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A MULTIPLICATIVE SCHWARZ ADAPTIVE WAVELET

METHOD FOR ELLIPTIC BOUNDARY VALUE PROBLEMS

ROB STEVENSON AND MANUEL WERNER

Abstract. A multiplicative Schwarz overlapping domain decomposition
method is considered for solving elliptic boundary value problems. By equip-
ping the relevant Sobolev spaces on the subdomains with wavelet bases, adap-
tive wavelet methods are used for approximately solving the subdomain prob-
lems. The union of the wavelet bases forms a frame for the Sobolev space
on the domain as a whole. The resulting method is proven to be optimal in
the sense that, in linear complexity, the iterands converge with the same rate
as the sequence over N ∈ N of the best approximation from the span of the
best N frame elements. Numerical results are given for the method applied to
Poisson’s equation.

1. Introduction

In [CDD01, CDD02] by Cohen, Dahmen and DeVore, adaptive wavelet methods
were developed for solving well-posed linear operator equations, such as elliptic
boundary value problems in variational form. Starting with some wavelet basis for
the (Sobolev) space that contains the solution, these methods were shown to be
(quasi-) optimal in the sense that, in linear complexity, they converge in the energy
norm with the best possible rate, i.e., the rate of the sequence over N ∈ N of the
best approximation to the solution from the span of the best N wavelets from the
basis.

Except for rectangular domains, or smooth images of such, a bottleneck for
the application of these methods is the construction of a suitable wavelet basis on
the domain Ω on which the equation is posed. Starting from a nonoverlapping
decomposition of Ω into subdomains, each being a smooth parametric image of
the unit cube, various construction principles have been developed. Unfortunately,
the resulting bases either do not (fully) satisfy the conditions needed for proving
optimality (e.g., wavelets supported near interfaces between subdomains do not
have enough vanishing moments or are not sufficiently smooth), or their condition
numbers are very large. This was the motivation to study adaptive wavelet frame
methods in [Ste03, DFR07, DFR+07].

Based on an overlapping decomposition of Ω into subdomains {Ωi}, a wavelet
frame is simply obtained by taking the union of wavelet bases on the subdomains.
In frame coordinates, the operator equation under consideration now corresponds
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to a singular, but consistent bi-infinite matrix-vector equation. This equation can
be solved by applying an inexact Richardson, cf. [Ste03], or steepest descent iter-
ation, see [DFR+07], similar in spirit to the wavelet basis method from [CDD02].
Under some technical condition on the frame, these methods were shown to be
quasi-optimal in the aforementioned sense. Unfortunately, so far this technical
condition, although reasonable, could be rigorously verified in a model case only.
More importantly, numerical results showed that, in a quantitative sense, one has
to pay for solving a system that is singular. Errors made in inexact matrix-vector
products that happen to be in the kernel of the matrix will never be damped in
subsequent iterations. Although they have no influence on the resulting approxi-
mations, they have to be restricted to a sufficiently small size in order to control
the cost of subsequent inexact matrix-vector products.

In this paper, a method is studied that is based on the easy wavelet frame
construction whilst the inversion of singular systems is avoided. Since the Sobolev
space on the domain as a whole has a stable decomposition into corresponding
Sobolev spaces on the subdomains subject to appropriate homogeneous Dirichlet
boundary conditions, the continuous problem can be solved by the multiplicative or
properly damped additive Schwarz method. For the recurrent approximate solving
of the subdomain problems, an adaptive wavelet basis method is applied.

Although the latter method is (quasi-) optimal, it is not clear that this will hold
for the overall method. Indeed, suppose that the solution u of the boundary value
problem can be approximated by linear combinations of N wavelet frame elements
such that the error is O(N−s), i.e., that the rate of best N -term approximation
is s. For a range of s, depending on the order of the equation and on that of the
wavelets, we will show that this holds true if and only if u is in a certain smoothness
space Bs(Ω), being very close (but not equal to) some Besov space. On each of the
subdomains, the iterands will converge to some u(i), necessarily with

∑

i u
(i) = u.

With a standard implementation of the Schwarz method, it is not clear whether
this splitting is smoothness preserving in the sense that each u(i) ∈ Bs(Ωi), being
a necessary, and by optimality of the adaptive wavelet basis method, sufficient
condition for the iterands on the subdomain to converge with rate s.

In this paper, we restrict ourselves to the multiplicative Schwarz method. In or-
der to deal with the above problem, before solving on subdomain Ωi, we will remove
terms from the expansions of iterands associated to other subdomains that corre-
spond to wavelets that are fully supported in Ωi. In any case with an exact solving
on Ωi, this modification does not change the resulting next global approximation
to u. It does, however, change the splitting u =

∑

i u
(i). Assuming a sufficiently

large overlap between the subdomains compared to the maximal support sizes of
the wavelets, we will prove that now ‖ui‖Bs(Ωi) can be bounded by some absolute
multiple of ‖u‖Bs(Ω), which will imply (quasi-) optimality of the resulting method.
Since additionally our modification diminishes the transport of information between
subdomains, which generally is relatively expensive due to uncorrelated underlying
meshes, it results also in a more efficient implementation. In a way our approach
is close to the original method proposed by Schwarz, cf. [Sch1890], in which data
from other subdomains are only passed as Dirichlet boundary conditions.

The remainder of this paper is organized as follows. In Section 2, we describe
the boundary value problem and the (exact) multiplicative Schwarz method for
solving it. Furthermore, we collect standard assumptions on the wavelets we will
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consider. Section 3 is devoted to the development of the adaptive multiplicative
Schwarz method. We prove convergence and optimality of this algorithm where for
the latter we use some technical results that will be shown in Sections 4 and 5.
In particular, in Section 4, we give explicit expressions for the limits u(i) of the
sequences of approximate solutions of the subdomain problems. In Section 5, we
show that the splitting of the solution u of the boundary value problem into these
u(i) is smoothness preserving. Finally, in Section 6, we present numerical results
obtained with the multiplicative adaptive Schwarz method that support our theo-
retical findings.

In this paper, by C . D we will mean that C can be bounded by a multiple of
D, independently of parameters which C and D may depend on. Obviously, C & D
is defined as D . C, and C h D as C . D and C & D.

2. Preliminaries

2.1. Boundary value problem. For some bounded domain Ω ⊂ R
n and t ∈ N,

let a(·, ·) be a bounded, symmetric and elliptic bilinear form on Ht
0(Ω). For given

f ∈ H−t(Ω), we are interested in approximating u ∈ Ht
0(Ω) that solves

(2.1) a(u, v) = f(v) (v ∈ Ht
0(Ω)).

We set ||| · ||| := a(·, ·)
1
2 , being a norm on Ht

0(Ω) equivalent to ‖ · ‖Ht(Ω). The

corresponding operator norm on L(Ht
0(Ω), Ht

0(Ω)) will also be denoted as ||| · |||.

2.2. Multiplicative Schwarz method. Let Ω = ∪m−1
i=0 Ωi be some fixed decom-

position of Ω into m ∈ N open sets, such that any v ∈ Ht
0(Ω) can be decomposed

into
∑m−1

i=0 vi with vi ∈ Ht
0(Ωi) and, for some absolute constant C0,

(2.2)

m−1
∑

i=0

‖vi‖
2
Ht(Ω) ≤ C0‖v‖

2
Ht(Ω).

With respect to this decomposition, the multiplicative Schwarz method for solving
(2.1) reads as follows: With u0 := 0, for k = 1, 2, . . .,

uk := uk−1 + ek−1

where, with i := (k − 1)modm,

(2.3) a(ek−1, v) = f(v) − a(uk−1, v) (v ∈ Ht
0(Ωi)).

With Pi : Ht
0(Ω) → Ht

0(Ω) denoting the a(·, ·)-orthogonal projector onto Ht
0(Ωi),

we have

u− uk = (I − Pi)(u− uk−1).

It holds that

(2.4) ρ := |||(I − Pm−1) · · · (I − P0)||| < 1,

only dependent on C0 from (2.2) and the maximum number of subdomains that
intersect with one subdomain (see [Xu92]; although the theory is formulated for
finite dimensional Hilbert spaces, it extends directly to the infinite dimensional
case).

We are going to study a version of this algorithm, in which the subdomain
problems are solved only inexactly using adaptive wavelet methods. So we assume

that for each 0 ≤ i ≤ m−1, we have available a Riesz basis Ψ(i) = {ψ
(i)
λ : λ ∈ ∇(i)}
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for Ht
0(Ωi) of wavelet type. Being a Riesz basis means that for any v ∈ Ht

0(Ωi), the
unique v ∈ ℓ2(∇(i)) with v = vTΨ(i) satisfies ‖v‖Ht(Ωi) h ‖v‖ℓ2(∇(i)).

From (2.2) one easily infers that Ψ = {ψλ : λ ∈ ∇} := ∪iΨ
(i) is a frame

for Ht
0(Ω), meaning that clos spanΨ = Ht

0(Ω) and, for some absolute constants
0 < c1 ≤ c2,

c1‖v‖
2
Ht(Ω) ≤ inf

{v∈ℓ2(∇):vT Ψ=v}
‖v‖2

ℓ2(∇) ≤ c2‖v‖
2
Ht(Ω) (v ∈ Ht

0(Ω)).

Due to the overlap between subdomains, note that generally the decomposition
v = vTΨ is not unique.

The property of Ψ being a frame with constants c1 and c2 is equivalent to

c−1
2 ‖g‖2

H−t(Ω) ≤ ‖[g(ψλ)]λ∈∇‖2
ℓ2(∇) ≤ c−1

1 ‖g‖2
H−t(Ω) (g ∈ H−t(Ω)).

With (Aw)(v) := a(w, v), A := [a(ψµ, ψλ)]λ,µ∈∇, f := [f(ψλ)]λ∈∇, we infer that

‖u− vTΨ‖Ht(Ω) h ‖A(u− vTΨ)‖H−t(Ω) h ‖f − Av‖ℓ2(∇) (v ∈ ℓ2(∇)),

which will be used in the numerical experiments to estimate errors.
Finally in this section, we note that

(2.5) |||v||| ≤ ‖A‖
1
2

ℓ2(∇)→ℓ2(∇) inf
{v∈ℓ2(∇):vT Ψ=v}

‖v‖ℓ2(∇) (v ∈ Ht
0(Ω)).

2.3. Wavelet assumptions. In the following (standard) wavelet assumptions are
collected that will be used. We consider biorthogonal spline wavelets of order d with
d−t
n > 1

2 . The wavelets are assumed to be local in the sense that, with |λ| ∈ N0

denoting the level of the wavelet ψ
(i)
λ ,

diam(suppψ
(i)
λ ) . 2−|λ| and

sup
x∈Ωi,ℓ∈N0

#{|λ| = ℓ : B(x; 2−ℓ) ∩ suppψ
(i)
λ 6= ∅} <∞,

and that the dual wavelets {ψ̃
(i)
λ : λ ∈ ∇(i)} ⊂ H−t(Ω), defined by ψ̃

(i)

λ̃
(ψ

(i)
λ ) =

δλ̃,λ, are also local. Furthermore, it is assumed that the (primal) wavelets are

piecewise smooth. That is, with R being some absolute integer constant, we assume

that suppψ
(i)
λ \sing suppψ

(i)
λ is the disjoint union of domains Ξλ,1, . . . ,Ξλ,R, with

∪Rj=1Ξλ,j = suppψ
(i)
λ , where ψ

(i)
λ |Ξλ,j

is smooth with, for any γ ∈ N
n
0 ,

(2.6) sup
x∈Ξλ,j

|∂γψ
(i)
λ (x)| . 2|λ|(

n
2 +|γ|−t).

In addition, we require that there is a smooth, regular mapping κi : R
n → R

n, such
that κ−1

i (Ξλ,j) is an n-cube aligned with the Cartesian coordinates, and

(ψ
(i)
λ ◦ κi)|κ−1

i
(Ξλ,j)

∈ Qd−1,

with Qd−1 being the n−fold tensor product of the space of univariate polynomials
of degree d− 1.

Moreover, the wavelets will be chosen to have a maximal global smoothness, i.e.,

ψ
(i)
λ ∈ Cd−2(Ω).

In particular, this condition means that on interior boundaries ∂Ωi ∩ Ω, homoge-
neous Dirichlet boundary conditions of the maximal order d − 2 are incorporated
in the wavelet construction.
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With the exception of wavelets on level 0, we assume that all wavelets have
N0 ∋ d̃ > d− 2t vanishing moments, meaning that, when d̃ > 0,

ψ
(i)
λ ◦ κi ⊥ Pd̃−1.

Finally, we will assume that, in relation to the size of the minimal overlap between
subdomains, the diameters of the supports of all primal and dual wavelets are
sufficiently small, i.e., that the “initial meshes” are sufficiently fine. A precise
formulation of this assumption will be given in Theorem 3.4.

Starting from biorthogonal spline multiresolution analyses on the line ([CDF92]),
using tensor products, wavelets satisfying above assumptions can be constructed
on (0, 1)n ([DS98]), after which they can be lifted to Ωi := κi((0, 1)n).

2.4. Approximation classes. For s > 0, let the approximation class As
∞(∇(i)) :=

{v ∈ ℓ2(∇(i)) : ‖v‖As
∞

(∇(i)) <∞}, where

‖v‖As
∞

(∇(i)) := sup
ε>0

ε×
[

min{N ∈ N0 : ‖v − vN‖ℓ2(∇(i)) ≤ ε}
]s
,

and vN denotes a best N -term approximation for v, i.e., a vector in ℓ2(∇(i)) that
agrees with v on the locations where the latter has its N largest values in modulus,
and which is zero elsewhere. For τ ∈ (0, 2), the space ℓτ,∞(∇(i)) (also known as

weak ℓτ (∇(i))) is defined by

ℓτ,∞(∇(i)) := {v ∈ ℓ2(∇
(i)) : ‖v‖ℓτ,∞(∇(i)) := sup

k∈N

k1/τ |γk(v)| <∞}

where |γk(v)| denotes the kth largest coefficient in modulus of v. It is known that
for each s > 0,

‖v‖As
∞

(∇(i)) h ‖v‖ℓτ,∞(∇(i))

where, here and in the remainder of this paper, s and τ are always related according
to

τ = (1
2 + s)−1.

We define As
∞(∇) and ℓτ,∞(∇) similarly as for the index sets ∇(i).

3. The adaptive Schwarz method and its optimality

3.1. Schwarz method with inexact subdomain solves. Our aim is to con-
struct a numerical method that has the following property:

If for some s > 0, the solution u of (2.1) has some representation u = ũTΨ
with ũ ∈ ℓτ,∞(∇), then for any ε > 0 the method produces a uε ∈ ℓ2(∇) with

‖u− uTε Ψ‖Ht(Ω) . ε and #suppuε . ε−1/s‖ũ‖
1/s
ℓτ,∞(∇), taking a number of

operations that can be bounded by the same expression.

Note that if we would have best N -term approximations available, then in order
to guarantee ‖ũ − ũN‖ ≤ ε, and with that ‖u − ũTNΨ‖Ht(Ω) . ε, generally N =

ε−1/s‖ũ‖
1/s
As

∞
(∇) h ε−1/s‖ũ‖

1/s
ℓτ,∞(∇) is required. In this sense, such a method can be

called being (quasi-) optimal.

Remark 3.1. As we will see in Sect. 5, assuming a strictly positive overlap be-
tween subdomains (cf. (3.4)), a representation ũ ∈ ℓτ,∞(∇) exists if and only
if u is contained in a certain Banach space Bs(Ω), with Bsn+t

τ,τ (Ω) ∩ Ht
0(Ω) →֒

Bs(Ω) →֒ Ht
0(Ω). The space Bsn+t

τ,τ (Ω) ∩ Ht
0(Ω), and so Bs(Ω), is larger than the

space Hsn+t(Ω)∩Ht
0(Ω), with an increasing difference with growing s. Recall that
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u has to be in Hsn+t(Ω)∩Ht
0(Ω) in order to ensure the same rate of approximation

with a standard linear approximation scheme of order d. The statements in this
remark are equally valid when m = 1, in which case Ψ is a wavelet basis for Ht

0(Ω).

In view of the aforementioned aim, considering the multiplicative Schwarz method,
it is clear that the auxiliary problems (2.3) on the subdomains should be solved
only inexactly. In any case if we apply linearly decreasing tolerances as the itera-
tion proceeds, using (2.4) it is easily seen that then we still have majorized linear
convergence of the iterands towards u.

Let us write the kth iterand uk =
∑m−1
i=0 u

(i)
k with u

(i)
k = (u

(i)
k )TΨ(i). Then, with

the canonical approach that an approximate solve on subdomain Ωi amounts to an
update of the expansion coefficients with respect to Ψ(i) only, for k ∈ i+ 1 +mN0

we have

u
(i)
k − u

(i)
k−m = uk − uk−1.

From the majorized linear convergence of (uk)k, we infer that (u
(i)
k )k∈i+1+mN0 is

a Cauchy sequence in Ht
0(Ω), and thus convergent to some u(i) ∈ Ht

0(Ω) with
representation (u(i))TΨ(i). With εk denoting the linearly decreasing upper bound

for ‖u − uk‖Ht(Ω), we have ‖u(i) − u
(i)
k ‖ℓ2(∇(i)) h ‖u(i) − u

(i)
k ‖Ht(Ωi) . εk. So

the requirement that for any ε > 0, #suppuk . ε−1/s‖ũ‖
1/s
ℓτ,∞(∇) whenever the

algorithm is stopped as soon as εk ≤ ε can only be fulfilled when each of the
u(i) ∈ ℓτ,∞(∇(i)) with ‖u(i)‖ℓτ,∞(∇(i)) . ‖ũ‖ℓτ,∞(∇).

With the above “canonical” approach we do not know why this necessary (and,
as we will see, sufficient) condition for optimality would be satisfied. Therefore,
we consider a modified approach, where in each iteration not only the expansion
coefficients corresponding to the current subdomain are updated, but also those
corresponding to neighboring subdomains. The fact that such a modification is
allowed is based on the observation that if before solving on subdomain Ωi, some
function from Ht

0(Ωi) is subtracted from the current iterand, then this has no
influence on the iterand after the (exact) solving on Ωi. This can be easily deduced

from (2.3). We will show that with a suitable modified approach, the u
(i)
k converge

to some u(i) with ‖u(i)‖ℓτ,∞(∇(i)) . ‖ũ‖ℓτ,∞(∇). By adding a so-called coarsening
routine to our algorithm, we show that this property guarantees optimality.

We will make use of a routine COARSE[v, ε] → wε that for ε > 0 and w ∈
ℓ0(∇), being the space of sequences with finite support, determines a wε ∈ ℓ0(∇),
such that

‖w − wε‖ℓ2(∇) ≤ ε

and

(3.1) #suppwε . min{N : ‖w − wN‖ℓ2(∇) ≤ ε}.

The recurrent application of coarsening inside adaptive iterative solvers was first
proposed in [CDD01]. It removes small coefficients from an approximation vector,
with which an optimal balance is retained between support length and accuracy, as
is demonstrated in the forthcoming Proposition 3.2.

Since w is finitely supported, we could select wε to be wN for the smallest N
with ‖w−wN‖ℓ2(∇) ≤ ε. This, however, would require a sorting of the coefficients
of w by their modulus taking O(#suppw log(#suppw)) operations. In order to
avoid the log factor, we apply an approximate bucket sorting (see [Bar05, Ste03]
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for details) at the expense of losing in (3.1) some factor larger than 1 that one can
choose. Now the number of operations is bounded by an absolute multiple of

#suppw + max(log(ε−1‖w‖ℓ2(∇), 1).

In view of the cost of our approximate multiplicative Schwarz routine, we note that
above log term turns out to be harmless, because for any s > 0, log(ε−1‖w‖ℓ2(∇)) .

ε−1/s‖w‖
1/s
ℓ2(∇).

The following proposition shows the benefit of the application of coarsening. A
proof can be found in e.g. [Coh03, Theorem 4.9.1], [DFR+07, Proposition 3.4].

Proposition 3.2. Let ζ > 1 and s > 0. Then for any ε > 0, v ∈ ℓτ,∞(∇) and
w ∈ ℓ0(∇) with

‖v − w‖ℓ2(∇) ≤ ε,

for wζε := COARSE[ζε,w] we have that

#suppwζε . ε−1/s‖v‖
1/s
ℓτ,∞(∇), ‖wζε‖ℓτ,∞(∇) . ‖v‖ℓτ,∞(∇),

and obviously, ‖v − wζε‖ℓ2(∇) ≤ (1 + ζ)‖v − w‖ℓ2(∇).

We are ready to formulate our multiplicative Schwarz method with inexact sub-
domain solves. It consists of three nested loops, where in the innermost loop a
complete multiplicative Schwarz iteration is performed, i.e., the subsequent (inex-
act) solving of the local problems on all m subdomains. After K multiplicative
Schwarz iterations, coarsening is applied which happens in the middle loop. In
the outermost loop, the whole process is repeated L times to guarantee a desired
reduction of the initial error.

MultSchw[ε, µ] → uk
% The input should satisfy ε > 0 and µ ≥ |||u|||.

% With M being an upper bound for ‖A‖
1
2

ℓ2(∇)→ℓ2(∇), let the parameters

% σ > 0 and K ∈ N be such that 2ρKMσ < 1, where ρ is from (2.4).
Let L be the smallest integer with µ(2ρKMσ)L ≤ ε

u0 = u
(0)
0 = · · · = u

(m−1)
0 := 0

for ℓ = 1, 2, . . . , L do

for p = 1, . . . ,K do

for i = 0, . . . ,m− 1 do

k := (ℓ− 1)mK + (p− 1)m+ i+ 1

Determine uk =
∑m−1
j=0 u

(j)
k , u

(j)
k = (u

(j)
k )TΨ(j) (i.e., uk = uTkΨ

where uk = [(u
(0)
k )T . . . (u

(m−1)
k )T ]T ) as follows:

For j 6= i, u
(j)
k,λ :=

{

0 when suppψ
(j)
λ ∩ Ω ⊂ Ωi,

u
(j)
k−1,λ otherwise.

Determine u
(i)
k as an approximation to the solution ū

(i)
k of

a(ū
(i)
k , v(i)) = f(v(i)) − a(

∑

j 6=i u
(j)
k , v(i)) (v(i) ∈ Ht

0(Ωi))

such that |||ū
(i)
k − u

(i)
k ||| ≤ µ(2ρKMσ)ℓ−1 ρp

mK .
enddo

enddo

uk := COARSE[(σ − 1/M)2ρKµ(2ρKMσ)ℓ−1,uk]
enddo
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Note that for k ∈ mKN, uk (and thus also uk) got redefined by the application
of COARSE, i.e., for those k, uk or uk has two meanings that will be distinguished
carefully.

Referring to the preceding discussion, note that before solving on subdomain
Ωi, the current iterand uk−1 is modified by subtracting functions from Ht

0(Ωi). So
apart from the fact that the problems on the subdomains are solved inexactly,
and that a coarsening routine is added, the algorithm is an implementation of the
multiplicative Schwarz method.

3.2. Convergence.

Proposition 3.3. Let µ ≥ |||u|||. The iterand uℓmK inside uε := MultSchw[ε, µ],
for ℓ > 0 after the application of COARSE, satisfies

|||u − uℓmK ||| ≤ µ(2ρKMσ)ℓ,

and so |||u− uTε Ψ||| ≤ ε. Furthermore, for 1 ≤ q ≤ mK,

(3.2) |||u− u(ℓ−1)mK+q||| ≤ 2µ(2ρKMσ)ℓ−1ρ
q
m

−1,

where for q = mK, uℓmK should read here as the iterand before the application of
COARSE.

Proof. The first statement is valid for ℓ = 0. Suppose it is valid for some ℓ− 1 ≥ 0.
Then for p = 0, . . . ,K,

(3.3) |||u − u(ℓ−1)mK+pm||| ≤ µ(1 + p
K )ρp(2ρKMσ)ℓ−1,

where, when p = K, uℓmK should read here as the iterand before the application
of COARSE. Indeed, this estimate is valid for p = 0. Suppose it is valid for some
p− 1 ≥ 0. Then (2.4) and |||I − Pi||| ≤ 1 show that

|||u − u(ℓ−1)mK+pm||| ≤ρ
[

µ(1 + p−1
K )ρp−1(2ρKMσ)ℓ−1

]

+mµ(2ρKMσ)ℓ−1 ρp

mK ,

which is (3.3).
By (3.3) for p = K, and the fact that |||vTΨ||| ≤ M‖v‖ℓ2(∇) (v ∈ ℓ2(∇)) by

definition of M (cf. (2.5)), the subsequent application of COARSE introduces an
additional error that in ||| · ||| is not larger than M(σ− 1/M)2ρKµ(2ρKMσ)ℓ−1, the
proof of the first statement is completed.

From (3.3), with p reading as p− 1, and |||I − Pi||| ≤ 1, we find that

|||u− u(ℓ−1)mK+(p−1)m+(i+1)||| ≤ [1 + p−1
K + (i+1)ρ

mK ]ρp−1µ(2ρKMσ)ℓ−1,

where here when p = K and i = m− 1, uℓmK should read as the iterand before the

application of COARSE. From this estimate and 1 + p−1
K + (i+1)ρ

mK ≤ 2, the second
statement of the theorem follows easily. �

3.3. Optimality. Having established convergence of MultSchw, below we investi-
gate its optimality. Let for A ⊂ R

n and δ ≥ 0, B(A; δ) := {x ∈ R
n : dist(x,A) ≤ δ},

and

Ωi(−δ) := {x ∈ Ωi : B(x; δ) ∩ Ω ⊂ Ωi}.

In Sections 4 and 5, we will prove the following result.
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Theorem 3.4. Let the decomposition Ω = ∪m−1
i=0 Ωi be such that

(3.4) Ω ⊂ ∪m−1
i=0 Ωi(−ω) for some ω > 0,

and let

(3.5) η := max
0≤i≤m−1,λ∈∇(i)

(

diam(suppψ
(i)
λ ), diam(supp ψ̃

(i)
λ )

)

≤
ω

3m− 1
.

(a) Then, for any 0 ≤ i ≤ m− 1, there exists a u(i) = (u(i))TΨ(i) ∈ Ht
0(Ωi) such

that for ℓ ∈ N, 1 ≤ q ≤ mK, with (q − 1)modm = i,

(3.6) ‖u(i) − u
(i)
(ℓ−1)mK+q‖Ht(Ωi) . µ(2ρKMσ)ℓ−1ρ

q

m
−1,

only dependent on m, ω and the Riesz constants of all Ψ(i), and where for q = mK,
uℓmK should read as the iterand before the application of COARSE.

(b) If, for some s < d−t
n , u has some representation ũTΨ with ũ ∈ ℓτ,∞(∇),

then ‖u(i)‖ℓτ,∞(∇(i)) . ‖ũ‖ℓτ,∞(∇).

Remark 3.5. Concerning the restriction s < d−t
n , note that in view of the polynomial

order of approximation being applied, even a C∞ solution u cannot be expected
to have a representation ũTΨ with ũ ∈ ℓτ,∞(∇) for s > d−t

n . Unfortunately,
interpolation arguments that are going to be applied in Sect. 5 do not allow us to
cover the case s = d−t

n .

Remark 3.6. The condition (3.4) implies (2.2), but the converse is not true as is
demonstrated by an example from [DFR+07, §4.2]. The condition (3.5) means
that the minimal overlap between subdomains is sufficiently large compared to the
largest diameter of the support of any primal or dual wavelet.

We will apply Theorem 3.4 in two ways. Firstly and most importantly, for some
s < d−t

n , let u have some representation ũTΨ with ũ ∈ ℓτ,∞(∇), and let u ∈ ℓ2(∇)
be defined by

uλ =

{

u
(i)
λ when λ ∈ ∇(i) and suppψ

(i)
λ ∩ Ω 6⊂ Ωj for some j > i,

0 otherwise.

From Theorem 3.4(b), we infer that

‖u‖ℓτ,∞(∇) . ‖ũ‖ℓτ,∞(∇).

Because uℓmK before COARSE is given by

uℓmK,λ =







u
(i)
ℓmK−m+i+1,λ when λ ∈ ∇(i) and suppψ

(i)
λ ∩ Ω 6⊂ Ωj for

some j > i,
0 otherwise,

by summing the bound (3.6) over mK −m+ 1 ≤ q ≤ mK, and using that the Ψ(i)

are Riesz bases, we find that

‖u− uℓmK‖ℓ2(∇) ≤ µC(2ρKMσ)ℓ−1ρK−2,

for some constant C > 0 only dependent on m, ω and the Riesz constants of all
Ψ(i). Note that in particular this result, in combination with Proposition 3.3, shows
that u = uTΨ.

In view of Proposition 3.2, we conclude that if σ was chosen to be sufficiently
large in the sense that

(3.7) (σ − 1/M)2 > Cρ−2
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(and K correspondingly such that 2ρKMσ < 1), then after evaluation of uℓmK :=
COARSE[(σ − 1/M)2ρKµ(2ρKMσ)ℓ−1,uℓmK ] inside the routine MultSchw, we
have

#suppuℓmK .
[

µ(2ρKMσ)ℓ
]−1/s

‖ũ‖
1/s
ℓτ,∞(∇),(3.8)

and

‖uℓmK‖ℓτ,∞(∇) . ‖ũ‖ℓτ,∞(∇),(3.9)

uniformly in ℓ. In the remainder we will assume that such a choice of σ and K has
been made.

With a suitable implementation of the inexact solves on the subdomains, the
estimates (3.8) and (3.9) are the key to a proof of optimality of MultSchw.
Since the arguments follow by now standard lines for adaptive wavelet methods
(cf. [CDD01, CDD02, Ste03, SW08]), we only sketch the main steps:

A second application of Theorem 3.4 (Part (a)) shows that if for approximating

the solution ū
(i)
k on subdomain Ωi, we use the previous iterand u

(i)
k−m as starting

value of an iterative solver, then we have to reduce its error by a constant factor
only.

For bounding the cost of doing so we have to make some assumptions on the
cost of approximating the infinite “load vector” f and that of the approximate
application of the bi-infinite “stiffness matrix” A.

For some s∗ ≥ d−t
n , we assume that A is s∗-admissible, meaning that there exists

an approximate matrix vector routine APPLY[w, ε] → zε, taking a w ∈ ℓ0(∇),
and producing zε ∈ ℓ0(∇), that has the following properties (cf. [CDD02, Ste03]):

(1) ‖Aw − zε‖ℓ2(∇) ≤ ε.

(2) For any s < s∗, #supp zε . ε−1/s‖w‖
1/s
ℓτ,∞(∇) and the number of operations

required by the call is bounded by some absolute multiple of 1+#suppw+

ε−1/s‖w‖
1/s
ℓτ,∞(∇).

As consequences, for s < s∗ it holds that

‖zε‖ℓτ,∞(∇) . ‖w‖ℓτ,∞(∇) (w ∈ ℓ0(∇), ε > 0) and(3.10)

A : ℓτ,∞(∇) → ℓτ,∞(∇) is bounded.(3.11)

Concerning f , we assume that we have a routine RHS[ε] → fε available, that is
quasi-optimal in the following sense:

(3) ‖f − fε‖ℓ2(∇) ≤ ε.
(4) #supp fε . min{N : ‖f − fN‖ℓ2(∇) ≤ ε}, and the cost of producing fε can

be bounded on an absolute multiple of its support length +1.

As consequences, if, for some s ∈ (0, s∗), u has some representation ũTΨ with
ũ ∈ ℓτ,∞(∇), then from (3.11), (4) and (3) it follows that

#supp fε . ε−1/s‖ũ‖
1/s
ℓτ,∞(∇),(3.12)

the number of operations required by the computation of fε(3.13)

is bounded by some absolute multiple of 1 + ε−1/s‖ũ‖
1/s
ℓτ,∞(∇),

‖fε‖ℓτ,∞(∇) . ‖ũ‖ℓτ,∞(∇) (ε > 0).(3.14)
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With A(i,j) := [a(ψ
(j)
µ , ψ

(i)
λ )]λ∈∇(i),µ∈∇(j) , the matrix A has a natural partition

as [A(i,j)]0≤i,j≤m−1. For k := (ℓ− 1)mK + (p− 1)m+ i+ 1, the determination of

u
(i)
k inside MultSchw amounts to approximating the solution ū

(i)
k of

A(i,i)ū
(i)
k = f |∇(i) −

∑

j 6=i

A(i,j)u
(j)
k ,

within tolerance δ := µ(2ρKMσ)ℓ−1 ρp

mK in ||| · ||| := 〈A(i,i)·, ·〉
1
2

ℓ2(∇(i))
h ‖ · ‖ℓ2(∇(i)).

This can be realized by first approximating both parts of the right hand side of

this equation within tolerance ‖(A(i,i))−1‖
− 1

2

ℓ2(∇(i))→ℓ2(∇(i))
δ/4 in ‖ · ‖ℓ2(∇(i)). Then

we have |||ū
(i)
k − (A(i,i))−1g||| ≤ δ/2 where g denotes the resulting approximation of

the right hand side. Since A(i,i) is symmetric and positive definite, there exists a
damping parameter α such that the correspondingly damped Richardson iteration
for approximating (A(i,i))−1g converges in ||| · ||| with a rate ξ < 1. As we have seen,

from the previous solve on subdomain Ωi, we have available a vector u
(i)
k−m with

|||ū
(i)
k − u

(i)
k−m||| ≤ Dδ for some constant D > 0, and thus |||(A(i,i))−1g − u

(i)
k−m||| ≤

(D + 1
2 )δ. Let P be the smallest integer with 2ξP (D + 1

2 ) ≤ 1
2 . Then if we apply

P steps of damped Richardson, where in the qth iteration the application of A(i,i)

onto the current iterand is approximated within tolerance (ξq(D + 1
2 )δ)/P in ||| · |||,

we end up with an approximation u
(i)
k to (A(i,i))−1g within tolerance 1

2δ in ||| · |||,

so that |||ū
(i)
k − u

(i)
k ||| ≤ δ as required.

Since the described intermediate steps to get from u(ℓ−1)mK to uℓmK involve a

fixed number of approximate applications of the A(i,j) by calls of APPLY, and a
fixed number of approximations of the f |∇(i) by calls of RHS, from (3.9), (3.10) and
(3.14), we infer that ‖uk‖ℓτ,∞(∇) . ‖ũ‖ℓτ,∞(∇) uniformly in k. Taking into account
the majorized linearly decreasing tolerances with which these calls are made, from
(3.8), (2) and (3.12) we infer that

#suppuk .
[

µ(2ρKMσ)k/mK
]−1/s

‖ũ‖
1/s
ℓτ,∞(∇),

uniformly in k. Furthermore, if µ . |||u|||, then (2), (3.13) and the discussion about
the cost of a call of COARSE preceding Proposition 3.2, show that the number
of operations required for the computation of uk can be bounded by some absolute

multiple of
[

µ(2ρKMσ)k/mK
]−1/s

‖ũ‖
1/s
ℓτ,∞(∇). Here the assumption µ . |||u|||, that

implies 1 . µ−1/s‖ũ‖
1/s
ℓτ,∞(∇), is made to ensure that the constant term in the

bounds for the cost of calls of APPLY and RHS never dominates the other terms.
Since on the other hand |||u − uk||| . µ(2ρKMσ)k/mK (k ∈ N0) as was shown in
(3.2), we end up with the following optimality result.

Theorem 3.7. Assume (3.4) and (3.5). Let σ be sufficiently large such that (3.7)
is valid, and let K ∈ N be such that 2ρKMσ < 1. For some s∗ ≥ d−t

n , let A be s∗-

admissible and RHS be quasi-optimal. Let u have some representation ũTΨ with
ũ ∈ ℓτ,∞(∇) for some s ∈ (0, d−tn ). Then for ε ∈ (0, µ), uε := MultSchw[ε, µ]

satisfies |||u − uTε Ψ||| ≤ ε and #suppuε . ε−1/s‖ũ‖
1/s
ℓτ,∞(∇), where the number

of operations required by the call can be bounded on some absolute multiple of

ε−1/s‖ũ‖
1/s
ℓτ,∞(∇).
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A sufficient condition for A being s∗-admissible is that it can be sufficiently
well approximated by computable sparse matrices quantified by the concept of s∗-
computability (cf. [CDD02, Ste03]). A matrix A is called to be s∗-computable
when for all N ∈ N, there is an infinite matrix AN , having in each column O(N)
non-zero entries whose computations require O(N) operations, such that the error
‖A− AN‖ℓ2(∇)→ℓ2(∇) . N−s for any s < s∗.

For a(·, ·) resulting from a variational formulation of a boundary value problem
with a partial differential operator of order 2t having smooth coefficients, and ho-
mogeneous Dirichlet boundary conditions of order t − 1, and for wavelets on the
subdomains that satisfy the assumptions collected in Sect. 2.3, in [SW08] it was
shown that indeed A is s∗-computable for some s∗ ≥ d−t

n .
Generally, the existence of a quasi-optimal RHS routine depends on the right-

hand side f at hand. For f being sufficiently smooth, a valid RHS can be con-
structed by computing approximate single scale approximations of f |Ωi

on some
appropriate level using suitable quadrature, and then by applying inverse wavelet
transforms.

Remark 3.8. As subblocks of an s∗-admissible matrix A, both the diagonal blocks
A(i,i) and the off-diagonal blocks A(i,j) for i 6= j are s∗-admissible. In a quantitative
sense, however, an approximate application of A(i,j) for i 6= j can be expected to be
much more expensive than that of A(i,i). Indeed, the entries of A(i,j) correspond to
pairs of wavelets that are piecewise smooth with respect to generally uncorrelated
partitions, making the problem of approximating them using suitable quadrature
much more demanding. In view of this, it can be expected that our approach of

before solving on Ωi deleting for j 6= i all coefficients u
(j)
k−1,λ for λ ∈ ∇(j) with

suppψ
(j)
λ ∩ Ω ⊂ Ωi also gives quantitative advantages, since it makes u

(j)
k more

sparse.

Remark 3.9. To approximately solve the problems on the subdomains, for simplicity
we suggested to apply some inexact damped Richardson iterations. This is the
approach from the second adaptive wavelet method proposed by Cohen, Dahmen
and DeVore ([CDD02]). Alternatively, one can apply a few iterations of the first
method introduced by these authors ([CDD01], see also [GHS07]). This method is
somewhat more difficult to describe, but in practice it leads to quantitatively better
results. In our numerical experiments we have applied this method.

4. Construction of the limits of the sequences on the subdomains

In this section, we prove Part (a) of Theorem 3.4, i.e., the convergence for each

i ∈ {0, . . . ,m−1} of (u
(i)
k )k∈i+1+mN0 in Ht

0(Ωi). We give explicit expressions for the
limit functions, that in the next section will be shown to be sufficiently smooth to
ensure Theorem 3.4(b). Before giving a formal proof in the general case of having
m subdomains, we start with sketching the idea for 2 subdomains.

For k odd, u
(1)
k,µ is defined to be zero when suppψ

(1)
µ ∩ Ω ⊂ Ω0. Now from

diam(suppψ
(1)
µ ), diam(suppψ

(0)
λ ), diam(supp ψ̃

(0)
λ ) ≤ η and suppψ

(0)
λ ∩supp ψ̃

(0)
λ 6= ∅

(µ ∈ ∇(1), λ ∈ ∇(0)), and the assumption (3.5) that 5η ≤ ω (already 3η ≤ 2ω

suffices), for any λ ∈ ∇(0) with suppψ
(0)
λ 6⊂ Ω1,

u
(0)
k,λ = ψ̃

(0)
λ (u

(0)
k ) = ψ̃

(0)
λ (uk − u

(1)
k ) = ψ̃

(0)
λ (uk) → ψ̃

(0)
λ (u) (k odd → ∞),
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����

Ω0

Ω1

> 2ω

Figure 1. suppψ
(0)
λ and supp ψ̃

(0)
λ for λ ∈ ∇(0) with suppψ

(0)
λ 6⊂ Ω(1),

and suppu
(1)
k for some odd k assuming (3.5).

see Figure 1. For k even, u
(0)
k,λ is defined to be zero when suppψ

(0)
λ ∩ Ω ⊂ Ω1, and

it is equal to u
(0)
k−1,λ otherwise. From uk = u

(0)
k + u

(1)
k → u (k → ∞), we conclude

that

u
(1)
k → u−

∑

{λ∈∇(0):suppψ
(0)
λ

6⊂Ω1}

ψ̃
(0)
λ (u)ψ

(0)
λ ∈ Ht

0(Ω1) (k even → ∞).

To relate this result with the analysis in the general case, let φi be a smooth
function on Ω, that vanishes outside Ωi, and that is identically 1 on Ωi except
on a sufficiently small strip near Ω\Ωi. Let u(0,0) = φ0u ∈ Ht

0(Ω0) with rep-

resentation (u(0,0))TΨ(0). From ψ̃
(0)
λ (u) = u

(0,0)
λ when suppψ

(0)
λ 6⊂ Ω1, we infer

that the above limit function from Ht
0(Ω1) can also be written as φ1(u − u(0,0)) +

∑

{λ∈∇(0):suppψ
(0)
λ

⊂Ω1}
u

(0,0)
λ ψ

(0)
λ .

Now in the general case of having m subdomains, let (uk)k∈N0 be a sequence of

approximations to u such that uk =
∑m−1

i=0 u
(i)
k , u

(i)
k = (u

(i)
k )TΨ(i), and for k ≥ 1

and j 6= (k − 1)modm,

(4.1) u
(j)
k,λ :=

{

0 when suppψ
(j)
λ ∩ Ω ⊂ Ω(k−1)modm,

u
(j)
k−1,λ or 0 otherwise.

An example of such a sequence is given by the one produced by MultSchw. The

possibility that u
(j)
k,λ is set to zero also when suppψ

(j)
λ ∩ Ω 6⊂ Ω(k−1)modm allows to

include the effect of a coarsening step. In that case uk should read as the iterand
after coarsening.

Due to the cyclic character of the assumption (4.1), it is sufficient to prove the

convergence of the sequence (u
(m−1)
k )k∈mN0 . Apart from proving convergence, we

will derive an expression for the limit.
With η from (3.5), for some θ ≥ − 1

3 , 0 ≤ i ≤ m− 1, let φi,θ ∈ C∞
0 (Rn) with

suppφi,θ ∩ Ω ⊂ Ωi(−(1 + 3θ)η), φi,θ ≡ 1 on Ωi(−(2 + 3θ)η).

We define (χi,θ)0≤i≤m−1 by χ0,θ = φ0,θ, and for i > 0 by

χi,θ = φi,θ(1 − χi−1,θ) + χi−1,θ.

Proposition 4.1. It holds that
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(1) suppχi,θ ∩ Ω ⊂ ∪ij=0Ωj(−(1 + 3θ)η),

(2) χi,θ ≡ 1 on ∪ij=0Ωj(−(2 + 3θ)η).

Proof. By the definition of χi,θ, we have

φ0,θ(x) = 1 ∨ · · · ∨ φi,θ(x) = 1 =⇒ χi,θ(x) = 1,

φ0,θ(x) = 0 ∧ · · · ∧ φi,θ(x) = 0 =⇒ χi,θ(x) = 0,

from which both statements follow. �

Definition 4.2. For 0 ≤ i ≤ j ≤ m− 1, we define u(i,j) ∈ Ht
0(Ωi) with represen-

tation (u(i,j))TΨ(i) as follows:

for j = 0, . . . ,m− 1 do

u(j,j) := φj,− 1
3
(u−

j−1
∑

i=0

u(i,j−1)) +

j−1
∑

i=0

∑

{λ∈∇(i):suppψ
(i)
λ

∩Ω⊂Ωj}

u
(i,j−1)
λ ψ

(i)
λ

u(i,j) := u(i,j−1) −
∑

{λ∈∇(i):suppψ
(i)
λ

∩Ω⊂Ωj}

u
(i,j−1)
λ ψ

(i)
λ (0 ≤ i ≤ j − 1)

enddo

From diam(suppψ
(i)
λ ) ≤ η and the definition of u(i,j) for j > i or (4.1), one infers

the following result.

Proposition 4.3. For 0 ≤ i < j ≤ m− 1, u(i,j) vanishes on

Ωi+1(−η) ∪ · · · ∪ Ωj(−η).

For 0 ≤ i ≤ m− 1, u
(i)
k vanishes on

Ωi+1(−η) ∪ · · · ∪ Ω(k−1)modm(−η)

when (k − 1)modm > i, and on

Ωi+1(−η) ∪ · · · ∪ Ωm−1(−η) ∪ Ω0(−η) ∪ · · · ∪ Ω(k−1)modm(−η)

when (k − 1)modm < i (and k ≥ m).

Proposition 4.4. It holds that χj,− 1
3
u =

∑j
i=0 u

(i,j).

Proof. For j = 0, we have χ0,− 1
3
u = φ0,− 1

3
u = u(0,0). Let the statement be

valid for j − 1 > 0, then we have χj,− 1
3
u = φj,− 1

3
(u − χj−1,− 1

3
u) + χj−1,− 1

3
u =

φj,− 1
3
(u −

∑j−1
i=0 u

(i,j−1)) +
∑j−1

i=0 u
(i,j−1) = u(j,j) +

∑j
i=0 u

(i,j). �

Lemma 4.5. For 0 ≤ j ≤ m− 1, ℓ ∈ N,

‖χj,j(u
(j,j) − u

(j)
ℓm+j+1)‖Ht(Ωj) .

j
∑

i=0

‖u− uℓm+i+1‖Ht(Ω).

Before giving the proof, we note that as a corollary of this lemma and the
assumption (3.5) that Ω ⊂ ∪m−1

i=0 Ω(−(3m− 1)η) we have the following result.

Theorem 4.6. With u(m−1) := u(m−1,m−1), for ℓ ∈ N,

‖u(m−1) − u
(m−1)
(ℓ+1)m‖Ht(Ωm−1) .

m−1
∑

i=0

‖u− uℓm+i+1‖Ht(Ω).
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Now invoking the bound (3.2) for ‖u − uℓm+i+1‖Ht(Ω), and realizing that for any
0 ≤ i < m− 1 it is at most some constant factor larger than for i = m− 1 (ρ and
m are absolute constants), we conclude Part (a) of Theorem 3.4 for i = m−1. The
statement for the other i is proven analogously.

Proof of Lemma 4.5. Since χ0,0 = φ0,0, suppφ0,0 ∩ Ω ⊂ Ω0(−η), for i 6= 0 u
(i)
ℓm+1

vanishes on Ω0(−η), and φ0,− 1
3
≡ 1 on Ω0(−η), we have

χ0,0(u
(0,0) − u

(0)
ℓm+1) = φ0,0(φ0,− 1

3
u− uℓm+1) = φ0,0(u− uℓm+1).

The statement for j = 0 now follows by the smoothness of φ0,0.
Let us now consider j > 0. From χj,j = χj,jχj,− 1

3
, Proposition 4.4, and

suppχj,j ∩ Ω ⊂ ∪ji=0Ωi(−η) whereas for i > j, u
(i)
ℓm+j+1 vanishes on that set,

we have

χj,j(u− uℓm+j+1) = χj,j

j
∑

i=0

u(i,j) − χj,j

j
∑

i=0

u
(i)
ℓm+j+1.

Since for i < j, u(i,j) and u
(i)
ℓm+j+1 vanish on Ωj(−η)∪Ωj−1(−η)∪· · ·∪Ωi+1(−η), by

definition of χj,j for those i we have χj,j(u
(i)
ℓm+j+1 −u(i,j)) = χi,j(u

(i)
ℓm+j+1 −u(i,j)),

and so

χj,j(u
(j,j)−u

(j)
ℓm+j+1) = χj,j(u− uℓm+j+1) +

j−1
∑

i=0

χi,j(u
(i)
ℓm+j+1 − u(i,j))

= χj,j(u− uℓm+j+1) +

j−1
∑

i=0

χi,j
∑

λ∈∇(i,j)

(u
(i)
ℓm+i+1,λ − u

(i,i)
λ )ψ

(i)
λ ,

where ∇(i,j) := {λ ∈ ∇(i) : suppψ
(i)
λ ∩ Ω 6⊂ Ωq, i + 1 ≤ q ≤ j} or a subset of that

when in (4.1) additional coefficients are set to zero due to coarsening.
We have ‖χj,j(u− uℓm+j+1)‖Ht(Ω) . ‖u− uℓm+j+1‖Ht(Ω) by the smoothness of

χj,j . Since diam(suppψ
(i)
λ ) ≤ η, diam(supp ψ̃

(i)
λ ) ≤ η, and for i < j, χi,i ≡ 1 on

B(suppχi,j ; 2η) ∩ Ω by Proposition 4.1, we have

χi,j(u
(i)
ℓm+i+1,λ − u

(i,i)
λ )ψ

(i)
λ = χi,jψ̃

(i)
λ (u

(i)
ℓm+i+1 − u(i,i))ψ

(i)
λ

= χi,jψ̃
(i)
λ (χi,i(u

(i)
ℓm+i+1 − u(i,i)))ψ

(i)
λ .
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Since χi,j is smooth, and ψ(i) is a Riesz basis for Ht
0(Ωi), we arrive at

‖χi,j
∑

λ∈∇(i,j)

(u
(i)
ℓm+i+1,λ − u

(i,i)
λ )ψ

(i)
λ ‖Ht(Ωi)

. ‖
∑

λ∈∇(i,j)

ψ̃
(i)
λ (χi,i(u

(i)
ℓm+i+1 − u(i,i)))ψ

(i)
λ ‖Ht(Ωi)

.
[

∑

λ∈∇(i,j)

|ψ̃
(i)
λ (χi,i(u

(i)
ℓm+i+1 − u(i,i)))|2

]
1
2

≤
[

∑

λ∈∇(i)

|ψ̃
(i)
λ (χi,i(u

(i)
ℓm+i+1 − u(i,i)))|2

]
1
2

. ‖χi,i(u
(i)
ℓm+i+1 − u(i,i))‖Ht(Ωi) .

i
∑

q=0

‖u− uℓm+q+1‖Ht(Ω)

by the induction hypothesis. Since this holds for any 0 ≤ i < j, the proof is
completed. �

5. Smoothness of the limits of the sequences (u
(i)
k )k∈i+1+mN0

In this section, we show that if u has some representation ũTΨ with ũ ∈ ℓτ,∞(∇)

for some s ∈ (0, d−tn ), then for each of the functions u(i,j) = (u(i,j))TΨ(i) ∈ Ht
0(Ωi)

from Definition 4.2, we have ‖u(i,j)‖ℓτ,∞(∇(i)) . ‖ũ‖ℓτ,∞(∇). Since this result holds

true in particular for u(m−1) = u(m−1,m−1), and analogously also for the limit
functions on the other subdomains, we conclude the statement of Theorem 3.4(b).

In order to prove the above result, we give a characterization in terms of mem-
bership of a non-standard smoothness space of those v = vTΨ(i) ∈ Ht

0(Ωi) for
which v ∈ ℓτ,∞(∇(i)).

In view of the boundary conditions incorporated in the wavelet construction, for

i ∈ {0, . . . ,m − 1}, p, q > 0, ν ≥ 0, let
◦
B
ν

p,q(Ωi) denote the closure in the Besov
space Bνp,q(Ωi) of the space of smooth functions on Ωi that vanish at order t− 1 at
∂Ω ∩ ∂Ωi, and at order d − 2 at the interior boundary ∂Ωi ∩ Ω. From the wavelet
assumptions, in particular concerning their order of polynomial reproduction d, and
the fact that they are piecewise smooth and globally Cd−2 where d−t

n ≥ 1
2 , it follows

that for s ∈ (0, d−tn ), sn+ t− 1
τ 6∈ {0, . . . , d− 2},

(5.1) v ∈ ℓτ (∇
(i)) ⇐⇒ v = vTΨ(i) ∈

◦
B
sn+t

τ,τ (Ωi)

with equivalent (quasi-) norms (see [Coh03, §3.10]).
For given s ∈ (0, d−tn ), let us select s0 < s < s1 with for r = 0, 1, sr ∈ (0, d−tn )

and, with τr := (1
2 + sr)

−1, srn+ t− 1
τr

6∈ {0, . . . , d− 2}. Then from

ℓτ,∞(∇(i)) = [ℓτ0(∇
(i)), ℓτ1(∇

(i))]θ,∞,

where 1
τ − 1

τ0
= θ( 1

τ1
− 1

τ0
), and (5.1) it follows that

(5.2) v ∈ ℓτ,∞(∇(i)) ⇐⇒ v ∈ Bs(Ωi) := [
◦
B
s0n+t

τ0,τ0 (Ωi),
◦
B
s1n+t

τ1,τ1 (Ωi)]θ,∞

with equivalent (quasi-) norms. Note that the interpolation space at the right hand
side is not a Besov space.

For p, q > 0, ν ≥ 0, let
◦
B
ν

p,q(Ω) denote the closure in the Besov space Bνp,q(Ω)
of the space of smooth functions on Ω that vanish at order t − 1 at ∂Ω. For
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ν− 1
p ≤ d− 1, an equivalent definition of

◦
B
ν

p,q(Ωi) is that of the closure in Bνp,q(Ωi)

of the space of smooth functions on Ωi that vanish at order t − 1 at ∂Ω ∩ ∂Ωi,
and whose support intersected with Ω is contained in Ωi. Since for s < d−t

n and
d−t
n ≥ 1

2 , it is sn+ t− 1
τ < d− (d−tn + 1

2 ) ≤ d− 1, we have
◦
B
sn+t

τ,τ (Ωi) →֒
◦
B
sn+t

τ,τ (Ω)
by means of the zero extension, and so

(5.3) Bs(Ωi) →֒ Bs(Ω) := [
◦
B
s0n+t

τ0,τ0 (Ω),
◦
B
s1n+t

τ1,τ1 (Ω)]θ,∞.

On the other hand, for φi ∈ C∞
0 (Rn) with suppφi ∩ Ω ⊂ Ωi,

(5.4) v 7→ φiv : Bs(Ω) → Bs(Ωi) is bounded.

So far we can conclude the following. If u ∈ Ht
0(Ω) has a representation

ũTΨ, with for some s ∈ (0, d−tn ), ũ = [(ũ(0))T · · · (ũ(m−1))T ]T ∈ ℓτ,∞(∇), then

(ũ(i))TΨ(i) ∈ Bs(Ωi), and so u ∈ Bs(Ω). For φi as above, we have φiu ∈ Bs(Ωi),
and its representation with respect to Ψ(i) is in ℓτ,∞(∇(i)), with (quasi-) norm
bounded by a some multiple of ‖ũ‖ℓτ,∞(∇).

Remark 5.1. From (5.2), (5.3), (5.4), and the existence of a smooth partition of
unity with respect to the covering {Ωi : 0 ≤ i ≤ m − 1} of Ω because of condition
(3.4), it follows that for s ∈ (0, d−tn ), u = ũTΨ with ũ ∈ ℓτ,∞(∇) if and only if

u ∈ Bs(Ω). In view of Remark 3.1, we note that Bsn+t
τ,τ (Ω) ∩Ht

0(Ω) =
◦
B
sn+t

τ,τ (Ω) =

[
◦
B
s0n+t

τ0,τ0 (Ω),
◦
B
s1n+t

τ1,τ1 (Ω)]θ,τ →֒ Bs(Ω).

In view of Definition 4.2, to prove Theorem 3.4(b) it remains to show that if, for

some s ∈ (0, d−tn ), v ∈ ℓτ,∞(∇(j)), then vi,j :=
∑

{λ∈∇(j) :suppψ
(j)
λ

∩Ω⊂Ωi}
vλψ

(j)
λ ∈

Bs(Ωi) with (quasi-) norm bounded by a some multiple of ‖v‖ℓτ,∞(∇(j)). Except

for some isolated values of s ∈ (0, d−tn ), this will be demonstrated below. Since the
mapping v 7→ vi,j is linear, an interpolation argument then gives the statement for

any s ∈ (0, d−tn ).

For ν− 1
p > t−1, ν− 1

p 6∈ {0, . . . , d−2}, another equivalent definition of
◦
B
ν

p,q(Ωi)

is given by (see [Coh03, §3.10])
{

v ∈ Bνp,q(Ωi) : γℓv = 0 on ∂Ω ∩ ∂Ωi for ℓ = 0, . . . , t− 1,

γℓv = 0 on ∂Ωi ∩ Ω for ℓ = 0, . . . ,min(d− 2, ⌊ν − 1
p⌋)

}

.

Let s ∈ (0, d−tn ). Then sn + t − 1
τ > t − 1. When sn + t − 1

τ 6∈ {0, . . . , d − 2},

select s0 < s < s1, with sr ∈ (0, d−tn ), srn+ t− 1
τr

6∈ {0, . . . , d− 2} (r = 0, 1), and

⌈s0n+ t− 1
τ0
⌉ = ⌈s1n+ t− 1

τ1
⌉. Above characterization of

◦
B
ν

p,q(Ωi) now shows that
◦
B
s1n+t

τ1,τ1 (Ωi) = Bs1n+t
τ1,τ1 (Ωi) ∩

◦
B
s0n+t

τ0,τ0 (Ωi), and so

Bs(Ωi) = [Bs0n+t
τ0,τ0 (Ωi) ∩

◦
B
s0n+t

τ0,τ0 (Ωi), B
s1n+t
τ1,τ1 (Ωi) ∩

◦
B
s0n+t

τ0,τ0 (Ωi)]θ,∞

= [Bs0n+t
τ0,τ0 (Ωi), B

s1n+t
τ1,τ1 (Ωi)]θ,∞ ∩

◦
B
s0n+t

τ0,τ0 (Ωi)

=
{

v ∈ [Bs0n+t
τ0,τ0 (Ωi), B

s1n+t
τ1,τ1 (Ωi)]θ,∞ :

γℓv = 0 on ∂Ω ∩ ∂Ωi for ℓ = 0, . . . , t− 1,(5.5)

γℓv = 0 on ∂Ωi ∩ Ω for ℓ = 0, . . . ,min(d− 2, ⌊sn+ t− 1
τ ⌋)

}

(5.6)
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Now let v ∈ ℓτ,∞(∇(j)), then vi,j ∈ Bs(Ω). Since Bs(Ω) is continuously embed-
ded in [Bs0n+t

τ0,τ0 (Ω), Bs1n+t
τ1,τ1 (Ω)]θ,∞, and the restriction of functions to Ωi is bounded

from Bsin+t
τi,τi

(Ω) to Bsin+t
τi,τi

(Ωi), we conclude that vi,j ∈ [Bs0n+t
τ0,τ0 (Ωi), B

s1n+t
τ1,τ1 (Ωi)]θ,∞

with (quasi-) norm bounded by some multiple of ‖v‖ℓτ,∞(∇(j)). The proof of The-

orem 3.4(b) is completed by noting that above trace operators vanish on vi,j .

6. Numerical Examples

In the following, we test the algorithm MultSchw on one- and two-dimensional
Poisson problems with homogeneous Dirichlet boundary conditions. We intend to
confirm the convergence and optimality of the method in the sense pointed out
in Section 3.1. The model problems will be chosen in such a way that the exact
solutions exhibit point singularities either induced by the right–hand side (Section
6.1) or solely by the shape of the domain (Section 6.2), so that, as mentioned in
Remark 3.1, adaptive schemes qualitatively outperform methods based on uniform
discretizations.

6.1. Poisson equation in the unit interval. As a first example we consider the
variational solution of the Poisson equation in the unit interval Ω = (0, 1),

(6.1) −u′′ = f on Ω, u(0) = u(1) = 0,

i.e., n = 1, t = 1. The right–hand side f is chosen to be the functional defined by

f(v) := 4v(1
2 )+

∫ 1

0 g(x)v(x)dx, where g(x) = −9π2 sin(3πx)− 4. Consequently, the
solution is given by

u(x) = − sin(3πx) +

{

2x2 , x ∈ [0, 1
2 ),

2(1 − x)2, x ∈ [ 12 , 1].

This function is contained in the Besov space Bs+1
τ,τ (Ω), for all s > 0, τ−1 = s+ 1

2 .

From Section 5, we therefore know that u has a representation ũTΨ with for all
s < d− 1, ũ ∈ ℓτ,∞(∇). On the other hand, u is only in Hα(Ω) for α < 3

2 , due to
the singularity at 0.5.

We choose the overlapping domain decomposition Ω = Ω0 ∪ Ω1 = (0, 0.7) ∪
(0.3, 1), and, associated to this covering, we construct a wavelet frame by aggregat-
ing local wavelet bases on Ω0 and Ω1, respectively. In particular, as building blocks
in this simple construction procedure, we use the biorthogonal spline wavelet bases
developed in [Pri06] lifted to the subdomains. Especially, we use wavelets with

primal spline order d = 2, 3 and 4, having d̃ = d vanishing moments. The primal
functions vanish on ∂Ω at order 1, whereas at the internal boundaries (here 0.3 or
0.7) they vanish at order d − 2. No boundary conditions are imposed on the dual

basis functions, so that all (primal) wavelets have d̃ vanishing moments.
The construction of the primal and dual interval bases is based on a pair of

biorthogonal multiresolution analyses {Vj}j≥j0 and {Ṽj}j≥j0 with a sufficiently
large coarsest scale j0. Note that increasing j0 decreases the maximal size of the
supports of the primal and dual scaling functions and wavelets. For the cases
d = 2, 3 and 4 we used j0 = 4, and for d = 3 additionally we tested j0 = 3.

Figure 2 shows the decay of the ℓ2-norm of the residuals of the iterands uk after
the application of COARSE vs. their support length and CPU time, respectively.
Recall that the ℓ2-norm of the residuals is equivalent to |||u − uk|||. For the choices
d = 2, 3, 4 with j0 = 4, the algorithm appears to converge with the optimal rate
d − 1 with respect to the degrees of freedom, whereas for d = 3, j0 = 3, the
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Figure 2. ℓ2-norms of the residuals of uk after the application of
COARSE versus #supp uk (left) and versus CPU time (right). Dash-
dotted line: d = 2, circles: d = 3, j0 = 4, crosses: d = 3, j0 = 3, solid
line: d = 4.

algorithm shows a suboptimal behavior. Concerning CPU times, note that we have
implemented a caching strategy for the required entries of the stiffness matrix,
which, in some cases, may cause the error, for a number of steps, to decrease faster
than the expected optimal convergence rate actually predicts, as it can be observed
in the right graphics in Figure 2.

In the following we focus on the case d = 3. By checking the maximal diameters
of the supports of the wavelets, we conclude that in both cases j0 = 4 and j0 = 3,
the sufficient condition (3.5) for the existence of a smooth limit on each subdomain
is violated, to a different extent though.

Despite the violation of (3.5), for d = 3, j0 = 4, we observe convergence of the
iterands on each subdomain. In Figure 3, the distribution of the wavelet coefficients
of the final approximation u2k on each subdomain is depicted. The left picture cor-
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Figure 3. Distribution of wavelet coefficients of the final approxima-
tion u2k for d = 3, j0 = 4, on Ω0 (left) and on Ω1 (right).

responds to the (final) local approximation u
(0)
2k which is plotted in Figure 4 (upper

left). Obviously, u
(0)
2k is very smooth and consists of a rather equally distributed

set of wavelets on small scales. Note that by definition of our modified multiplica-

tive Schwarz scheme, u
(0)
2k does not contain contributions from wavelets ψ

(0)
λ whose

supports are contained in Ω1 = (0.3, 1). The right graphics in Figure 3 and Figure

4 (upper right) address the (final) local approximation u
(1)
2k . The adaptive scheme

plainly detects the singularity at 0.5 where the wavelet coefficients show the char-
acteristic tree-like structure. The additional peaks in the coefficient distribution
near the left end of Ω1 can be explained by the fact that the local limit function
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u(1) ∈ Ht
0(Ω1) equals u −

∑

{λ∈∇(0):suppψ
(0)
λ

6⊂Ω1}
u

(0)
λ ψ

(0)
λ , where u(0) = (u(0))TΨ(0)

is the local limit function on Ω0. Since at any fixed point x ∈ (0.3, 1), at most
finitely many wavelets in the sum do not vanish, the local adaptive solver detects
the natural singularities of these wavelets. The lower pictures in Figure 4 show the
global approximation and its corresponding pointwise error. Finally, the computed
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Figure 4. Final local approximations u
(0)
2k (upper left), u

(1)
2k (upper

right), produced by MultSchw and the corresponding global approxi-
mation u2k and global pointwise error for d = 3, j0 = 4.

ℓτ,∞-norms of the iterands u2k for τ = (1
2 +d−1)−1 given in Figure 6 (left) indicate

that they are bounded uniformly in k.
For d = 3, j0 = 3 we observe a different behavior. In particular, in view of

Figure 5, one realizes that the local contributions produced by MultSchw for now
look completely different and that their amplitudes have an overshoot of about a
factor 4 compared to the exact solution. Moreover, in our tests we have observed
that they even seem to grow unboundedly. Thus, contrary to the case j0 = 4,

no local convergence of the sequences (u
(i)
2k )k∈N in Ht

0(Ωi) could be observed. In
addition, Figure 6 (left) reveals the unbounded growth of the ℓτ,∞-norms of the
iterates in this case, which causes the suboptimal convergence we have observed in
Figure 2 (left).

Summarizing, from the different results for j0 = 4 and j0 = 3 we conclude that
although condition (3.5) is not strictly necessary for optimality, on the other hand
it should not be violated to a too large extent.

Finally in this subsection, we compare with two other methods to approximate
the solution of the one-dimensional Poisson problem from the span of the frame
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Figure 5. Final local approximations u
(0)
2k (upper left), u

(1)
2k (upper

right), produced by MultSchw and the corresponding global approxi-
mation u2k and global pointwise error for d = 3, j0 = 3.
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Figure 6. Left: ℓτ,∞-norms of the iterates of MultSchw for the 1D
Poisson equation, d = 3, j0 = 3 (crosses), j0 = 4 (circles), and for ‘plain
DD’, j0 = 3 (boxes), τ = 2.5−1. Right: ℓτ,∞-norms of the iterates of
MultSchw for the 2D Poisson equation, d = 3, j0 = 3 (crosses), j0 = 4
(circles), and for ‘plain DD’, j0 = 4 (boxes), τ = 1.5−1.

Ψ. We consider the multiplicative Schwarz method without our modification of
removing contributions from other subdomains before solving on Ωi (we will refer to
this method as ‘plain DD’) and the adaptive steepest descent method developed in
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[DFR+07] (referred to as ‘SD’). The latter method is basically an inexact application
of the steepest descent method onto the consistent singular system Au = f . Under
a reasonable, but hard to rigorously verify condition on the frame, this method was
shown to be of optimal computational complexity. We have used j0 = 3 for ‘plain
DD’ and ‘SD’, j0 = 4 for MultSchw, and d = 3. The results given in Figure 7
show that MultSchw outperforms these two methods. The supports of the iterates
and the CPU times needed to attain the same accuracy for MultSchw have been
between 5 and 6 times smaller than for ‘SD’. Moreover, MultSchw turns out to be
more efficient than ‘plain DD’. For the latter method we observed local convergence
as well as bounded ℓτ,∞-norms of the iterates, cf. Figure 6 (left).
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Figure 7. Comparison of MultSchw (DD), an adaptive steepest
descent frame method (SD), and MultSchw without extra sparsening
(plain DD).

6.2. Poisson equation in the L-shaped domain. We now consider the varia-
tional form of Poisson’s equation with homogeneous Dirichlet boundary conditions

(6.2) −∆u = f in Ω, u|∂Ω = 0

in the L-shaped domain Ω = (−1, 1)2\[0, 1)× [0, 1), i.e., n = 2, t = 1. As the exact
solution of this model problem we choose the function

(6.3) S(r, θ) := ζ(r)r2/3 sin(
2

3
θ),

with (r, θ) denoting polar coordinates with respect to the re-entrant corner at the
origin, and where ζ is a smooth function on [0, 1] that is identically 1 on [0, r0]
and vanishes on [r1, 1], for some 0 < r0 < r1 < 1. The function S together with
the corresponding right–hand side −∆S is shown in Figure 8. It is known that
S ∈ B2s+1

τ,τ (Ω), for all s > 0, τ−1 = (s + 1
2 ), see [Dah99], but only S ∈ Hα(Ω), for

all α < 5/3, although the right–hand side is arbitrarily smooth and vanishes in a
neighborhood of the re-entrant corner, see [Gri85] for details.

We decompose Ω into two overlapping rectangles Ω0 = (−1, 0) × (−1, 1), Ω1 =
(−1, 1)× (−1, 0). Again the wavelet frames used for the discretization of our model
problem are constructed by simply lifting wavelet bases on the unit cube to the
subdomains and collecting the resulting local bases into a global system of elements.
The reference bases are once more chosen to consist of tensor products of the scaling
functions and wavelets constructed in [Pri06].
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Figure 8. Exact solution (left) and right–hand side of the two di-
mensional test problem.

A few comments on the specific choice of the domain decomposition are in order.
Firstly, we have to note that assumption (3.4) is not satisfied. Indeed, for any ω > 0,
Ω0(−ω)∪Ω1(−ω) does not cover a part of Ω near the re-entrant corner. In principle,
this can be overcome by adding another polygonal patch Ω2 given by the vertices,
say, (0, 0), (0.5, 0), (−0.5,−0.5), (0, 0.5). Nevertheless, for the sake of simplicity, we
do not follow this option.

Despite the violation of (3.4), using the homogeneous Dirichlet boundary con-
ditions at the re-entrant corner, still (2.2) can be shown to hold, cf. [DFR+07,

Section 4.2]. Consequently, we obtain that the union of the local bases
⋃m−1
i=0 Ψ(i)

forms a frame for Ht
0(Ω), and that the exact multiplicative Schwarz method from

Section 2.2 converges. Moreover, in [DFP+07] it has been shown that still u has
a representation ũ⊤Ψ with ũ ∈ ℓτ,∞(∇) for any s < d−1

2 . Again because of the
homogeneous Dirichlet boundary conditions at the point where the overlap of the
two subdomains gets infinitely small, we have hope that our method is still optimal
although the (sufficient) condition (3.5) for optimality is violated. This will be
supported by the results given below.

We have tested MultSchw with frames made up of biorthogonal spline wavelet
bases of primal and dual order d = d̃ = 2, 3, 4, and the choice j0 = 4. For d = 3
also j0 = 3 has been considered.

Figure 9 shows the convergence histories with respect to the degrees of freedom
and computing time. For all setups the optimal convergence rates d−1

2 can be
observed. Similar to the one-dimensional example from Section 6.1, in case d =
3, the method performs quantitatively better for j0 = 4 compared to j0 = 3,
although now the difference is smaller and also for j0 = 3 optimal convergence
can be observed. Moreover, as Figure 10 reveals, again an exceptional oscillatory

behavior of the local contributions u
(i)
2k on Ωi to u2k can be found in the latter

case. This phenomenon vanishes for the choice j0 = 4, cf. Figure 10 (upper row).
The progression of the ℓτ,∞-norm of u2k during the iteration is investigated in
Figure 6 (right), clearly indicating the uniform boundedness for j0 = 4. In case
j0 = 3, although generally smaller, the ℓτ,∞-norms seem to be slowly but constantly
increasing.

In Figure 11 we once more compare MultSchw with ‘plain DD’ and ‘SD’ for
d = 3, j0 = 4. In this particular example, we observe that MultSchw and ‘plain
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Figure 9. ℓ2-norms of the residuals of uk after the application of
COARSE versus #suppuk (left) and versus CPU time (right). Crosses:
d = 2, circles: d = 3, j0 = 4, diamonds: d = 3, j0 = 3, boxes: d = 4.

Figure 10. Final local approximations u
(0)
2k (left), u

(1)
2k (middle)

produced by MultSchw and the corresponding global pointwise error
(right) for d = 3, j0 = 4 (upper row) and j0 = 3 (lower row).

DD’ produce approximations being almost equally sparse, but that MultSchw

is about a factor 2 faster. The performance of ‘SD’ is significantly worse. In
particular, in order to attain the same accuracy, for ‘SD’ about 10 times more
degrees of freedom and CPU time were needed than for MultSchw.

Considering Figure 6 (right), one can say that the ℓτ,∞-norms for ‘plain DD’
are larger than for MultSchw with j0 = 3 and j0 = 4. Moreover, for ‘plain DD’,
contrary to MultSchw in combination with j0 = 4, they seem to be very slowly
increasing.
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Figure 11. Comparison of MultSchw (DD), an adaptive steepest
descent frame method (SD), and MultSchw without extra sparsening
(plain DD).
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