈ψ̇λ ,ψµ〉L2(I) = 0,

showing that the univariate system matrices~M, ~A, and~G aresparseas desired.

4.1 A realization

We do not have a general procedure to construct biorthogonalmulti-resolution analyses that satisfy all
aforementioned conditions, in particular (4.1), but we construct one particular instance. We take

Vj =
2 j+1−1

∏
k=0

P4(k2−( j+1),(k+1)2−( j+1))∩C1(I)∩H1
0(I)

of dimension 5·2 j+1−2(2 j+1−1)−2= 3 ·2 j+1. Then

Vj + V̇j + V̈j ⊂ Z j :=
2 j+1−1

∏
k=0

P4(k2−( j+1),(k+1)2−( j+1))

of dimension 5·2 j+1. Following the idea of a so-calledintertwining multiresolution analysis(Donovan
et al. (1996)), we will selectṼj+1 as the direct sum ofZ j and a subspace ofZ j+1 of dimension 2j+1

so that dim̃Vj+1 = dimVj+1. Since(Z j) j is nested, so is(Ṽj) j , and Bernstein and Jackson estimates are
satisfied at primal and dual side with parametersd = d̃ = 5, γ = 5

2, γ̃ = 1
2, whereH 5(I) = H1

0(I)∩H5(I)
andH̃ 5(I) = H5(I).

We start our construction of(Ṽj) j and that of biorthogonal scaling functionsΦ j andΦ̃ j on a ref-
erence macro-elementÎ = (−1,1). Since at each level, the functions at the primal side are piecewise
polynomials with respect to a partition that is twice as fine as the corresponding partition at the dual
side, this reference macro-element comprises two primal elements, and one dual element.

Let H = {−1,0,1} and L = {−1,− 1
2,0, 1

2,1}. For i ∈ H and j ∈ L, let the interpolatory basis
functionshi , ℓ j ∈ P4(−1,0)×P4(0,1)∩C1(Î) andℓ̃ j ∈ P4(Î) be defined by

ḣi(ı̂) = δi ı̂,

hi(̂) = 0,

ℓ̇ j(ı̂) = 0,

ℓ j(̂) = δ j ̂,
ℓ̃ j(̂) = δ j ̂, (ı̂ ∈H, ̂ ∈ L),

cf. Figure 1.

With the aim to construct biorthogonal collections, we willapply a number of transformations to
these bases, and enrich the collection at the dual side with an additional function.
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FIG. 1. Interpolatory basis ofP4(−1,0)×P4(0,1)∩C1(Î) (left picture) and that ofP4(Î) (right picture), the latter together with the
additional, discontinuous functioñℓe ∈ P4(−1,0)×P4(0,1) defined in step 2. In this figure, the functionsh−1, h0, andh1 were
multiplied by a factor 13, and the functioñℓe with a factor 14

9 .

Step 1.We defineĥ−1 andℓ̂−1 as linear combinations ofh−1, ℓ− 1
2
, h0, ℓ0, ℓ 1

2
andℓ−1, ℓ− 1

2
, h0, ℓ0,

ℓ 1
2
, respectively, such that

〈ĥ−1, ℓ̃̂〉L2(Î)
= 〈ℓ̂−1, ℓ̃̂〉L2(Î)

= 1
2δ−1,̂ (̂ ∈ L).

We setĥ1(x) =−ĥ−1(−x) andℓ̂1(x) = ℓ̂−1(−x).
Step 2. We selectℓ̃e from the 5 dimensional space{ f ∈ P4(−1,0)×P4(0,1) : f (−1) = f (− 1

2) =

f (0−)+ f (0+) = f (1
2) = f (1) = 0} such that

〈
[

ĥ−1 ℓ̂−1 ĥ1 ℓ̂1
]⊤

, ℓ̃e〉L2(Î) = 0.

Fixing some scaling of̃ℓe, it has values531
1792, − 63

256,
63
256, − 531

1792 in − 3
4, − 1

4, 1
4, 3

4, respectively, and
−ℓ̃e(0−) = ℓ̃e(0+) = 9

14, cf. Figure 1.
Step 3.We set













˜̂ℓ− 1
2

˜̂ℓe
˜̂ℓ0
˜̂ℓ 1

2













=

〈











ℓ̃− 1
2

ℓ̃e

ℓ̃0

ℓ̃ 1
2











,











ℓ− 1
2

h0

ℓ0

ℓ 1
2











〉

−1

L2(Î)











ℓ̃− 1
2

ℓ̃e

ℓ̃0

ℓ̃ 1
2











.

Step 4.For j ∈ {−1,1}, we define

˜̂ℓ j = ℓ̃ j −〈ℓ̃ j , ℓ− 1
2
〉L2(Î)

˜̂ℓ− 1
2
−〈ℓ̃ j ,h0〉L2(Î)

˜̂ℓe−〈ℓ̃ j , ℓ0〉L2(Î)
˜̂ℓ0−〈ℓ̃ j , ℓ 1

2
〉L2(Î)

˜̂ℓ 1
2

Now setting

Φ̂ :=
[

ĥ−1 ℓ̂−1 ℓ− 1
2

h0 ℓ0 ℓ 1
2

ĥ1 ℓ̂1

]⊤
,

˜̂Φ :=
[

˜̂ℓ−1
˜̂ℓ− 1

2

˜̂ℓe
˜̂ℓ0

˜̂ℓ 1
2

˜̂ℓ1

]⊤
,



ADAPTIVE TENSOR PRODUCT WAVELET SCHEME 11 of 28

from the definitions in Steps 1-4, we have

〈Φ̂ , ˜̂Φ〉L2(Î) =

























1
2 0 0 0 0 0
1
2 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 − 1

2
0 0 0 0 0 1

2

























(4.2)

The collectionsΦ̂ and ˜̂Φ are illustrated in Figure 2, and their coefficients in terms of the interpolatory
basis or in terms of{ℓ̃−1, ℓ̃− 1

2
, ℓ̃e, ℓ̃0, ℓ̃ 1

2
, ℓ̃1} can be found in Tables 1 and 2, respectively.
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FIG. 2. Biorthogonal collectionsΦ̂ and ˜̂Φ on the reference element, withh0 and ˜̂ℓe being multiplied by a factor 20 or120,
respectively.

h−1 ℓ−1 ℓ− 1
2

h0 ℓ0 ℓ 1
2

h1 ℓ1

ĥ−1
165
2 0 − 945

256 − 285
8

45
16 − 105

256 0 0
ℓ̂−1 0 55

12 − 6335
3072 − 295

16
265
192 − 655

3072 0 0
ℓ− 1

2
0 0 1 0 0 0 0 0

h0 0 0 0 1 0 0 0 0
ℓ0 0 0 0 0 1 0 0 0
ℓ 1

2
0 0 0 0 0 1 0 0

ĥ1 0 0 105
256 − 285

8 − 45
16

945
256

165
2 0

ℓ̂1 0 0 − 655
3072

295
16

265
192 − 6335

3072 0 55
12

Table 1. Coefficients of̂Φ.

Having defined primal and dual collectionsΦ̂ and ˜̂Φ on the reference macro-element, the collections
Φ j andΦ̃ j are assembled in the way known from finite elements. First, the collectionsΦ̂ and ˜̂Φ are
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ℓ̃−1 ℓ̃− 1
2

ℓ̃e ℓ̃0 ℓ̃ 1
2

ℓ̃1

˜̂ℓ−1 1 − 27
352

7
33

1
44

1
352 0

˜̂ℓ− 1
2

0 8775
4096

35
44 − 105

5632 − 1395
45056 0

˜̂ℓe 0 − 45
88

630
11 0 45

88 0
˜̂ℓ0 0 − 315

2816
1715
528

735
352 − 315

2816 0
˜̂ℓ 1

2
0 − 1395

45056
35
44 − 105

5632
8775
4096 0

˜̂ℓ1 0 1
352

7
33

1
44 − 27

352 1

Table 2. Coefficients of̃̂Φ .

lifted to any macro-element[k2−( j+1),(k+2)2−( j+1)], and multiplied by 2( j+1)/2 to compensate for the
change in length.

At the primal side, functions at an interface between two macro-elements that correspond to the
same degree of freedom are connected, i.e.,ĥ1 from the left is connected tôh−1 from the right, and̂ℓ1

from the left is connected tôℓ−1 from the right. In view of the boundary conditions, at the left boundary
the functionℓ̂−1 is dropped and at the right boundary so is the functionℓ̂1.

In view of the discontinuity between elements, at the dual side no degrees of freedom are identi-
fied. Instead a simple basis transformation is applied. At each internal interface, the pair of functions
consisting ofℓ̂1 from the left andℓ̂−1 from the right are replaced by the symmetric and anti-symmetric
functionsℓ̂1 + ℓ̂−1 and−ℓ̂1+ ℓ̂−1, with double support lengths. Finally, at the left boundaryℓ̂−1 is mul-
tiplied by 2, and at the right boundarŷℓ1 is multiplied by−2. In view of (4.2), one verifies that the
resulting primal and dual collections, denoted asΦ j andΦ̃ j , arebiorthogonal.

By construction, spanΦ j = Vj and Z j ⊂ Ṽj := spanΦ̃ j ⊂ Z j+1. The collectionsΦ j and Φ̃ j are
uniformly local and uniformlyL2(I)-bounded. As a consequence of these properties, it holds that
‖c⊤j Φ j‖L2(I) . ‖c j‖ℓ2 and similar at the dual side. Together with the biorthogonality, this shows thatΦ j

andΦ̃ j are uniformL2(I)-Riesz bases. E.g., at the dual side, we have‖c̃ j‖ℓ2 = supcj 6=0
|〈c⊤j Φ j ,c̃⊤j Φ̃ j 〉L2(I)|

‖cj‖ℓ2
.

‖c̃⊤j Φ̃ j‖L2(I) supcj 6=0
‖c⊤j Φ j‖L2(I)

‖cj‖ℓ2
. ‖c̃⊤j Φ̃ j‖L2(I).

Finally, we note that the basis transformations between theinterpolatory basis forVj and the basis
Φ j are uniformly local.

4.2 Wavelets

In view of Proposition 3.3, in order to define the wavelets, itis sufficient to constructΞ j+1 such that
Φ j ∪Ξ j+1 is a uniformL2(I)-Riesz basis forVj+1. Moreover, in order to obtain uniformly local wavelets
with uniformly local duals, we would like to selectΞ j+1 such that the basis transformations between
Φ j+1 andΦ j ∪Ξ j+1 are uniformly local. Since the basis transformations between the interpolatory basis
of Vj and the basisΦ j are uniformly local, the latter condition is equivalent to the locality of the basis
transformations between the interpolatory basis forVj+1 and the union of the interpolatory basis forVj

andΞ j+1.
A natural choice forΞ j+1 is the subset of interpolatory basis functions forVj+1 that correspond to the

new degrees of freedom. With this choice, the last mentionedbasis transformations are uniformly local.
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Indeed, withIℓ being the canonical interpolation operator ontoVℓ, the argument is that foru j+1 ∈Vj+1

the computation of the splittingu j+1 = I ju j+1 + I j+1(u j+1− I ju j+1) requires local quantities only.
Yet, in order to reduce the support size of most of the resulting wavelets, we do not simply take

Ξ j+1 to be the above collection, but we construct it from that collection by applying a uniformly local
transformation with uniformly local inverse. Our aim is to ensure that most functions inΞ j+1 are
orthogonal to those duals scaling functions that correspond to primal scaling functions that have supports
that extend to more than one macro-element. The resulting wavelets will then have no components in
the directions of those scaling functions.

Similar to the previous subsection, it is sufficient to specify Ξ̂ such thatΦ̂ ∪ Ξ̂ is a basis for
∑1

p=−2P4(p/2,(p+ 1)/2)∩C(Î). Then by lifting Ξ̂ to any macro-element[k2−( j+1),(k+ 2)2−( j+1)]

multiplying it by 2( j+1)/2, and taking the union over all macro-elements, the collection Ξ j+1 is ob-
tained. Since the function values and first order derivatives of any function inΞ̂ will vanish at∂ Î, no
degrees of freedom will have to be identified over the interfaces.

Let H̄ = {−1,− 1
2,0, 1

2,1} andL̄ = {−1,− 3
4,− 1

2,− 1
4,0, 1

4, 1
2, 3

4,1}. We define the collection̂Σ :=
{h̄i : H̄ \H}∪{ℓ̄ j : j ∈ L̄\L} ⊂ ∑1

p=−2P4(p/2,(p+1)/2)∩C(Î) as follows

˙̄hi(ı̂) = δi ı̂,

h̄i(̂) = 0,

˙̄ℓ j(ı̂) = 0,

ℓ̄ j(̂) = δ j ̂,
(ı̂ ∈ H̄, ̂ ∈ L̄),

cf. Figure 3. SoΣ̂ consists of the interpolatory basis functions corresponding to the new degrees of
freedom.

-1.0 -0.5 0.5 1.0

-0.4

-0.2

0.2

0.4

0.6

0.8

1.0

FIG. 3. The “preliminary” initial stable completion̂Σ on the reference element.

We will defineΞ̂ by applying some basis transformations toΣ̂ . In view of our aforementioned aim,

we look forΞ̂ such that most of its elements are orthogonal to˜̂ℓ±1.

Step 1.We determinêξ± 1
2

as the best approximation tỗℓ±1 from spanΣ̂ , i.e.,

ξ̂± 1
2

= 〈Σ̂ , ˜̂ℓ±1〉L2(Î)〈Σ̂ , Σ̂〉−1
L2(Î)

Σ̂ ,
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and then redefine the obtained{ξ̂± 1
2
} by biorthogonalizing it with{ ˜̂ℓ±1}, i.e.,

[

ξ̂− 1
2

ξ̂ 1
2

]

←
〈[

ξ̂− 1
2

ξ̂ 1
2

]

,

[

˜̂ℓ−1
˜̂ℓ1

]〉−1

L2(Î)

[

ξ̂− 1
2

ξ̂ 1
2

]

.

Step 2.We select{ξ̂± 3
4
, ξ̂± 1

4
} from spanΣ̂ ∩span{ ˜̂ℓ±1}⊥L2(Î) by means of

ξ̂p := ℓ̄p−〈ℓ̄p,
˜̂ℓ−1〉L2(Ī)ξ̂− 1

2
−〈ℓ̄p,

˜̂ℓ1〉L2(Ī)ξ̂ 1
2

(p∈ {± 3
4,± 1

4}).

Now it holds that span̂Ξ = spanΣ̂ , and the coefficients of̂Ξ in terms ofΣ̂ are given in Table 3.

ℓ̄− 3
4

h̄− 1
2

ℓ̄− 1
4

ℓ̄ 1
4

h̄1
2

ℓ̄ 3
4

ξ̂− 3
4

316773 −27794688 236519 138180 2619904 103140

ξ̂− 1
2

67599950 638640640 −5457650 −3219590 −65697280 −1779910

ξ̂− 1
4

22235 366336 3253977 −11556 −1234432 127356

ξ̂ 1
4

127356 1234432 −11556 3253977 −366336 22235

ξ̂ 1
2
−1779910 65697280 −3219590 −5457650 −638640640 67599950

ξ̂ 3
4

103140 −2619904 138180 236519 27794688 316773

Table 3. The coefficients of the initial stable completionΞ̂ on the reference element, all multiplied by 3262142, in terms of Σ̂ .

At this point, we have specifiedΦ j , Φ̃ j andΞ j+1. Using these ingredients, the collections of wavelets
Ψj+1 are determined by Proposition 3.3. Next, we redefine thisΨj+1 by applying some basis transfor-
mations to this collection in order to improve its conditioning.

By construction, we havêξ− 1
2
⊥L2(Î)

˜̂ℓ1, ξ̂ 1
2
⊥L2(Î)

˜̂ℓ−1 and ξ̂± 3
4
, ξ̂± 1

4
⊥L2(Î)

˜̂ℓ±1. This means that

the support of a wavelet resulting from̂ξ− 1
2
, ξ̂ 1

2
or ξ̂± 3

4
, ξ̂± 1

4
is contained in the union of a macro-

element and its left neighbor (if any), the union of a macro-element and its right neighbor (if any), or
in the macro-element itself. In other words, each interfacebetween macro-elements is contained in the
interior of the supports of two wavelets that have their supports in the union of the macro-elements
at both sides of the interface (the “interface wavelets”), each macro-element contains the supports of
four wavelets (the “internal wavelets”), and both macro-elements at left and right boundary contain the
support of an additional wavelet (the “boundary wavelets”).

In order to improve the conditioning of the resulting wavelets, first we orthogonalize each group of
four internal wavelets. Then we make the interface and boundary wavelets orthogonal to the internal

wavelets by subtracting from each interface or boundary waveletψ j ,k all (non-zero) terms
〈ψ j,k,ψ j,k̂〉L2(I)

〈ψ j,k̂,ψ j,k̂〉L2(I)
ψ j ,k̂

wherek̂ runs over the (neighboring) internal wavelets. Finally, weorthogonalize each resulting group
of two interface wavelets. All these transformations are local and have local inverses, meaning that the
resulting dual wavelets are still uniformly local.

We end up with 8 types of waveletsψ(i) (1 6 i 6 8): Four internal ones (16 i 6 4), two interface
wavelets (56 i 6 6), and a left (i = 7) and right boundary wavelet (i = 8). These wavelets, scaled
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arbitrarily, are illustrated in Figure 4. To efficiently specify these wavelets in terms of the interpolatory
basis of∑p∈Z P4(p/2,(p+1)/2)∩C1(R), we introduceψ̆(6)(x) := ψ(5)(2−x). The functionsψ(5), ψ̆(6)

were the interface wavelets beforeψ̆(6) was modified by making it orthogonal toψ5, i.e.,

ψ(6) = ψ̆(6)−
〈ψ̆(6),ψ(5)〉L2(R)

〈ψ(5),ψ(5)〉L2(R)
ψ(5), where

〈ψ̆(6),ψ(5)〉L2(R)

〈ψ(5),ψ(5)〉L2(R)
= 22164193

46639227.

Coefficients of{ψ(i) : 1 6 i 6 8, i 6= 6}∪{ψ̆(6)} in terms of the interpolatory basis, i.e., their function
values at14Z and derivatives at12Z are given in Tables 4 and 5, and Table 6, respectively. All missing
function values or derivatives can be found from the following relations:ψ(1)(x) = ψ(1)(−x), ψ(2)(x) =
ψ(2)(−x), ψ(3)(x) =−ψ(3)(−x), ψ(4)(x) =−ψ(4)(−x), ψ̆(6)(x) = ψ(5)(2−x), andψ(7)(x) = ψ(8)(−x).
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FIG. 4. The 4 internal wavelets (top row), the 2 interface wavelets (bottom left), and the left- and right boundary wavelets (bottom
right).

Finally, in order to improve the conditioning of the basis innorms other than theL2(I)-norm, in our
definition of the wavelet collectionΨ , we replace the single-scale basisΦ0 for V0 by a biorthogonal
three-scale basis. We setV−1 := P4(I)∩H1

0 (I), V−2 := span{x(1−x)}, Ṽ−1 := P2(I), andṼ−2 := P0(I),
and construct a basis forV0 as the union of theL2(I)-orthogonal bases{φ1 := x 7→ x(1− x)} for V−2,

{φ2,φ3} for V−1∩ Ṽ
⊥L2(I)

−2 and {φ4,φ5,φ6} for V0∩ Ṽ
⊥L2(I)

−1 . The resulting basis{φ1, . . . ,φ6}, scaled
arbitrarily, is illustrated in Figure 5, and the coefficients of {φ2, . . . ,φ6} in terms of the interpolatory
basis forV0 are given in Table 7.

At this point, we have fully specified the wavelet basisΨ = {φ1, . . . ,φ6}∪∪ j∈NΨj .
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− 3
4 − 2

4 − 1
4 0

ψ(1)
308451

13889536 − 60949
868096

415475
13889536

1155
54256

ψ(2)
2499

246272 − 109
3848

4711
246272 0

ψ(3)
443061983

36627756800 − 285143417
2289234800

362748295
1465110272 − 9856717

28615435
ψ(4)

148837
9425168 − 66512

589073
1415825
9425168 0

ψ(5)
53708555285
166405095424 − 14980898075

10400318464
327725985455
499215286272

3690665
1534272

ψ̆(6)
47396075155
499215286272 − 12393524605

31200955392
72032214595
499215286272

315095
511424

ψ(7)
794099332235
124803821568 − 37693124645

7800238848 − 118474648325
124803821568

686345
383568

ψ(8)
28432397675
124803821568 − 8137292405

7800238848
63923442715
124803821568

686345
383568

Table 4. Values of{ψ(i),1 6 i 6 8, i 6= 6}∪{ψ̆(6)} at− 3
4 ,− 1

2 ,− 1
4 ,0.

1
4

1
2

3
4 1

ψ(5) − 544659795185
499215286272 − 192581213825

31200955392
1324982041845
166405095424 − 55

12
ψ̆(6) − 23587067295

166405095424 − 13936238415
10400318464

798548796595
499215286272 − 55

12

Table 5. Values of{ψ(5),ψ̆(6)} at 1
4 , 1

2 , 3
4 ,1.

5. Riesz constants

As shown by Theorem 3.1, fors∈ (− 1
2, 5

2), our collectionΨ , normalized inH s(I), is a Riesz basis for
that space, and so in particular forL2(I) andH1

0(I). In various estimates, the values of (the quotients of)
the corresponding Riesz constantsλL2(I), ΛL2(I), λH1

0 (I), andΛH1
0 (I) play an important role. In Figure 6,

we present numerically computed values ofλL2(I),J, ΛL2(I),J, κL2(I),J :=
ΛL2(I),J

λL2(I),J
, λH1

0 (I),J, ΛH1
0 (I),J, and

κH1
0 (I),J :=

Λ
H1

0 (I),J

λ
H1

0 (I),J
, whereλL2(I),J := inf06=d∈ℓ2({λ∈∇:|λ |6J})

‖∑λ∈∇ dλ ψλ ‖2L2(I)

∑λ∈∇ |dλ |2‖ψλ ‖2L2(I)
with analogous definitions

of the other quantities.

6. Adaptive Wavelet-Galerkin Method

The Adaptive Wavelet-Galerkin Method (AWGM ), already mentioned in Sect. 1, is described here in
somewhat more detail. For ease of exposition, we shall assume that the right-hand sidef = [ f (ψψψλλλ )]λλλ∈∇∇∇
is finite. We shall comment on the general case in Remark 6.1. More details about the Adaptive Wavelet-
Galerkin Method, we refer to Cohenet al. (2001); Stevenson (2009).

AWGM [ε]→wε :
% Input: ε > 0.
% Parameters:µ ∈ (0,κ(A)−

1
2 ) andγ ∈ (0,µκ(A)−1).

i := 0, Λ i := /0, w(i) := 0, r (i) := f
while ‖r (i)‖> ε do

Λ i+1 := EXPAND[Λ i , r (i),µ‖r (i)‖]
w(i+1) := GALERKIN [Λ i+1,w(i),‖r (i)‖,γ‖r (i)‖]
r (i+1) := f−Aw(i+1)

i := i +1
enddo
wε := w(i)
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−1 − 1
2 0 1

2 1
ψ̇(1) 0 − 502391

108512 0 502391
108512 0

ψ̇(2) 0 − 29149
7696 − 547

1924 − 29149
7696 0

ψ̇(3) 0 − 412896003
286154350 0 412896003

286154350 0
ψ̇(4) 0 − 667982

589073
2402104
589073 − 667982

589073 0
ψ̇(5) 0 6471062785

1300039808
1697905
20336 − 190667608285

1300039808
165
2

˙̆ψ(6) 0 2249357165
1300039808

447205
20336 − 30059475545

1300039808 − 165
2

ψ̇(7) −165 40152033185
325009952 − 312675

5084 − 1055426405
325009952 0

ψ̇(8) 0 1055426405
325009952

312675
5084 − 40152033185

325009952 165

Table 6. Values of{ψ̇(i),1 6 i 6 8, i 6= 6}∪{ ˙̆ψ (6)} at−1,− 1
2 ,0, 1

2 ,1.

Φ5

Φ6Φ4

Φ3
Φ2

Φ1

-1.0 -0.5 0.5 1.0

-1.5

-1.0

-0.5

0.5

1.0

1.5

FIG. 5. The three-scale basis{φi : 1 6 i 6 6} for V0.

By a call ofGALERKIN , the Galerkin system corresponding to the current active wavelet index
set is solved within some prescribed tolerance. The previous approximate Galerkin solution is used as a
starting value of an iterative solver.

GALERKIN [Λ ,w,δ ,ε]→ w̄ :
% Input: ε,δ > 0, Λ ⊂ ∇∇∇, a w ∈ ℓ2(Λ ) with ‖f|Λ −A|Λ×Λ w‖6 δ .
% Output: w̄∈ ℓ2(Λ) with ‖f|Λ −A|Λ×Λ w̄‖6 ε in O(log(δ/ε)#Λ ) operations.

Using thatAΛ is well-conditioned, uniformly inΛ , we have implemented this routine as a Conjugate
Residual iteration with starting vectorw.

By a call ofEXPAND, the current active wavelet index set is expanded with thoseindices where the
current approximate residual has large values. A formal description of this procedure is given below.

EXPAND[Λ ,g,σ ]→ Λ̄ :
% Input: Λ ⊂ ∇∇∇, a finitely supportedg∈ ℓ2(∇∇∇), and a scalarσ ∈ [0,‖g‖ℓ2(∇)].
% Output:Λ ⊂ Λ̄ ⊂ ∇∇∇ with ‖PΛ̄ g‖> σ and such that, up to some absolute multiple,
% #(Λ̄ \Λ) is minimal over all such̄Λ , and the cost of the call isO(#Λ ∪suppg).

Noting that‖PΛ̄ g‖> σ is equivalent to‖PΛ̄\Λ g‖2 > σ2−‖PΛ g‖2, a setΛ̄ with minimal #(Λ̄ \Λ)



18 of 28

h−1 ℓ−1 ℓ− 1
2

h0 ℓ0 ℓ 1
2

h1 ℓ1

φ2
18
5 0 33

80 −1 − 1
5 − 27

80
2
5 0

φ3 − 2
5 0 − 27

80 1 − 1
5

33
80 − 18

5 0
φ4 0 0 0 −1 0 0 0 0
φ5 −4 0 19

64 1 − 1
4

3
64 0 0

φ6 0 0 3
64 −1 − 1

4
19
64 4 0

Table 7. Coefficients of{φi : 2 6 i 6 6}.
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FIG. 6. Smallest (dashed) and largest (dotted) eigenvalues andcondition number (solid) of the univariate (scaled) “mass”
[

∫

I
ψµ ψλ

‖ψµ |L2(I)‖ψλ ‖L2(I)

]

λ ,µ∈∇, |λ |,|µ |6J
(left) and “stiffness”

[

∫

I
ψ̇µ ψ̇λ

‖ψ̇µ |L2(I)‖ψ̇λ ‖L2(I)

]

λ ,µ∈∇ |λ |,|µ |6J
(right) matrices on levelsJ = 0,1, . . ..

can be found by ordering{gλλλ : λλλ ∈ Λ̄ \Λ} by non-increasing modulus, and then by selecting elements
from the head to the tail of this ordered sequence until the criterion is met. The loglinear complexity of
this implementation can be reduced to a linear complexity byperforming an approximate sorting, at the
expense of obtaining āΛ for whichΛ̄ \Λ is only minimal up to some absolute factor.

The following result shows that theAWGM is quasi-optimal.

THEOREM 6.1 Forwε := AWGM [ε], we have that‖f−Awε‖6 ε. If for somes> 0,

u ∈A
s := {v ∈ ℓ2(∇∇∇))) : |v|A s := sup

N∈N0

Ns‖v−vN‖< ∞},

i.e., u is approximated by its bestN-term approximations at rates, then both #suppwε and, assuming

ε . ‖f‖, the number of operations used by the call are of orderε−1/s|u|1/s
A s, only dependent onswhen it

tends to 0 or∞, and on upper bounds for‖A‖ and‖A−1‖, cf. (1.6) and Lemma 1.1.

REMARK 6.1 For general functionsf , the vectorf has infinite support. Inside the Adaptive Wavelet-
Galerkin Method, thisf has to be approximated with increasing accuracy, see Stevenson (2009) for
details. Assumingu ∈A s, then if these approximations off converge at rates, then the overall rate of
the adaptive method is stills. Using thatA is sparse, it can be shown that ifu ∈A

s, then alsof ∈A
s,

meaning that bestN-term approximations off converge at rates.
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7. Rates for the reaction-diffusion problem

In this section, we consider the problem of findinguη ∈ H1
0(2) such that

aη(uη ,v) :=
∫

2

η2∇uη ·∇v+uηv = f (v) (v∈ H1
0(2)). (7.1)

The bilinear formaη defines a boundedly invertible operator, uniformly inη > 0, betweenH1
0(2)

equipped with the energy norm

|||·|||= |||·|||η =
√

η2| · |2
H1(2)

+‖ · ‖2L2(2)

and its dual equipped with the corresponding dual norm. The caseη = 0 is included whenH1
0(2) is

read as the closure ofC∞
0 (2) with respect to the energy norm.

We consider a univariate wavelet collectionΨ = {ψλ : λ ∈∇} that, properly scaled, is a Riesz basis
for L2(I) andH1

0(I) (and 1= ‖ψλ‖L2(I) h 2−|λ |‖ψλ‖H1(I)), hasorder d> 1, and has a corresponding

collection of dual wavelets̃Ψ = {ψ̃λ : λ ∈ ∇} that isuniformly local(i.e., the dual wavelets satisfy (1)
and (2)). An example of such a collectionΨ is given by the one constructed in Section 4, in which case
d = 5.

We will make the following assumption on the solution of (7.1):

Assumption 7.1 The solutionuη of (7.1) allows for a splitting into

uη = Uη +
n

∑
k=1

(n
k)2k

∑
p=1

Vη,k,p

where for‖α‖∞ 6 d, ‖∂ αUη‖L∞(2) . 1, andVη,k,p is a layer function associated to thepth (n−k)-face
of 2. Note that a 0-face is a vertex and an(n−1)-face is a side. For some constantsγ,τ > 0 the layer
functionsVη,k = Vη,k,p associated to the(n−k)-facex1 = · · ·= xk = 0 satisfy for‖α‖∞ 6 d andη > 0,

|∂ αVη,1(x)|. η−α1e−γx1/η , (7.2)

and fork∈ {2, . . . ,n},

|∂ αVη,k(x)|. η−(α1+···+αk) min
(

1,

√

x2
1+···+x2

k
η

)1− k
2+τ−(α1+···+αk)

e−γ
√

x2
1+···+x2

k
η , (7.3)

where the other layer functions satisfy analogous decay estimates as function of the distance to their
faces. Forη = 0, the layer functions are zero.

For the two-dimensional casen = 2 and sufficiently smooth right-hand sidef , Assumption 7.1 has
been verified in Han & Kellogg (1990). The final corollary in Han & Kellogg (1990) suggests thatα1

at the right-hand side of (7.2) should read as|α|. Inspection of the proof (in particular (2.6c)) reveals
that (7.2) is correct (cf. also (Apel & Lube, 1998, Lemma 2)),which will be essential. The upper
bounds from Han & Kellogg (1990) for the derivatives of the corner layer functions are actually orders
of magnitude smaller than those allowed by (7.3).
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REMARK 7.1 A generalization of the results from Han & Kellogg (1990)to general polygons and with
a variable zeroth order part of the differential operator isgiven is given in Kellogg (1995) (cf. (Apel,
1999,§5.3.1) for a discussion of (7.2) withα1 instead of|α| in these cases). The bounds for the corner
singularities in Kellogg (1995) are less favorable than in Han & Kellogg (1990), but still orders of
magnitude smaller than those that allowed by (7.3).

To the best of our knowledge, complete proofs of Assumption 7.1 in more than two dimensions are
not available in the literature.

Forβ ∈ [0,1), andℓ ∈ N0, following Nitsche (2005) now let

∇β
ℓ := {λ ∈∇ : |λ |6 ℓ

1−β , dist(suppψ̃λ ,∂ I)β 6 2ℓ−|λ |}. (7.4)

This set∇β
ℓ contains allλ ’s with |λ |6 ℓ as well as, forβ > 0, λ ’s on higher levels, up to ℓ

1−β , when the
supports of the corresponding dual wavelets are sufficiently close to 0 or 1. Nevertheless, for any fixed
β ∈ [0,1), #∇β

ℓ h 2ℓ.
Considering the corresponding collection of tensor product waveletsΨ = {ψψψλλλ : λλλ ∈ ∇∇∇ = ∇n}, let,

for ν > 1,
∇∇∇β

ℓ,ν := {∏n
i=1∇β

mi
: m ∈ N

n
0, ν∑n

i=1mi +(1−ν)max
i

mi 6 ℓ}.

For ν = 1, β = 0, this set∇∇∇β
ℓ,ν is the familiarsparse gridindex set. The set shrinks with increasingν

and grows with increasingβ . For any fixedβ ∈ [0,1),

#∇∇∇β
ℓ,ν h

{

ℓn−12ℓ if ν = 1,
2ℓ if ν > 1.

Let us denote withPβ
ℓ,ν the biorthogonal projectoru = ∑λλλ∈∇∇∇ uλλλ ψψψλλλ →∑λλλ∈∇∇∇β

ℓ,ν
uλλλ ψψψλλλ defined onL2(2).

For k ∈ N0, θ > 0, theweighted Sobolev space Hk
θ (I) is defined as the space of all measurable

functionsu for which, with weightwθ (x) := (x(1−x))θ , the norm

‖u‖Hk
θ (I) = ‖u‖Hk

wθ (I) :=

[

k

∑
j=0

∫

I
|wθ (x)u( j)(x)|2dx

]
1
2

is finite. We have the following error estimates:

THEOREM 7.2 ((Dauge & Stevenson, 2010, Thm. 4.3)) (a). Forθ ∈ [0,d) andβ ∈ ( θ
d ,1),

‖u−Pβ
ℓ,1u‖L2(2) . ℓ

n−1
2 2−dℓ‖u‖⊗n

i=1Hd
θ (I) (u∈ ⊗n

i=1Hd
θ (I)),

if β > 1− 1
2d or u∈ H1

0(2).
(b). Forθ ∈ [0,d), β ∈ ( θ

d ,1), andν ∈ [1, d
d−1),

‖u−Pβ
ℓ,νu‖H1(2) . 2−(d−1)ℓ

√

n

∑
m=1

‖u‖2⊗n
i=1Hd

θ−δmi min(1,θ )
(I)

for all u∈ ∩n
m=1⊗n

i=1 Hd
θ−δmimin(1,θ)(I)∩H1

0(2).
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The bounds from this theorem involve weighted Sobolev normsof u with weights that, forθ > 1,
vanish at the whole of∂2. Whereas for non-singularly perturbed elliptic problems with smooth coeffi-
cients and a smooth right-hand side – which have solutions that are smooth up to the non-singular parts
of the boundary–, there is no advantage of weights that vanish at those parts of the boundary, to arrive
at favorable results for singularly perturbed elliptic problems, it is essential that these weights vanish at
the whole of the boundary because of the developments of boundary layers. By combining the decay
estimates (7.2), (7.3) with Theorem 7.2, we arrive at the following result:

THEOREM 7.3 Let Assumption 7.1 be valid. Then for anyς > 0, there exists a sequence(∇∇∇N)N∈N ⊂∇∇∇
with #∇∇∇N . N such that for the solution of (7.1) it holds that

inf
wη∈span{ψψψλλλ :λλλ∈∇∇∇N}

|||uη −wη |||η . (logN)(n−1)( 1
2+d)N−d + η

1
2−ς N−(d−1).

Proof. Theorem 7.2 implies that for anyθ ∈ [1,d), for i ∈ {1,2} there exists a sequence(∇∇∇(i)
N )N∈N ⊂∇∇∇

with #∇∇∇(i)
N . N such that for the corresponding biorthogonal projector, let us call itP(i)

N , it holds that

‖u−P(1)
N u‖L2(2) . (logN)(n−1)( 1

2+d)N−d‖u‖⊗n
i=1Hd

θ (I) (u∈ ⊗n
i=1Hd

θ (I)),

‖u−P(2)
N u‖H1(2) . N−(d−1)

√

n

∑
m=1

‖u‖2⊗n
i=1Hd

θ−δmi
(I)

(u∈ ∩n
m=1⊗n

i=1 Hd
θ−δmi

(I)∩H1
0(2)).

To see how the first estimate follows from Thm. 7.2(a), note that with N := 2#∇∇∇β
ℓ,1 h ℓn−12ℓ, we have

N
1
2 . 2ℓ . N, and soℓ

n−1
2 2−dℓ

h ℓ(n−1)( 1
2+d)N−d

h (logN)(n−1)( 1
2+d)N−d.

The first estimate gives the proof of the theorem forη = 0 (which is not fully trivial since all wavelets
vanish at the boundary), and in the following we considerη > 0.

SinceΨ is, properly scaled, a Riesz basis forL2(2) andH1
0(2), we infer that for the biorthogonal

projectorPN onto the span of the waveletsψψψλλλ with λλλ ∈ ∇∇∇(1)
N ∪∇∇∇(2)

N , it holds that

|||u−PNu|||η . (logN)(n−1)( 1
2+d)N−d‖u‖⊗n

i=1Hd
θ (I) + ηN−(d−1)

√

n

∑
m=1

‖u‖2⊗n
i=1Hd

θ−δmi
(I)

(7.5)

(u∈ ∩n
m=1⊗n

i=1 Hd
θ−δmi

(I)∩H1
0(2)).

We apply (7.5) to the solutionuη of (7.1). In view of Assumption 7.1, it suffices to show that for
suitableθ ∈ [1,d), and all layer functionsVη,k,

‖Vη,k‖⊗n
i=1Hd

θ (I) . 1, (7.6)
√

n

∑
p=1

‖Vη,k‖2⊗n
i=1Hd

θ−δpi
(I)

. η−
1
2−ς . (7.7)

Setting

cd =
2d−1

2γ
,

we have
∫ ∞

cdη|logη| |η−de−γy/η |2dy= 1
2γ . Takingθ > d− 1

2, also
∫ cdη|logη|

0 |yθ η−d|2dy . 1, and so in
view of (7.2), we conclude thatVη,1 satisfies (7.6).
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To show that fork > 2,Vk,η satisfies (7.6), in view of (7.3) it suffices to show that
∫

(0,1)k
|yθ

1 · · ·yθ
k η−(1− k

2+τ)‖y‖1−
k
2+τ−kd

2 e−γ‖y‖2/η |2dy

.

∫

√
n

0
|rkθ+1− k

2+τ−kdη−(1− k
2+τ)e−γr/η |2rk−1dr . 1,

or that, for some suitablec > 0 independent ofη ,
∫ cη|logη|

0
|rkθ+1− k

2+τ−kdη−(1− k
2+τ)|2rk−1dr . 1,

which holds true whenθ > max(d− 1+τ
k ,d− 1

2).

Similarly, since forθ > d− ς ,
∫ cdη|logη|

0 |yθ−1η−d|2dy . η−1−2ς , in view of (7.2)Vη,1 satisfies
(7.7).

Since forθ > max(d− τ,d− 1
2 + 1

2k),
∫ 1

0 |rkθ− k
2+τ−kdη−(1− k

2+τ)e−γr/η |2rk−1dr . η−1, in view of
(7.3)Vη,k for k∈ {2, · · · ,n} satisfies (7.7), even forς = 1. �

REMARK 7.2 Theorem 7.3 can be slightly improved to the statement that

inf
wη∈span{ψψψλλλ :λλλ∈∇∇∇N}

|||uη −wη |||η . (logN)(n−1)( 1
2+d)N−d + η

1
2 |logη |d− 1

2 N−(d−1). (7.8)

To see this, letφ be a smooth function on[0,∞), with φ ≡ 0 on [0,1] andφ ≡ 1 on [2,∞). With
rp = rp(x) being the distance ofx to thepth (n−2) face of2, we split

uη = uR
η +uS

η , whereuR
η(x) := uη(x)

2(n
2)

∏
p=1

φ(rp/η). (7.9)

From (7.2) and (7.3), we infer thatuR
η ,uS

η allow for a splitting into

uR
η = UR

η +
n

∑
k=1

(n
k)2k

∑
p=1

VR
η,k,p, uS

η =
n

∑
k=2

(n
k)2k

∑
p=1

VS
η,k,p,

where for‖α‖∞ 6 d, ‖∂ αUR
η ‖L∞(2) . 1, andVR

η,k,p,VS
η,k,p are layer functions associated to thepth (n−k)

face of2. The layer functionsVR
η,k =VR

η,k,p, VS
η,k =VS

η,k,p associated to the(n−k)-facex1 = · · ·= xk = 0
satisfy for‖α‖∞ 6 d andη > 0,

|∂ αVR
η,1(x)|. η−α1e−γx1/η , (7.10)

and fork∈ {2, . . . ,n},

|∂ αVR
η,k(x)|. η−(α1+···+αk) (7.11)

whereVR
η,k vanishes outside anO(η) neighborhood ofx1 = · · ·= xk = 0, and

|∂ αVS
η,k(x)|. η−(α1+···+αk) min

(

1,

√

x2
1+···+x2

k

η

)1− k
2+τ−(α1+···+αk)

e−γ
√

x2
1+···+x2

k
η , (7.12)
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where the other layer functions satisfy analogous decay estimates as function of the distance to their
faces.

(Note that other than with say the splitting ofuη into Uη + ∑2n
p=1Vη,1,p and∑n

k=2 ∑
(n

k)2k

p=1 Vη,k,p, the

splitting ofuη into uR
η anduS

η preserves the zero boundary conditions.)

In addition to(∇∇∇(1))N and (∇∇∇(2))N, we construct a sequence(∇∇∇(3))N ⊂ ∇∇∇ with #∇∇∇(3)
N . N, and

consider the biorthogonal projectorPN onto the span of the waveletsψψψλλλ with λλλ ∈ ∇∇∇(1)
N ∪∇∇∇(2)

N ∪∇∇∇(3)
N .

SinceΨ is a Riesz basis forL2(2), in view of the results from the proof of Theorem 7.3, in orderto
establish the improved bound (7.8) it suffices to show that

‖(I −PN)uη‖H1(2) . η−
1
2 |logη |d− 1

2 N−(d−1).

Similarly, sinceΨ is, properly scaled, a Riesz basis forH1
0(2), for the latter it suffices to show that

‖(I −P(2)
N )uS

η‖H1(2) . η−
1
2 N−(d−1),

‖(I −P(3)
N )uR

η‖H1(2) . η−
1
2 |logη |d− 1

2 N−(d−1), (7.13)

whereP(3)
N is the biorthogonal projector onto the span of the waveletsψψψλλλ with λλλ ∈ ∇∇∇(3)

N . Because the
expansion ofuS

η does not contain layer functions associated to(n−1)-faces, the first result follows from
the proof of Thm. 7.3 (cf. the last line of its proof).

It is sufficient to show (7.13) forN h 2ℓ andℓ ∈N0. Following the idea of a so-calledShishkin mesh
(Shishkin (1987)), withL ∈ N0 such that

2L−ℓcdη |logη |h 1,

we set
∇̆η

ℓ := {λ ∈ ∇ : |λ |6 ℓ or |λ |6 L and dist(suppψ̃λ ,∂ I) 6 cdη |logη |}.
Then #̆∇η

ℓ h 2ℓ (uniformly in η > 0). Note that the difference between the “regular” levelℓ and the
highest levelL of the the indices in̆∇η

ℓ is independent ofℓ (but dependent onη), whereas in the definition

of ∇β
ℓ in (7.4) this difference was a multiple ofℓ (independent ofη).

With P̆η
ℓ denoting the biorthogonal projector onto span{ψλ : λ ∈ ∇̆η

ℓ }, for u ∈ Hd(I)∩H1
0(I) we

have

‖u− P̆η
ℓ u‖2L2(I)

h ∑
|λ |>L

|〈ψ̃λ ,u〉L2(I)|
2 + ∑

{ℓ<|λ |6L:suppψ̃λ∈(cdη|logη|,1−cdη|logη|)}
|〈ψ̃λ ,u〉L2(I)|

2

. 4−Ld‖u‖2Hd(I) +4−ℓd‖u‖2Hd(cdη|logη|,1−cdη|logη|)

h 4−ℓd‖u‖2
Hd

wd
η

(I)
(7.14)

with weightwd
η being thedth power ofwη :=

{

1 on(cdη |logη |,1−cdη |logη |),
η |logη | elsewhere on I.

Similarly,

for u∈ Hd(I)∩H1
0(I),

‖u− P̆η
ℓ u‖2H1(I) h ∑

|λ |>L

4|λ ||〈ψ̃λ ,u〉L2(I)|2 + ∑
{ℓ<|λ |6L:suppψλ∈(cdη|logη|,1−cdη|logη|)}

4|λ ||〈ψ̃λ ,u〉L2(I)|
2

. 4−ℓ(d−1)‖u‖2
Hd

wd−1
η

(I)
. (7.15)
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Forν > 1, we set

∇̆∇∇
η
ℓ,ν := {∏n

i=1∇̆η
mi

: m ∈ N
n
0, ν∑n

i=1mi +(1−ν)max
i

mi 6 ℓ},

and letP̆η
ℓ,ν denote the biorthogonal projector onto span{ψψψλλλ : λλλ ∈ ∇̆∇∇

η
ℓ,ν}. Using (7.14) and (7.15), the

arguments that led to Theorem 7.2 show that foru∈ ⊗n
i=1Hd(I)∩H1

0(2),

‖u− P̆η
ℓ,1u‖L2(2) . ℓ

n−1
2 2−dℓ‖u‖⊗n

i=1Hd
wd

η
(I)

and, in the current setting most importantly,

‖u− P̆η
ℓ,νu‖H1(2) . 2−(d−1)ℓ

√

√

√

√

n

∑
m=1
‖u‖2⊗n

i=1Hd

w
d−δmi
η

(I)

whenν ∈ [1, d
d−1).

Since for anyν > 1, #∇̆∇∇
η
ℓ,ν h 2ℓ uniformly in η > 0, for proving(7.13) it remains to show that for all

layer functionsVR
η,k

n

∑
m=1
‖VR

η,k‖2⊗n
i=1Hd

w
d−δmi
η

(I)
. η−1|logη |2d−1. (7.16)

For k > 2, (7.11) shows that the left-hand side isO(ηk−2|logη |2(kd−1)). For k = 1, recalling that
∫ ∞

cdη|logη| |η−de−γy/η |2dy= 1
2γ , from (7.10) one infers the bound (7.16).

Let us briefly compare (7.8) with error bounds from the literature for the same problem. In Apel &
Lube (1998), a Galerkin finite element method of orderd is considered with respect to an anisotropic
grid of Shishkin type. The upper bound for the error in|||·||| that is derived reads as a multiple of

N−
d
n + η

1
2 |logη |d− 1

2 N−
d−1

n . (7.17)

The fact that our error bound (7.8) is obtained by essentially replacingN by Nn is due to the use of
tensor product approximation.

The curse of dimensionality visible in (7.17) is partly circumvented in Liuet al. (2009) where a
two-scale sparse grid method is considered for problem (7.1). The upper bound for the error from that
paper derived ford = 2 reads as a multiple of

N−
2d

n+1 + η
1
2 |logη |d− 1

2 N−
2(d−1)

n+1 . (7.18)

The results from both Apel & Lube (1998) and Liuet al. (2009) are derived under Assumption 7.1
with theadditional conditionthat the right-hand sidef of (7.1) satisfies certain compatibility conditions
of sufficiently high order – forn = 2 the first being that the right-hand sidef vanishes at the corners of
2 –, which ensure thatu∈Ck,α(2̄) for sufficiently largek. In effect, it means that in that case it can be
assumed thatuS

η = 0 in (7.9) so that (7.12) does not have to be taken into account. We emphasize that
our results are validwithout compatibility conditionson the data.

Finally, we note that the rates demonstrated given by (7.8) are realized automatically by theAdaptive
Wavelet Galerkin Method, which converges with the best possible rate in linear complexity.
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8. Numerical Results

We consider the families of singularly perturbed boundary value problems
{

(−η2∆ + I)uη = f on2 = (0,1)2,
uη = 0 on∂2,

(8.1)

{

−(η2∂ 2
1 + ∂ 2

2 )uη = f on2,
uη = 0 on∂2,

(8.2)

and
{

(−η2∆ −η∂1+ I)uη = f on2,
uη = 0 on∂2,

(8.3)

where f (x,y) = (1−x)(1−y).
Solutions of these problems forη = 10−2 are illustrated in Figure 7. Note thatf does not vanish
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FIG. 7. (Approximate) solutions of the problems (8.1), (8.2), and (8.3) forη = 10−2.

at all corners, and therefore does not satisfy compatibility conditions. So the solutionuη exhibits all
possible kinds of edge and corner singularities.

In Figures 8, 9, and 10, the results are presented of the Adaptive Tensor Product Wavelet Method
applied to the problems (8.1), (8.2), and (8.3). In all cases, the support length of the computed
approximationw vs. theℓ2(∇∇∇)-norm of its residual‖f−Aw‖ is given, wheref is the representation
of the right-hand side andA = Aη is the bi-infinite stiffness matrix with respect to the tensor product
wavelets. Since we apply the univariate wavelets from Sect.4, the matrixA is sparse. Note that‖f−Aw‖
is equivalent to the error inwTΨ in the energy-norm|||·||| corresponding to the problem, uniformly in
η > 0. For the third, non-symmetric problem, the Adaptive Tensor Product Wavelet Method is applied
to the normal equationsA⊤Au = A⊤f.

The numerical results illustrate the robustness of the adaptive method with respect to the singular
perturbation proven for problem (8.1), and indicate this robustness for problems (8.2) and (8.3). Since
for problem (8.1), only starting from approximately 105 unknowns the error is decreasing with decreas-
ing η , the results give no indication about the sharpness of the bound (7.8) as function ofN andη .

For our convenience, we have chosenf to be a low order polynomial so that the resulting vector
f is finitely supported. A a consequence, forη = 0, the representation of the solutionu = f for (8.1)
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FIG. 8. #suppw vs. ‖f−Aw‖ for problem (8.1) for, at height 10−6 from left-to-right,η = 1,10−2,10−4,10−8,0. The slope of the
triangle is the, forη 6= 0, best possible asymptotic rate−4.

and (8.3), oru(x,y) = 1
6(1−x)y(1−y)(y−2) for (8.2), is somewhat exceptionally close to a sparse one

since the integral ofu vanishes against all dual wavelets above the lowest level that have their supports
inside the open box(0,1)2. Therefore, our results forη = 0, and so for smallη andN not very large,
are somewhat better than generally can be expected. To get animpression of the error with a generic
smoothf , the harmless approximation error for a smooth function that vanishes at the boundary should
be added.

Figure 11 illustrates which wavelets were selected by the Adaptive Tensor Product Wavelet Method.
To give an impression of the strength of the local refinement;for problem (8.2),η = 10−4 and #suppw =
65635, the maximum level of a univariate wavelet present in the expansion is 29. The cardinality of the
smallest “full-grid” approximation that contains this wavelet, i.e., an approximation from span{ψψψλλλ :
|λ1|, |λ2|6 29}, is≈ 1019.
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FIG. 10. #suppw vs. ‖f−Aw‖ for problem (8.3) for, at height 10−6 from left-to-right, η = 1,10−2,10−4,10−8,0. The slope of
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