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Abstract. Using the framework of operator or Caldéron preconditioning, uniform
preconditioners are constructed for elliptic operators of order 2s ∈ [0, 2]discretized
with continuous finite (or boundary) elements. The cost of the preconditioner is
the cost of the application an elliptic opposite order operator discretized with dis-
continuous or continuous finite elements on the same mesh, plus minor cost of
linear complexity. Herewith the construction of a so-called dual mesh is avoided.

1. Introduction

This paper deals with the construction of uniform preconditioners for operators
of positive order, using the framework of ‘operator preconditioning’ as described in
[Hip06], see e.g. [SW98, CN00] for earlier work. It will build on our experiences
with this approach for problems of negative order reported in [SvV19].

For some d-dimensional domain (or manifold) Ω, a measurable, closed, possibly
empty γ ⊂ ∂Ω, and an s ∈ [0, 1], we consider the Sobolev space

V := [L2(Ω), H1
0,γ(Ω)]

s,2
,

with H1
0,γ(Ω) being the closure in H1(Ω) of the smooth functions on Ω that vanish

at γ. For VT ⊂ V a closed, e.g. finite dimensional subspace, and AT : VT → V ′T
some boundedly invertible linear operator, we are interested in constructing a pre-
conditioner GT : V ′T → VT . More specifically, thinking of a a family of spaces VT
and operatorsAT : VT → V ′T , our aim is to construct preconditionersGT such that
GT AT : VT → VT is uniformly boundedly invertible.

It is well-known that such preconditioners of multi-level type are available. The
advantage of operator preconditioning is, however, that it does not require a hier-
archy of trial spaces.

In order to apply the operator preconditioning framework, one needs to con-
struct families of closed subspaces WT ⊂ W := V ′, uniformly boundedly invert-
ibleBT : WT → W ′

T , and uniformly boundedly invertibleDT : VT → W ′
T . Then the

resulting preconditioners GT are of the form

GT := D−1
T BT (D′T )

−1
.

The canonical setting is that for A : V → V ′, i.e., an operator of order 2s, and
an opposite order operator B : W → W ′, both boundedly invertible and coercive, it
holds that (AT u)(v) := (Au)(v) (u, v ∈ VT ), (BT u)(v) := (Bu)(v) (u, v ∈ WT ),
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and (DT u)(v) := 〈u, v〉L2(Ω) (u ∈ VT , v ∈ WT ). A typical example for s = 1/2 is
that A is the Hypersingular Integral operator, and B is the Weakly Singular Integral
operator, see [SW98].

A careful selection of WT has to be made to ensure that DT : VT → W ′
T is uni-

formly boundedly invertible. A suitable family of (VT ,WT ) pairs has been intro-
duced in [Ste02, BC07]. Here T is a triangular partition of a two-dimensional domain
or manifold, VT is the space of continuous piecewise linears w.r.t. T , and WT is a
subspace of the space of piecewise constants w.r.t. a barycentric refinement of T ,
constructed by subdividing each triangle into 6 subtriangles by connecting its ver-
tices and midpoints with its barycenter. It has been shown in [Ste02, HUT16] that
the preconditioner arising from these pairs (VT ,WT ) is a uniform preconditioner
for families of partitions that satisfy a certain mildly-grading condition.

A problem with the constructions from [Ste02, BC07] appears when one consid-
ers the matrix representation GT in the standard bases, i.e. GT = D−1

T BTD
−>
T .

Indeed, this matrix DT is not diagonal, and its inverse is densely populated so that
it has to be approximated. Moreover, in order to get a uniform preconditioner, since
GT , being spectrally equivalent with A−1

T , gets increasingly ill-conditioned with a
decreasing minimal mesh-size, the accuracy with which D−1

T has to be approxi-
mated increases with a decreasing minimal mesh-size. As a result, an application
of D−1

T cannot be expected to execute in linear time.
Another (practical) issue with these constructions is the need for the construc-

tion of the non-standard barycentrical refinement of T . This refinement increases
the number of elements by a factor 6, and therefore also increases the cost of eval-
uating BT : WT → W ′

T .

1.1. Contributions. With VT being the space of continuous piecewise linears, the
construction of WT presented in this paper improves on the existing approach
from [Ste02, BC07] concerning the following aspects:

• The matrix representation DT ofDT will be diagonal, allowing one to (ex-
actly) evaluate D−1

T in linear time;
• The operator GT will be a uniformly well-conditioned preconditioner for

families of uniformly shape regular partitions, without requiring a mildly-
grading assumption on the partitions;

• By using a stable decomposition of an enclosing space of WT into a stan-
dard finite element space UT w.r.t. T (either being the space of piecewise
constants or UT = VT ) and some bubble space, our BT will be the sum
of the corresponding Galerkin discretization operator of the opposite or-
der operator B, and an operator whose representation is a diagonal, with
which the undesired barycentrical refinement is avoided;

• The construction of WT applies in any space dimension, and extends to
non piecewise planar manifolds.

We will extend the preconditioners to higher order finite element spaces by ap-
plying a subspace correction framework.

Due to the interchanged roles of primal and dual spaces, compared to our work
[SvV19] on preconditioning operators of negative order, here the stable construc-
tion of WT is simpler, but, on the other hand, the stable decomposition of an en-
closing space of WT is more delicate.
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1.2. Outline. Sect. 2 recalls some notation that will be used throughout the article.
In Sect. 3 the general theory of operator preconditioning is summarized. In Sect. 4,
the framework is specialized to operators of positive order discretized with contin-
uous piecewise linears. Sect. 5 give two constructions of BT ∈ Lisc(WT ,W ′

T ) that
avoid any refinement of the partition T that underlies the trial space VT . In Sect. 6
the preconditioners are generalized to higher order finite element spaces, and to
spaces defined on manifolds. Finally, in Sect. 7 we report some numerical results
obtained with the new preconditioners.

2. Notations

Notations 2.1. In this work, by λ . µwe will mean that λ can be bounded by a multi-
ple of µ, independently of parameters which λ and µmay depend on, with the sole
exception of the space dimension d, or in the manifold case, on the parametriza-
tion of the manifold that is used to define the finite element spaces on it. Obviously,
λ & µ is defined as µ . λ, and λ h µ as λ . µ and λ & µ.

Notations 2.2. For normed linear spaces Y and Z , in this paper for convenience
over R, L(Y ,Z ) will denote the space of bounded linear mappings Y → Z en-
dowed with the operator norm ‖ · ‖L(Y ,Z ). The subset of invertible operators in
L(Y ,Z ) with inverses in L(Z ,Y ) will be denoted as Lis(Y ,Z ). The condition
number of a C ∈ Lis(Y ,Z ) is defined as κY ,Z (C) := ‖C‖L(Y ,Z )‖C−1‖L(Z ,Y ).

For Y a reflexive Banach space and C ∈ L(Y ,Y ′) being coercive, i.e.,

inf
06=y∈Y

(Cy)(y)

‖y‖2Y
> 0,

both C and <(C) := 1
2 (C + C ′) are in Lis(Y ,Y ′) with

‖<(C)‖L(Y ,Y ′) ≤ ‖C‖L(Y ,Y ′),

‖C−1‖L(Y ′,Y ) ≤ ‖<(C)−1‖L(Y ′,Y ) =
(

inf
06=y∈Y

(Cy)(y)

‖y‖2Y

)−1

.

The set of coercive C ∈ Lis(Y ,Y ′) is denoted as Lisc(Y ,Y ′). If C ∈ Lisc(Y ,Y ′),
then C−1 ∈ Lisc(Y ′,Y ) and ‖<(C−1)−1‖L(Y ,Y ′) ≤ ‖C‖2L(Y ,Y ′)‖<(C)−1‖L(Y ′,Y ).

Given a family of operators Ci ∈ Lis(Yi,Zi) (Lisc(Yi,Zi)), we will write Ci ∈
Lis(Yi,Zi) (Lisc(Yi,Zi)) uniformly in i, or simply ‘uniform’, when

sup
i

max(‖Ci‖L(Yi,Zi), ‖C
−1
i ‖L(Zi,Yi)) <∞,

or
sup
i

max(‖Ci‖L(Yi,Zi), ‖<(Ci)
−1‖L(Zi,Yi)) <∞.

Notations 2.3. Given a finite collection Υ = {υ} in a linear space, we set the synthesis
operator

FΥ : R#Υ → span Υ: c 7→ c>Υ :=
∑
υ∈Υ

cυυ.

Equipping R#Υ with the Euclidean scalar product 〈·, ·〉, and identifying (R#Υ)′

with R#Υ using the corresponding Riesz map, we infer that the adjoint of FΥ,
known as the analysis operator, satisfies

F ′Υ : (span Υ)′ → R#Υ : f 7→ f(Υ) := [f(υ)]υ∈Υ.
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A collection Υ is a basis for its span when FΥ ∈ Lis(R#Υ, span Υ) (and so F ′Υ ∈
Lis((span Υ)′,R#Υ).)

Two countable collections Υ = (υi)i and Υ̃ = (υ̃i)i in a Hilbert space will be
called biorthogonal when 〈Υ, Υ̃〉 = [〈υj , υ̃i〉]ij is an invertible diagonal matrix, and
biorthonormal when it is the identity matrix.

3. Operator preconditioning

We shortly recap the idea of opposite order preconditioning, which is based on
the following result, see [Hip06, Sect. 2].

Proposition 3.1. Let V ,W be reflexive Banach spaces.
If B ∈ Lis(W ,W ′) and D ∈ Lis(V ,W ′), then

G := D−1B(D′)−1 ∈ Lis(V ′,V ),

and

‖G‖L(V ′,V ) ≤ ‖D−1‖2L(W ′,V )‖B‖L(W ,W ′),

‖G−1‖L(V ,V ′) ≤ ‖D‖2L(V ,W ′)‖B
−1‖L(W ′,W ).

If additionally B ∈ Lisc(W ,W ′), then G ∈ Lisc(V ′,V ), and

‖<(G)−1‖L(V ,V ′) ≤ ‖D‖2L(V ,W ′)‖<(B)−1‖L(W ′,W ).

Let be given families of finite dimensional spaces VT for T ∈ T, and operators
AT ∈ Lis(VT ,V ′T ) uniformly in T ∈ T. Then in light of Proposition 3.1 we will seek
preconditioners for AT of the form

(3.1) GT = D−1
T BT (D′T )−1,

where BT ∈ Lis(WT ,W ′
T ) and DT ∈ Lis(VT ,W ′

T ) (both uniformly in T ∈ T), and

(3.2) dim WT = dim VT .

A typical situation is that for some reflexive Banach space V andA ∈ Lisc(V ,V ′),
it holds that VT ⊂ V (thus equipped with ‖ · ‖V ) and (AT u)(v) := (Au)(v) (u, v ∈
VT ), so that indeed AT ∈ Lisc(VT ,V ′T ) uniformly in T ∈ T. Then for a suitable
reflexive Banach space W , an operator B ∈ Lisc(W ,W ′), and a subspace WT ⊂ W
(thus equipped with ‖ · ‖W ), one can take (BT w)(z) := (Bw)(z) (w, z ∈ WT ), giv-
ing BT ∈ Lisc(WT ,W ′

T ) uniformly. A possible construction of DT ∈ Lis(VT ,W ′
T )

uniformly is discussed in the next proposition.

Proposition 3.2 (Fortin projector ([For77])). For some D ∈ Lis(V ,W ′), let DT ∈
L(VT ,W ′

T ) be defined by (DT v)(w) := (Dv)(w). Then

‖DT ‖L(VT ,W ′T ) ≤ ‖D‖L(V ,W ′).

Assuming (3.2), additionally one has DT ∈ Lis(VT ,W ′
T ) if, and for W being a Hilbert

space, only if there exists a projectorPT ∈ L(W ,W ) onto WT with (DVT )((Id− PT )W ) = 0,
in which case

‖D−1
T ‖L(W ′T ,VT ) ≤ ‖PT ‖L(W ,W )‖D−1‖L(W ′,V ).(3.3)

In our applications, the choices for W andD will be obvious, and the key ingre-
dient for the construction of a uniform preconditioner GT will be the selection of
WT that allows for a uniformly bounded Fortin projector PT .
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3.1. Implementation. Let ΦT = (φi)i and ΨT = (ψi)i be bases for VT and WT ,
respectively. Then in coordinates the preconditioned system reads as

F−1
ΦT
GT AT FΦT = GTAT := D−1

T BTD
−>
T AT ,

where

AT := F ′ΦT AT FΦT , BT := F ′ΨT BT FΨT , DT := F ′ΨTDT FΦT .

By identifying a map in L(R#ΦT ,R#ΦT ) with a #ΦT × #ΦT matrix by equip-
ping R#ΦT with the canonical basis (ei)i one has,

(AT )ij = 〈F ′ΦT AT FΦT ej , ei〉 = (AT FΦT ej)(FΦT ei) = (AT φj)(φi),

and similarly,

(BT )ij = (BT ψj)(ψi), (DT )ij = (DT φj)(ψi).

Preferably DT is such that its inverse can be applied in linear complexity, as is the
case when DT is diagonal. A goal of this paper is to construct such a diagonal DT .

Remark 3.3. Using σ(·) and ρ(·) to denote the spectrum and spectral radius of an
operator, clearly σ(GTAT ) = σ(GT AT ). So for the spectral condition number we
have

κS(GTAT ) := ρ(GTAT )ρ((GTAT )−1) ≤ κVT ,VT (GT AT ),

which thus holds true independently of the choice of the basis ΦT for VT . Further-
more, in view of an application of Conjugate Gradients, if AT and BT are coercive
and self-adjoint, then AT and GT are positive definite and symmetric. Equipping
Rdim VT with |||·||| := ‖(GT )−

1
2 · ‖ or |||·||| := ‖(AT )

1
2 · ‖, in that case we have

κ(Rdim VT ,|||·|||),(Rdim VT ,|||·|||)(GTAT ) = κS(GTAT ).

4. Application to operators discretized with continuous piecewise linears

For a bounded polytopal domain Ω ⊂ Rd, a measurable, closed, possibly empty
γ ⊂ ∂Ω, and an s ∈ [0, 1], we take

V := [L2(Ω), H1
0,γ(Ω)]

s,2
, W := V ′,

which forms the Gelfand triple V ↪→ L2(Ω) ' L2(Ω)′ ↪→ W . We define the opera-
tor D ∈ Lis(V ,W ′) as the unique extension to V ×W of the duality pairing

(Dv)(w) := 〈v, w〉L2(Ω),

which satisfies ‖D‖L(V ,W ′) = ‖D−1‖L(W ′,V ) = 1.
Let (T )T ∈T be a family of conforming partitions of Ω into closed uniformly shape

regular d-simplices. Thanks to the conformity and the uniform shape regularity,
for d > 1 we know that neighbouring T, T ′ ∈ T , i.e. T ∩ T ′ 6= ∅, have uniformly
comparable sizes. For d = 1, we impose this uniform ‘K-mesh property’ explicitly.

For some T ∈ T, denote N0
T as the subset of vertices that are not on γ, where

we assume that γ is the (possibly empty) union of (d − 1)-faces of T ∈ T . For
T ∈ T , write NT for the set of its vertices, set N0

T := N0
T ∩ NT , hT := |T |1/d, and

the piecewise constant function hT by hT |T = hT (T ∈ T ). For any vertex ν ∈ N0
T ,

define the patch ωT ,ν :=
⋃
{T∈T :ν∈T} T and the local mesh size hT ,ν := |ωT ,ν |1/d.

We omit notational dependence on T if it is clear from the context, and simply write
ων and hν .
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Let the discretization space VT be the space of continuous piecewise linears, zero
on γ,

VT = S 0,1
T := {u ∈ H1

0,γ(Ω): u|T ∈ P1 (T ∈ T )} ⊂ V ,

equipped with the nodal bases

ΦT = {φν : ν ∈ N0
T }

defined by φν(ν′) := δνν′ (ν, ν′ ∈ N0
T ). For future reference, define the space of

discontinuous piecewise constants by

S −1,0
T := {u ∈ L2(Ω): u|T ∈ P0 (T ∈ T )} ⊂ W ,

equipped with the basis

(4.1) ΣT := {1T : T ∈ T },

where 1K is defined by, for any K ⊆ Ω, 1K := 1 on K, and 1K := 0 elsewhere.

4.1. The subspace WT . We will construct the preconditioning space WT as

WT := span ΨT ⊂ W , with dim WT = dim VT

for a collection ΨT ⊂ L2(Ω) that is biorthogonal to ΦT , and for which the biorthog-
onal projector PT ∈ L(W ,W ) onto WT is uniformly bounded. We require the col-
lection ΨT := {ψν ∈ W : ν ∈ N0

T } to satisfy

(4.2)
∣∣〈φν , ψν′〉L2(Ω)

∣∣ h δνν′‖φν‖L2(Ω)‖ψν′‖L2(Ω) (ν, ν′ ∈ N0
T ),

suppψν ⊆ ων (ν ∈ N0
T ).

Existence of such collections will be shown later in Sect. 5.

4.2. Bounded Fortin projector. From (4.2) it follows that the biorthogonal Fortin
projector PT : H1

0,γ(Ω)′ → L2(Ω) onto WT with ran(I − PT ) = V
⊥L2(Ω)

T exists, and
is given by

PT u =
∑
ν∈N0

T

〈u, φν〉L2(Ω)

〈φν , ψν〉L2(Ω)
ψν .

Uniform boundedness of ‖PT ‖L(W ,W ) follows from uniform boundedness of its
adjoint P ′T , which can be shown similarly as in [SvV19, Thm. 3.2]1:

Theorem 4.1. It holds that supT ∈T ‖PT ‖L(W ,W ) = supT ∈T ‖P ′T ‖L(V ,V ) <∞.

Proof. Let T ∈ T. Define ω(0)
T := T for T ∈ T , and for i = 1, . . ., denote ω(i)

T :=⋃
{T ′∈T : T ′∩ω(i−1)

T 6=∅} T
′. The adjoint P ′T : L2(Ω)→ H1

0,γ(Ω) onto VT is given by

P ′T u =
∑
ν∈N0

T

〈u, ψν〉L2(Ω)

〈φν , ψν〉L2(Ω)
φν .

1Note that the roles of V and W are interchanged compared to [SvV19].
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Properties of the nodal basis functions, ‖φν‖2L2(Ω) h hdν and ‖φν‖2H1(Ω) . hd−2
ν , in

combination with (4.2), can be used to show that, for T ∈ T and k ∈ {0, 1},

(4.3)

‖P ′T u‖Hk(T ) ≤
∑
ν∈N0

T

‖φν‖Hk(T )

‖u‖L2(suppψν)‖ψν‖L2(Ω)

|〈φν , ψν〉L2(Ω)|

.
∑
ν∈N0

T

h−kν ‖u‖L2(suppψν) . h
−k
T ‖u‖L2(ω

(1)
T )

,

from which we may directly conclude that

sup
T ∈T
‖P ′T ‖L(L2(Ω),L2(Ω)) <∞.

For proving boundedness inH1
0,γ(Ω), we consider the Scott-Zhang ([SZ90]) in-

terpolator ΠT : H1
0,γ(Ω) → VT . From (4.3) and properties of the ΠT [SZ90, (3.8)

and (4.3)], we deduce that

‖P ′T u‖H1(T ) = ‖ΠT u+ P ′T (Id−ΠT )u‖H1(T )

. ‖u‖
H1(ω

(1)
T (T ))

+ h−1
T ‖(Id−ΠT )u‖

L2(ω
(1)
T (T ))

. ‖u‖
H1(ω

(2)
T (T ))

,

and consequently
sup
T ∈T
‖P ′T ‖L(H1

0,γ(Ω),H1
0,γ(Ω)) <∞.

An application of the Riesz-Thorin interpolation theorem yields the result. �

The basis ΨT has the crucial benefit that the matrix representation of DT , i.e.

DT = 〈ΦT ,ΨT 〉L2(Ω),

is diagonal, and thus easily invertible, cf. Sect. 3.1.
Combining the theorem with Proposition 3.2 gives the following corollary (with-

out requiring additional assumptions on the family of partitions T).

Corollary 4.2. Suppose we have BT ∈ Lisc(WT ,W ′
T ) uniformly. With DT : VT → WT

defined by (DT v)(w) := 〈v, w〉L2(Ω), we find thatGT = D−1
T BT (D′T )

−1 ∈ Lisc(V ′T ,VT )
is a uniform preconditioner of AT ∈ Lisc(VT ,V ′T ).

Given some B ∈ Lisc(W ,W ′), a possible choice for BT ∈ Lisc(WT ,W ′
T ) uni-

formly in T ∈ T, is (BT u)(v) := (Bu)(v) (u, v ∈ WT ). For d ∈ {2, 3} and W ′ = V =

H
1
2 (Ω), a suitableB is given by the Weakly Singular Integral operator, whereas for

W ′ = V = H
1
2
00(Ω) := [L2(Ω), H1

0 (Ω)] 1
2 ,2

, the recently in [HJHUT18] introduced
Modified Weakly Singular Integral operator can be applied. Similar comments ap-
ply to screens.

5. Construction of BT ∈ Lisc(WT ,W ′
T )

We expect it to be impossible to construct a basis ΨT in the (standard) spaces S −1,0
T

or S 0,1
T that is local and biorthogonal to ΦT as required in (4.2). One remedy is to

construct ΨT in a (finite element) space w.r.t. a refined partition T∗ � T . How-
ever, this implies that some opposite order operator B ∈ Lisc(W ,W ′) has to be
discretized on a space w.r.t. the refined partition T∗. This increases the cost of the
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preconditioner, and moreover, increases implementational complexity as one has
to actually construct this refined partition.

To circumvent (explicit) dependence on the refined partition T∗, we shall apply
the idea described in [SvV19, Sec. 3.3]. That is, we will construct an operatorBT ∈
Lisc(WT ,W ′

T ) by decomposing an enclosing space of space WT into a a standard
finite element space UT , either S −1,0

T (in Sect. 5.2) or S 0,1
T (in Sect. 5.3), and some

bubble space BT . On UT we will apply the Galerkin discretization operator of the
opposite order operatorB, whereas on the bubble space BT a diagonal scaling will
suffice.

In the first subsection we present this construction of BT for some abstract WT .
In the subsequent subsections, we will present two viable options for WT , leading
to two different preconditioners.

5.1. Stable decomposition. The role of the space ‘Y ’ is the next abstract proposi-
tion is going to be played by WT .

Proposition 5.1. Let Z be an inner product space, Q ∈ L(Z ,Z ) a projector, and with
U := ranQ, let B := ran(Id−Q), BU ∈ Lisc(U ,U ′), and BB ∈ Lisc(B,B′). Then
for any subspace Y ⊂ Z ,

(By)(ỹ) := (BU Qy)(Qỹ) + (BB(Id−Q)y)((Id−Q)ỹ) (y, ỹ ∈ Y ),

is bounded and coercive — B ∈ Lisc(Y ,Y ′) — with

‖B‖L(Y ,Y ′) ≤(
‖Q‖2 +

√
‖Q‖4 − ‖Q‖2

)
max(‖BU ‖L(U ,U ′), ‖BB‖L(B,B′)),

‖<(B)−1‖L(Y ′,Y ) ≤(
1 +

√
1− ‖Q‖−2

)
max(‖<(BU )−1‖L(U ′,U ), ‖<(BB)−1‖L(B′,B)),

where ‖Q‖ := ‖Q‖L(Z ,Z ).

Proof. Let y, ỹ ∈ Y . Write u = Qy, b = (Id − Q)y, and similarly ũ = Qỹ, b̃ =
(Id−Q)ỹ. We have

|(B(y))(ỹ)| ≤max
(
‖BU ‖L(U ,U ′), ‖BB‖L(B,B′)

)
·
(
‖u‖Z ‖ũ‖Z + ‖b‖Z ‖b̃‖Z

)
≤max(· · · )

√
‖u‖2Z + ‖b‖2Z ·

√
‖ũ‖2Z + ‖b̃‖2Z ,

and

|(B(y))(y)| ≥ min
(
‖<(BU )−1‖−1

L(U ′,U ), ‖<(BB)−1‖−1
L(B′,B)

)
· (‖u‖2Z + ‖b‖2Z ).

With γ := sup0 6=(u,b)∈U×B
|〈u,b〉Z |
‖u‖Z ‖b‖Z

, for 0 6= (u, b) ∈ U ×B we have ‖u+b‖2Z
‖u‖2Z +‖b‖2Z

∈

[1 − γ, 1 + γ]. Using that
√

1
1−γ2 = ‖Q‖ (see e.g. [Szy06, (5.5), (5.7), (6.2)]), the

proof is easily completed. �

Remark 5.2. For a quantitatively weaker result as Proposition 5.1 to hold it is ac-
tually sufficient when Q is only defined on Y , and neither is it needed that it is a
projector. Under these relaxed conditions, obvious estimates show bounds as in



UNIFORM PRECONDITIONERS FOR PROBLEMS OF POSITIVE ORDER 9

Proposition 5.1 with the factors ‖Q‖2 +
√
‖Q‖4 − ‖Q‖2 and 1 +

√
1− ‖Q‖−2 read-

ing as ‖Q|Y ‖2 + (1 + ‖Q|Y ‖)2 and 2, respectively. Both original factors are equal
to 1 when Q is an orthogonal projector.

We are going to apply this abstract proposition with ‘Y ’= WT , ‘U ’= UT being
a standard finite element space, ‘B’= BT being a suitably constructed ‘bubble
space’, and ‘Z ’= ZT := UT +BT , all equipped with the norm on W . The resulting
‘B’ will be the BT ∈ Lisc(WT ,W ′

T ) we are seeking.
In order to apply above proposition, what is left is the construction of a (uni-

formly) bounded projector defined on ZT . Furthermore, to allow for a simple pre-
conditioner on BT we would like to find a setting in which on this bubble space
the W -norm is equivalent to a weighted L2-norm. Both issues will be dealt with in
the next two lemmas. The operator QT |ZT in the first lemma will play the role of
‘Q’ in Proposition 5.1.

Lemma 5.3. Let QT ∈ L(L2(Ω), H1
0,γ(Ω)′) be a projector, UT ⊆ ranQT and BT ⊆

ran(Id−QT ) be subspaces of L2(Ω), and with ZT := UT + BT , let
(1) ‖h−1

T (Id−Q′T )‖L(H1
0,γ(Ω),L2(Ω)) . 1, (approximation property)

(2) supT ∈T ‖QT |ZT ‖L((ZT ,‖·‖L2(Ω)),L2(Ω)) . 1, (boundedness in L2(Ω))
(3) ‖hT · ‖L2(Ω) . ‖ · ‖H1

0,γ(Ω)′ on ZT . (inverse inequality)

Then QT |ZT : ZT → ZT is a projector, ranQT |ZT = UT , ran(Id − QT |ZT ) = BT ,
and

(i) supT ∈T ‖QT |ZT ‖L((ZT ,‖·‖W ),W ) <∞,
(ii) ‖ · ‖W h ‖hsT · ‖L2(Ω) on BT .

Proof. The first three statements are easily verified. From (1) it follows that for
u ∈ H1

0,γ(Ω)′:

‖(Id−QT )u‖H1
0,γ(Ω)′ = sup

v∈H1
0,γ(Ω)

〈u, (Id−Q′T )v〉L2(Ω)

‖v‖H1
0,γ(Ω)

≤ sup
v∈H1

0,γ(Ω)

‖hT u‖L2(Ω)‖h−1
T (Id−Q′T )v‖L2(Ω)

‖v‖H1
0,γ(Ω)

. ‖hT u‖L2(Ω).

Together with the inverse inequality on ZT , this gives (uniform) boundedness
of ‖(Id−QT )|ZT ‖L((ZT ,‖·‖H1

0,γ (Ω)′ ),H
1
0,γ(Ω)′) and thus of ‖QT |ZT ‖L((ZT ,‖·‖H1

0,γ (Ω)′ ),H
1
0,γ(Ω)′).

The first result then follows from (2) and an interpolation argument.
By the inverse inequality on BT and the previously derived inequality, we have

for bT ∈ BT ⊆ ran(Id−QT ) that

‖bT ‖H1
0,γ(Ω)′ = ‖(Id−QT )bT ‖H1

0,γ(Ω)′ . ‖hT bT ‖L2(Ω) . ‖bT ‖H1
0,γ(Ω)′ .

Another interpolation argument yields the second result. �

Lemma 5.4. Suppose that ‖·‖W h ‖hsT ·‖L2(Ω) holds on BT , and that ΘT is a uniformly
‖hsT · ‖L2(Ω)-stable basis for BT , i.e.

BT = span ΘT and
∥∥hsT ∑

θ∈ΘT
cθθ
∥∥2

L2(Ω)
h
∑

θ∈ΘT
|cθ|2‖hsT θ‖2L2(Ω),
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then, for any β1 > 0, an operator BB
T ∈ Lisc(BT ,B′T ) is given by

(5.1)
(
BB
T

∑
θ∈ΘT

cθθ
)( ∑

θ∈ΘT

dθθ
)

= β1

∑
θ∈ΘT

cθdθ‖hsT θ‖2L2(Ω).

Remark 5.5. It is not possible to construct BT ∈ Lis(WT ,W ′
T ) directly as a diagonal

scaling operator. Indeed, this would require ‖wT ‖W . ‖hsT wT ‖L2(Ω) forwT ∈ WT .
Suppose this to be true, then by L2(Ω)-boundedness of the biorthogonal projector
PT , we would find for vT ∈ VT that

‖h−sT vT ‖L2(Ω) = sup
w∈L2(Ω)

〈h−sT vT , PT w〉L2(Ω)

‖w‖L2(Ω)
. sup
w∈L2(Ω)

〈h−sT vT , PT w〉L2(Ω)

‖PT w‖L2(Ω)

= sup
wT ∈WT

〈vT , wT 〉L2(Ω)

‖hsT wT ‖L2(Ω)
. sup
wT ∈WT

〈vT , wT 〉L2(Ω)

‖wT ‖W
≤ ‖vT ‖V ,

which is known not to be true for smooth functions in VT .

Concluding: If, given a family of subspaces WT ⊂ L2(Ω), one can find a family
of projectors QT ∈ L(L2(Ω), H1

0,γ(Ω)′), subspaces UT ⊆ ranQT (of finite element
type) and BT ⊆ ran(Id−QT ) such that

(5.2) WT ⊂ ZT := UT + BT

(with these spaces equipped with ‖·‖W -norm) and the conditions of Lemma 5.3 are
satisfied, then given BU

T ∈ Lisc(UT ,U ′T ) and BB
T ∈ Lisc(BT ,B′T ), the operator

BW
T defined by

(5.3)
(BT w)(w̃) := (BU

T QT w)(QT w̃) + (BB
T (Id−QT )w)((Id−QT )w̃) (w, w̃ ∈ WT ),

is in Lisc(WT ,W ′
T ). Moreover, assuming a uniformly ‖hsT · ‖L2(Ω)-stable basis for

BT , the operator BB
T can be of simple diagonal scaling type, where a natural def-

inition for BU
T is by (BT u)(ũ) := (Bu)(ũ) (u, ũ ∈ UT ) for some opposite order

operator B ∈ Lisc(W ,W ′). Finally, sinceQT enters the implementation, we search
this projector to be of local type.

5.2. A space WT enclosed in a space decomposable into the piecewise constants
and bubbles. In this subsection, we construct WT = span ΨT such that both ΨT
is biorthogonal to ΦT ((4.2)), and WT is enclosed in a space that allows an ap-
propriate decomposition into the space of piecewise constants UT := S −1,0

T and a
bubble space BT .

Fix T ∈ T and let T∗ � T be a uniform red-refinement, i.e. every simplex T ∈ T
is subdivided into 2d subsimplices.2 We define ΨT = {ψT ,ν : ν ∈ N0

T } ⊂ S −1,0
T∗ by

taking a weighted difference of ‘patch indicator’ functions:

(5.4) ψT ,ν := 2d+11ωT∗,ν − 1ωT ,ν (ν ∈ N0
T ).

Lemma 5.6. The collection ΨT satisfies (4.2) with suppψT ,ν = ωT ,ν and

(5.5) 〈ψT ,ν , φT ,ν′〉L2(Ω) = δνν′ |ωT ,ν | (ν, ν′ ∈ N0
T ).

2Red-refinement is not uniquely defined for d ≥ 3, but the refined simplices at the corners of the
‘parent simplex’ are uniquely determined which suffices for our goal.
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Proof. Clearly suppψT ,ν = ωT ,ν , so we are left to show the biorthogonality condi-
tion. Fix some vertex ν ∈ N0

T . For a simplex Tν ∈ T with ν ∈ Tν , we have

〈1Tν , φT ,ν〉L2(Ω) =
|Tν |
d+ 1

.

Let T∗,ν ∈ T∗ be the (unique) simplex with ν ∈ T∗,ν ⊂ Tν . From the refinement
equation satisfied by the nodal hats, and |T∗,ν | = 2−d|Tν |, it follows that

〈1T∗,ν , φT ,ν〉L2(Ω) = 〈1T∗,ν , φT∗,ν +
∑

ν 6=ν̃∈NT∗,ν

2−1φT∗,ν̃〉L2(Ω) =
2−d|Tν |
d+ 1

(1 + 2−1d),

〈1T∗,ν , φT ,ν′〉L2(Ω) = · · · = 2−d|Tν |
d+ 1

2−1 (ν 6= ν′ ∈ N0
Tν ).

From these relations (5.5) follows. �

By Lemma 5.6 it has been established that the Fortin interpolator is uniformly
bounded, and that DT is represented by a diagonal matrix. The next proposition
verifies the conditions imposed in Sect. 5.1 for the construction of BT .

Proposition 5.7. Let UT := S −1,0
T , WT := span ΨT as constructed above, QT be the

L2(Ω)-orthogonal projector onto UT , ΘT := (Id−QT )ΨT , and BT := span ΘT . Then
WT ⊂ ZT := UT + BT ((5.2)), the conditions of Lemma 5.3 are satisfied, in particular
QT ψν = 1ων , and ΘT is a uniformly ‖hsT · ‖L2(Ω)-stable basis for BT as required for
Lemma 5.4.

Proof. The first statement follows from WT ⊂ L2(Ω). The first two conditions of
Lemma 5.3 are obviously valid. Concerning the third condition, the inverse in-
equality ‖hT · ‖L2(Ω) . ‖ · ‖H1

0,γ(Ω)′ holds, for general d, on S −1,0
T∗ , see e.g. [SvV19,

Lem. 3.4], and thus in particular on ZT . The property QT ψν = 1ων is easily
checked.

We are left to show that the collection of bubbles {θν := (Id−QT )ψν : ν ∈ N0
T } is

‖hsT · ‖L2(Ω)-stable. Pick some T ∈ T , then the normalized ‘bubble element matrix’
satisfies

1
4 |T |

−1〈θν , θν′〉L2(T ) = |T |−1〈2d1ωT∗,ν − 1ωT ,ν , 2
d1ωT∗,ν′ − 1ωT ,ν′ 〉L2(T )

=

{
2d − 1 ν = ν′ ∈ N0

T ,

−1 ν 6= ν′ ∈ N0
T .

(5.6)

For d ≥ 2, this constant (symmetric) (d+ 1)× (d+ 1) matrix is strictly diagonally
dominant, and therefore positive definite. We conclude this proposition by∥∥∥∑

ν∈N0
T

hsT cνθν

∥∥∥2

L2(Ω)
=
∑
T∈T

h2s
T

∥∥∥∑
ν∈N0

T

cνθν

∥∥∥2

L2(T )
h
∑
T∈T

h2s
T

∑
ν∈N0

T

|cν |2‖θν‖2L2(T )

=
∑
ν∈N0

T

|cν |2
∑
T∈T
‖hsT θν‖2L2(T ) =

∑
ν∈N0

T

|cν |2‖hsT θν‖2L2(Ω). �

Remark 5.8. For d = 1, the bubbles arising from ΨT as given in (5.4) do not form
a ‖hsT · ‖L2(Ω)-stable collection. Instead, with T∗∗ � T being the two times uni-
form red-refinement, one can consider ψT ,ν = 16

3 1ωT∗∗,ν −
1
31ωT ,ν for which the

statements of Lemma 5.6 and Proposition 5.7 are again valid.
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5.2.1. Implementation. The matrix representation of preconditionerF−1
ΦT
GT (F ′ΦT )−1

is given by
GT = D−1

T BTD
−>
T .

With ΨT as constructed in (5.4), we find that DT = F ′ΨTDT FΦT is given by

DT = diag{|ων | : ν ∈ N0
T }.

Given some BU
T ∈ Lisc(UT ,U ′T ) (recall that UT = S −1,0

T ), then by taking BT
as described in (5.3), we have

BT := F ′ΨT BT FΨT

= F ′ΨT (Q′T B
U
T QT + (Id−QT )′BB

T (Id−QT ))FΨT

= p>TB
U
T pT + BB

T ,

where, using that F−1
ΘT

(Id−QT )FΨT = Id by ΘT = (I −QT )ΨT ,

BU
T := F ′ΣT B

U
T FΣT , pT := F−1

ΣT
QT FΨT , BB

T := F ′ΘT B
B
T FΘT ,

Recall the canonical basis ΣT for UT from (4.1). Using QT ψν = 1ων shows that

(pT )Tν =

{
1 if T ⊂ ων ,
0 else.

From (5.6), we infer that ‖hsT θν‖2L2(Ω) h |ων |1+ 2s
d . By making a harmless modifi-

cation to the definition of BB
T in (5.1) based on this equivalency, we obtain that

BB
T = β1D

1+ 2s
d

T .

The matrix BU
T depends on the operator BU

T ∈ Lisc(UT ,U ′T ) that is selected. The
canonical choice is the Galerkin discretization operator on UT of aB ∈ Lisc(W ,W ′).
The cost of the application of GT is the cost of the application of BU

T plus cost that
scales linearly in #T .

5.3. A space WT that is enclosed in a space decomposable into the continuous
piecewise linears and bubbles. We follow the same program as in the previous
subsection Sect. 5.2 but now with UT := S 0,1

T , being the space of continuous piece-
wise linears.

Other than in Sect. 5.2, we cannot apply Proposition 5.1 for QT being the or-
thogonal projector onto UT , since with the current choice of this space it will not
be a local projector. As an alternative, we take QT to be some biorthogonal projec-
tor. The question whether it enjoys an approximation property is answered in the
following lemma.

Lemma 5.9. For ν ∈ NT , so including vertices on γ, let φ̃ν ∈ L2(Ω) be such that

(5.7) ‖φ̃ν‖L2(Ω) . h
d/2
ν ,

∑
ν∈NT

φ̃ν = 1Ω, supp φ̃ν ⊂ B(ν;Rhν)

for some constant R > 0, and∣∣〈φ̃ν , φν′〉L2(Ω)

∣∣ h δνν′ |ων | (ν, ν′ ∈ N0
T ).
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Denote ŨT := span{φ̃ν : ν ∈ N0
T }, so without vertices on γ. The biorthogonal projector

QT : u 7→
∑
ν∈N0

T

〈u,φ̃ν〉L2(Ω)

〈φν ,φ̃ν〉L2(Ω)

φν , for which ranQT = S 0,1
T and ran(Id − QT ) =

Ũ
⊥L2(Ω)

T , satisfies the approximation property

‖h−1
T (Id−Q′T )v‖L(H1

0,γ(Ω),L2(Ω)) . 1,

and ‖QT ‖L(L2(Ω),L2(Ω)) . 1.

Proof. We use the same strategy as in [SvV19]. That is, we define a Scott-Zhang
type quasi-interpolator ΠT : H1(Ω) → L2(Ω), cf. [SZ90]. For every ν ∈ NT , select
a (d− 1)-face eν of some T ∈ T with ν ∈ eν and eν ⊂ γ if ν ∈ γ. We define ΠT by

ΠT u :=
∑
ν∈NT

gT ,ν(u)φ̃T ,ν , gT ,ν(u) :=

 
eν

u ds.

Since gT ,ν(1) = 1, using the properties from (5.7) one can show, cf. proof of [SvV19,
Thm. 3.2] for details, that

‖h−1
T (Id−ΠT )(u)‖ . ‖u‖H1(Ω) (u ∈ H1(Ω)).

By construction, gT ,ν(u) = 0 for ν on γ andu ∈ H1
0,γ(Ω), and therefore ran ΠT |H1

0,γ(Ω) ⊂
ŨT . Finally, combined with L2(Ω)-boundedness and locality of Q′T , and the fact
that Q′T reproduces ŨT , we find that

‖h−1
T (Id−Q′T )v‖L2(Ω) = inf

wT ∈ŨT

‖h−1
T (Id−Q′T )(v − wT )‖L2(Ω)

. ‖h−1
T (Id−ΠT )(v)‖L2(Ω) . ‖v‖H1

0,γ(Ω) (v ∈ H1
0,γ(Ω)).

The last statement can be proven similarly as in the proof of Theorem 4.1. �

As before, let T∗ � T denote a uniform red-refinement of T , and for any T ∈ T
and ν ∈ NT , let T∗,ν ∈ T∗ denote the simplex with ν ∈ T∗,ν ⊂ T . For ν ∈ NT , so
including boundary vertices, define

φ̃T ,ν := 1
d+1

∑
T∈T
T⊂ων

(
1T + d21+d

d+1 1T∗,ν − 21+d

d+1

∑
ν′∈NT
ν′ 6=ν

1T∗,ν′
)
∈ S −1,0

T∗ .

These functions satisfy (5.7), and

〈φ̃T ,ν , φT ,ν′〉L2(Ω) = δνν′(d+ 1)−1|ωT ,ν |,
and so determine a valid biorthogonal projector QT via Lemma 5.9.

For T∗∗ � T∗ a uniform red-refinement of T∗, we define ΘT := {θT ,ν : ν ∈ N0
T }

by
θT ,ν := 2d+2

d+2

(
2d1ωT∗∗,ν − 1ωT∗,ν

)
.

Since red-refinement subdivides each simplex into d subsimplices, one infers that

(5.8) BT := span ΘT ⊥L2(Ω) S −1,0
T∗ ,

so that in particular BT ⊂ kerQT .
Defining ΨT := {ψT ,ν : ν ∈ N0

T } by
ψT ,ν := φT ,ν + θT ,ν ,

calculations as in the proof of Lemma 5.6 show the following result.
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Lemma 5.10. The collection ΨT satisfies (4.2) with suppψT ,ν = ωT ,ν and

(5.9) 〈ψT ,ν , φT ,ν′〉L2(Ω) = δνν′(d+ 1)−1|ωT ,ν | (ν, ν′ ∈ N0
T ).

So the Fortin interpolator is uniformly bounded, and DT is represented by a
diagonal matrix. Next we verify the conditions imposed in Sect. 5.1 for the con-
struction of BT .

Proposition 5.11. Let UT , QT , BT , and WT := span ΨT be defined as above. Then
WT ⊂ ZT := UT + BT ((5.2)), the conditions of Lemma 5.3 are satisfied, in particular
ΦT = QT ΨT and so ΘT = (Id−QT )ΨT , and lastly, ΘT is an ‖hsT · ‖L2(Ω)-orthogonal
basis for BT as required for Lemma 5.4.

Proof. The first statement is obviously true. We have already verified the first two
conditions of Lemma 5.3. The third condition follows from this inverse inequality
on S −1,1

T∗∗ (see e.g. [SvV19, (5.14)]), and ΦT = QT ΨT is a consequence of (5.8).
The last statement follows from | supp θν ∩ supp θν′ | = 0 when ν 6= ν′. �

5.3.1. Implementation. Suppose that we have some operator BU
T ∈ Lisc(UT ,U ′T )

uniformly (here UT = S 0,1
T ). The matrix representation of the preconditioner

GT , with BT from (5.3) and the bases from Proposition 5.11, becomes

GT = D−1
T BTD

−>
T ,

BT := F ′ΨT (Q′T B
U
T QT + (Id−QT )′BB

T (Id−QT ))FΨT

= BU
T + BB

T ,

with these matrices given by

DT := F ′ΨTDT FΦT = diag
{ |ων |
d+1

: ν ∈ N0
T
}
,

BU
T := F ′ΦT B

U
T FΦT , BB

T := F ′ΘT B
B
T FΘT = β1D

1+ 2s
d

T ,

where we used that F−1
ΦT
QT FΨT = Id and F−1

ΘT
(Id − QT )FΨT = Id, and where,

based on ‖hsT θν‖2L2(Ω) h |ων |
1+ 2s

d , we made an harmless modification to the oper-
ator BB

T from Lemma 5.4.

6. Extensions

6.1. Higher order. Add the superscript 1 to the spaces defined so far, e.g. write V 1
T

for S 0,1
T with its nodal basis Φ1

T , and similarly useG1
T for the associated precondi-

tioner from either Sect. 5.2 or Sect. 5.3.
We will now consider a (family of) higher order continuous piecewise polyno-

mials, i.e. for some ` ∈ {2, 3, . . . } let

VT = S 0,`
T := {u ∈ H1

0,γ(Ω): u|T ∈ P` (T ∈ T )} ⊂ V .

Because we have an inverse inequality on VT , we can construct a uniform precon-
ditioner GT ∈ Lis(V ′T ,VT ) using an additive subspace correction method. That is,
we consider the overlapping decomposition VT = V 1

T + V 2
T , where these spaces

are given by

VT = (VT , ‖ · ‖V ), V 1
T = (V 1

T , ‖ · ‖V ), V 2
T = (VT , ‖h−sT · ‖L2(Ω)).
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Proposition 6.1. For k ∈ {1, 2}, letGkT ∈ Lisc((V k
T )′,V k

T ), then for IkT : V k
T → VT the

trivial embedding, we find that GT :=
∑2
k=1 I

k
TG

k
T (IkT )′ ∈ Lisc(V ′T ,VT ), with

‖GT ‖L(V ′T ,VT ) . max
k=1,2

‖GkT ‖L((V k
T )′,V k

T ),

‖<(GT )−1‖L(VT ,V ′T ) . max
k=1,2

‖<(GkT )−1‖L(V k
T ,(V

k
T )′).

Proof. We have the (standard) inverse inequality ‖u‖V . ‖h−sT u‖L2(Ω) for u ∈ VT .
Let u ∈ VT , then for any (u1, u2) ∈ V 1

T × V 2
T with u1 + u2 = u we find

‖u‖V ≤ ‖u1‖V + ‖u2‖V . ‖u1‖V + ‖h−sT u2‖L2(Ω).

Denote Π1
T : H1

0,γ(Ω)→ V 1
T for the Scott-Zhang interpolator ([SZ90]). For u ∈ VT ,

take u1 = Π1
T u ∈ V 1

T and u2 = u−Π1
T u ∈ V 2

T , then from approximation properties
of the interpolator we infer

‖u1‖V + ‖h−sT u2‖L2(Ω) ≤ ‖u‖V + ‖u2‖V + ‖h−sT u2‖L2(Ω)

. ‖u‖V + ‖h−sT u2‖L2(Ω) . ‖u‖V .

Since apparently for u ∈ VT ,

‖u‖V h inf
{
‖u1‖V + ‖h−sT u2‖L2(Ω) : u1 ∈ V1, u2 ∈ V2, u1 + u2 = u

}
,

the result follows from theory of subspace correction methods, e.g. [Osw94]. �

On the space V 1
T we can apply the operator G1

T constructed earlier, whereas on
V 2
T a simple scaling operator suffices. DenoteN0,`

T for the set of canonical Lagrange
evaluation points of S 0,`

T , and let Φ`T = {φ`ν : ν ∈ N0,`
T } be the corresponding nodal

basis. For some constant β2 > 0, define an operator RT : V 2
T → (V 2

T )′ by

(RT u)(w) := β−1
2

∑
ν∈N0,`

T

‖h−sT φ`ν‖2L2(Ω)u(ν)w(ν).

Proposition 6.2. The operator G2
T := R−1

T satisfies G2
T ∈ Lisc((V 2

T )′,V 2
T ) uniformly.

Proof. It is not hard to see that the result follows if Φ`T is a (uniformly) ‖h−sT ·‖L2(Ω)-
stable basis. Writing N0,`

T := N0,`
T ∩ T , this stability can be deduced from∥∥∥h−sT ∑

ν∈N0,`
T

cνφ
`
ν

∥∥∥2

L2(Ω)
=
∑
T∈T

h−2s
T

∥∥∥∑
ν∈N0,`

T

cνφ
`
ν

∥∥∥2

L2(T )

h
∑
T∈T

h−2s
T

∑
ν∈N0,`

T

|cν |2‖φ`ν‖2L2(T ) =
∑

ν∈N0,`
T

|cν |2‖h−sT φ`ν‖2L2(Ω).�

6.1.1. Implementation. Equipping VT and V 2
T with Φ`T , and V 1

T with Φ1
T , the matrix

representation of GT :=
∑2
k=1 I

k
TG

k
T (IkT )′ ∈ Lisc(V ′T ,VT ) is given by

GT = qTG
1
T q
>
T + G2

T ,

with G1
T either from Sect. 5.2.1 or Sect. 5.3.1,

(qT )ν′ν = φ`ν′(ν) (ν′ ∈ N0,`
T , ν ∈ N0,1

T ).

and
G2
T = β2 diag{‖h−sT φ`ν‖−2

L2(Ω)
: ν ∈ N0,`

T }.
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6.2. Manifolds. Let Γ be a compact d-dimensional Lipschitz, piecewise smooth
manifold in Rd

′ for some d′ ≥ d with or without boundary ∂Γ. For some closed
measurable γ ⊂ ∂Γ and s ∈ [0, 1], let

V := [L2(Γ), H1
0,γ(Γ)]s,2, W := V ′.

We assume that Γ is given as the closure of the disjoint union of ∪pi=1χi(Ωi), with,
for 1 ≤ i ≤ p, χi : Rd → Rd

′ being some smooth regular parametrization, and
Ωi ⊂ Rd an open polytope. W.l.o.g. assuming that for i 6= j, Ωi ∩Ωj = ∅, we define

χ : Ω := ∪pi=1Ωi → ∪pi=1χi(Ωi) by χ|Ωi = χi.

Let T be a family of conforming partitions T of Γ into ‘panels’ such that, for
1 ≤ i ≤ p, χ−1(T )∩Ωi is a uniformly shape regular conforming partition of Ωi into
d-simplices (that for d = 1 satisfies a uniform K-mesh property). We assume that
γ is a (possibly empty) union of ‘faces’ of T ∈ T (i.e., sets of type χi(e), where e is
a (d− 1)-dimensional face of χ−1

i (T )).
The usual lowest order boundary element spaces are defined by

S −1,0
T := {u ∈ L2(Γ) : u ◦ χ|χ−1(T ) ∈ P0 (T ∈ T )}, ,

S 0,1
T := {u ∈ H1

0,γ(Γ) : u ◦ χ|χ−1(T ) ∈ P1 (T ∈ T )},

with their canonical bases denoted as ΣT = {1T : T ∈ T } and ΦT = {φν : ν ∈ N0
T },

respectively, with N0
T the vertices of T not on γ.

The construction of the preconditioners in the domain case relied on the explicit
construction of a collection ΨT biorthogonal to ΦT , and on the explicit computation
of a (bi)orthogonal projection of WT := span ΨT onto either S −1,0

T or S 0,1
T , where

orthogonality was interpreted w.r.t. the L2(Ω)-scalar product. Both the construc-
tion of ΨT and the computation of the (bi)orthogonal projection could be reduced
to computations on the individual elements in the partition, which yielded explicit
expressions.

When attempting to transfer everything to the manifold case, a problem is the
appearance of a generally non-constant weight x7→|∂χ(x)| in theL2(Γ)-scalar prod-
uct

〈u, v〉L2(Γ) =

ˆ
Ω

u(χ(x))v(χ(x))|∂χ(x)| dx.

To deal with this, following [SvV19], on L2(Γ) we define an additional ‘mesh-
dependent’ scalar product

〈u, v〉T :=
∑
T∈T

|T |
|χ−1(T )|

ˆ
χ−1(T )

u(χ(x))v(χ(x))dx.

which is constructed by replacing on each χ−1(T ), the Jacobian |∂χ| by its average
|T |

|χ−1(T )| over χ−1(T ), and interpret (bi)orthogonality with respect to this scalar
product.

Now all steps in the construction of the preconditioners carry over, and yield pre-
conditioners for the manifold case whose implementations are exactly as described
in Sect. 5.2.1 and Sect. 5.3.1, where the patch volumes |ωT ,ν | now should be read as
the volumes of the patches on Γ.

To prove that the constructed preconditioners are indeed uniform precondition-
ers requires additional work due to the use of the mesh-dependent scalar product.
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We refer to [SvV19] for details. The key ingredient is that not only the norm asso-
ciated to 〈·, ·〉L2(Γ) is uniformly equivalent to ‖ · ‖L2(Γ), but also that 〈·, ·〉L2(Γ) and
〈·, ·〉T are close in the sense that

(6.1) |〈v, u〉T − 〈v, u〉L2(Γ)| . ‖hT v‖L2(Γ)‖u‖L2(Γ) (v, u ∈ L2(Γ)).

7. Numerical Results

Let Γ = ∂[0, 1]3 ⊂ R3 be the boundary of the unit cube, V := H1/2(Γ), W :=

H−1/2(Γ), and VT = S 0,`
T ⊂ V the trial space of continuous piecewise polynomials

of degree ` w.r.t. a partition T . We shall evaluate preconditioning of essentially a
discretized Hypersingular Integral operator.

The Hypersingular Integral operator Ã ∈ L(V ,V ′) is only semi-coercive, since
it has a non-trivial kernel equal to span{1}. Solving Ãu = f for f with f(1) = 0

is, however, equivalent to solving Au = f with A given by (Au)(v) = (Ãu)(v) +
α〈u,1〉L2(Γ)〈v,1〉L2(Γ) for some α > 0. This operator A is in Lisc(V ,V ′), and we
shall consider preconditioning discretizations AT ∈ Lisc(VT ,V ′T ) of A. By com-
paring different values numerically, we found α = 0.05 to give good results in our
examples.

As opposite order operator B we take the Weakly Singular integral operator,
which on compact 2-dimensional manifolds is known to be in Lisc(W ,W ′). We
will compare preconditionersGT based on the discretizationsBU

T ∈ Lisc(UT ,U ′T )

of B, for UT = S −1,0
T or UT = S 0,1

T equipped with the canonical bases ΣT =
{1T : T ∈ T } and ΦT = {φν : ν ∈ NT }, respectively, cf. Sect. 5.2.1 or Sect. 5.3.1.

For ` = 1 (the lowest order case) and VT being equipped with ΦT , the matrix
representation of the preconditioner GT reads either as (Sect. 5.2.1)

GT = G−1,0
T = D−1

T
(
p>TB

U
T pT + β1D

3/2
T
)
D−1
T

where BU
T = (BΣT )(ΣT ), DT = diag{|ων | : ν ∈ NT }, (pT )Tν =

{
1 if T ⊂ ων ,
0 otherwise,

and β1 > 0 is some constant, or as (Sect. 5.3.1)

GT = G0,1
T = D−1

T
(
BU
T + β1D

3/2
T
)
D−1
T

where BU
T = (BΦT )(ΦT ), DT = diag{| ωνd+1 | : ν ∈ NT }, and β1 > 0 is some con-

stant.
For ` > 1 denote the above GT by either G1,−1,0

T or G1,0,1
T , then, with VT = S 0,`

T
being equipped with the standard nodal basis {φ`ν : ν ∈ N `

T }, the matrix represen-
tation of the preconditioner GT ∈ Lisc((S

0,`
T )′,S 0,`

T ) from Sect. 6.1.1 is

G∗T = qTG
1,∗
T q>T + β2 diag{‖h−

1
2

T φ`ν‖−2
L2(Ω)

: ν ∈ N `
T },

where either ∗ = −1, 0 or ∗ = 0, 1, and (qT )ν′ν = φ`ν′(ν) (ν′ ∈ N `
T , ν ∈ N1

T ).
The (full) matrix representations of the discretized singular integral operators

AT and BU
T are calculated using the BEM++ software package [SBA+15]. Condi-

tion numbers are determined using Lanczos iteration with respect to |||·||| := ‖A
1
2

T ·‖.
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Table 1. Spectral condition numbers of the preconditioned hyper-
singular system, using uniform refinements, discretized by con-
tinuous piecewise linears S 0,1

T , with α = 0.05. The precondition-
ers G−1,0

T and G0,1
T are constructed using the single layer oper-

ator discretized on UT = S −1,0
T (Sect. 5.2.1) and UT = S 0,1

T
(Sec 5.3.1), respectively, where have used β1 = 0.65 in the first
case and β1 = 0.34 in the second case.

dofs κS(AT ) κS(G−1,0
T AT ) κS(G0,1

T AT )

14 3.0 2.71 2.64
50 7.1 2.36 2.37

194 14.2 2.25 2.26
770 28.7 2.30 2.27

3074 57.8 2.29 2.27
12290 115.7 2.29 2.27
49154 231.4 2.30 2.27

Table 2. In the same setting as Table 1, but using compressed hi-
erarchical matrices.

dofs κS(AT ) κS(G−1,0
T AT ) κS(G0,1

T AT )

12290 115.6 2.29 2.27
24578 168.7 2.24 2.24
49154 231.3 2.30 2.27
98306 336.9 2.25 2.25

196610 461.7 2.30 2.28
393218 671.9 2.27 2.28
786434 751.6 2.30 2.30

7.1. Uniform refinements. Consider a conforming triangulation T1 of Γ consist-
ing of 2 triangles per side, so 12 triangles with 8 vertices in total. We let T be the
sequence {Tk}k≥1 of uniform newest vertex bisections, where Tk � Tk−1 is found
by bisecting each triangle from Tk−1.

With VT = S 0,1
T , Table 1 compares the condition numbers for the precondi-

tioned system given by Sect. 5.2.1 (UT = S −1,0
T ) and by Sect. 5.3.1 (UT = S 0,1

T ).
We see that the condition numbers remain nicely bounded, and that both choices
give similar condition numbers.

Instead of using the ‘full matrices’, we can consider compressed hierarchical ma-
trices to approximate the stiffness matrices AT and BU

T for finer partitions. Table 2
gives the condition numbers, again for uniform refinements, but now using hier-
archical matrices based on adaptive cross approximation [Hac99, Beb00]. We see
that even for large systems, our preconditioner gives very satisfactory results.

Finally, consider the (higher order) trial space VT = S 0,3
T . Table 3 gives condi-

tion numbers for the preconditioned system, using the method described in Sect. 6.1.1.
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Table 3. Spectral condition numbers of the preconditioned hyper-
singular system, using uniform refinements, discretized by con-
tinuous piecewise cubics S 0,3

T , with α = 0.05. The higher order
preconditioners G−1,0

T and G0,1
T are constructed as described in

Sect. 6.1.1, by using the preconditioners from Table 1 with con-
stants β1 = 0.65, β2 = 0.065 in the first case and β1 = 0.34, β2 =
0.065 in the second case.

dofs κS(AT ) κS(G−1,0
T AT ) κS(G0,1

T AT )

56 19.49 4.75 4.72
218 36.27 5.18 5.17
866 74.78 6.23 6.20

3458 150.73 6.55 6.48
13826 301.97 6.63 6.57
55298 603.86 6.65 6.58

Table 4. Spectral condition numbers of the preconditioned hy-
persingular system discretized by S 0,1

T using local refinements at
each of the eight cube corners. Both preconditioners G−1,0

T and
G0,1
T are constructed with same parameters as in Table 1, and are

compared against diagonal preconditioning. The second column
is defined by hT ,min := minT∈T hT .

dofs hT ,min κS(diag(AT )−1AT ) κS(G−1,0
T AT ) κS(G0,1

T AT )

8 1.4 · 100 2.15 2.83 2.68
14 1.0 · 100 2.79 2.71 2.64

314 1.1 · 10−2 12.11 2.21 2.20
626 1.2 · 10−4 13.18 2.31 2.30
938 1.3 · 10−6 13.43 2.36 2.36

1250 1.4 · 10−8 13.51 2.39 2.38
1562 1.6 · 10−10 13.53 2.41 2.39
1850 2.5 · 10−12 13.55 2.41 2.40

7.2. Local refinements. Here we take T to be the sequence {Tk}k≥1 of locally re-
fined triangulations, where Tk � Tk−1 is constructed using conforming newest
vertex bisection to refine all triangles in Tk−1 that touch a corner of the cube.

Table 4 gives condition numbers of the preconditioned hypersingular system
discretized by continuous piecewise linears, i.e. VT = S 0,1

T . The condition num-
bers remain bounded under local refinements, confirming uniformity of the pre-
conditioner w.r.t. T.

8. Conclusion

Using the framework of operator preconditioning, we have constructed uniform
preconditioners for elliptic operators of orders 2s ∈ [0, 2] discretized by continu-
ous finite (or boundary) elements. The evaluation of the preconditioners requires
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the application of an opposite order operator plus minor cost of linear complex-
ity. Compared to earlier proposals, both the construction of a so-called dual-mesh
and the inversion of a non-diagonal matrix are avoided, and our results are valid
without constraints on the mesh-grading. For lowest order finite elements the com-
puted condition numbers of the preconditioned system are below 2.5.
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des équations intégrales de frontière de l’acoustique. C. R. Acad. Sci. Paris Sér. I Math.,
330(7):617–622, 2000.

[Beb00] M. Bebendorf. Approximation of boundary element matrices. Numerische Mathematik,
86(4):565–589, 2000.

[For77] M. Fortin. An analysis of the convergence of mixed finite element methods. RAIRO Anal.
Numér., 11(4):341–354, iii, 1977.

[Hac99] W. Hackbusch. A sparse matrix arithmetic based on H-matrices. Part I: Introduction to
H-matrices. Computing, 62(2):89–108, 1999.

[Hip06] R. Hiptmair. Operator preconditioning. Comput. Math. Appl., 52(5):699–706, 2006.
[HJHUT18] R. Hiptmair, C. Jerez-Hanckes, and C. Urzúa-Torres. Closed-form inverses of the
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