Oefententamen

1. (a) Show that

$$
\int_{0}^{1} p(x) d x=\frac{1}{2}(p(0)+p(1))+\frac{1}{12}\left(p^{\prime}(0)-p^{\prime}(1)\right)
$$

for any $q \in \mathcal{P}_{3}$.
(b) Show that for a constant $q \in \mathbb{R}$, for any sufficiently smooth f,

$$
\int_{0}^{1} f(x) d x-\left\{\frac{1}{2}[f(0)+f(1)]+\frac{1}{12}\left[f^{\prime}(0)-f^{\prime}(1)\right]\right\}=q f^{(4)}(\xi)
$$

for some $\xi \in[0,1]$, and determine q.
(c) Show that for $c<d$ and sufficiently smooth g,

$$
\begin{aligned}
& \int_{c}^{d} g(x) d x-\left\{\frac{1}{2}(d-c)[g(c)+g(d)]+\frac{1}{12}(d-c)^{2}\left[g^{\prime}(c)-g^{\prime}(d)\right]\right\} \\
& =q(d-c)^{5} g^{(4)}(\eta) \text { voor e.o.a. } \eta \in[c, d]
\end{aligned}
$$

(Hint: use $r:[0,1] \rightarrow[c, d]: y \mapsto(d-c) y+c$)
(d) Let $a<b, m \in \mathbb{N}$, and define $x_{i}:=a+i h$ with $h:=\frac{b-a}{m}$. Show that

$$
\begin{aligned}
& \int_{a}^{b} f(x) d x-\left\{h\left[\frac{1}{2} f(a)+f\left(x_{1}\right)+\cdots+f\left(x_{m-1}\right)+\frac{1}{2} f(b)\right]+\frac{1}{12} h^{2}\left[f^{\prime}(b)-f^{\prime}(a)\right]\right\} \\
& =q h^{4}(b-a) f^{(4)}(\gamma) \text { for some } \gamma \in[a, b]
\end{aligned}
$$

2. We consider $C[a, b]$ with scalar product $\langle f, g\rangle:=\int_{a}^{b} w(x) f(x) g(x) d x$, where w is a positive, continuous, and integrable weight function on (a, b).
(a) Show that $0 \neq p_{n+1} \in \mathcal{P}_{n+1}$ with $p_{n+1} \perp \mathcal{P}_{n}$ has $n+1$ different zeros x_{0}, \ldots, x_{n} on (a, b).
(b) Let $w_{0}, \ldots w_{n}$ be weights such that $\int_{a}^{b} w(x) f(x) d x=\sum_{i=0}^{n} w_{i} f\left(x_{i}\right)$ for all $f \in \mathcal{P}_{n}$. Show that $Q(f):=\sum_{i=0}^{n} w_{i} f\left(x_{i}\right)$ is even exact for all $f \in \mathcal{P}_{2 n+1}$ (Hint: Write f as $q p_{n+1}+r$ for certain polynomials q en $r)$.
(c) By using a suitable interpolation polynomial, show that for $f \in$ $C^{2 n+2}[a, b]$,

$$
\int_{a}^{b} w(x) f(x) d x-\sum_{i=0}^{n} w_{i} f\left(x_{i}\right)=\frac{f^{2 n+2}(\xi)}{(2 n+2)!} \int_{a}^{b} w(x) \prod_{i=0}^{n}\left(x-x_{i}\right)^{2} d x
$$

for some $\xi \in(a, b)$.
3. We consider $\left\{\begin{array}{l}y^{\prime}(x)=f(x, y(x)), \\ y\left(x_{0}\right)=y_{0},\end{array}\right.$ where f is continuous and Lipschitz continuous with respect to the second variable.
Given $X_{M}>x_{0}$ and $N \in \mathbb{N}$, let $h:=\frac{X_{M}-x_{0}}{N}$, and $x_{i}:=x_{0}+i h(i=$ $0, \ldots, N)$. We consider two numerical approximation methods:

$$
\begin{aligned}
& y_{n+1}^{F}:=y_{n}^{F}+h f\left(x_{n}, y_{n}^{F}\right) \quad \text { (Forward Euler) } \\
& y_{n+1}^{B}:=y_{n}^{B}+h f\left(x_{n+1}, y_{n+1}^{B}\right) \quad \text { (Backward Euler) }
\end{aligned}
$$

where $y_{0}^{F}=y_{0}^{B}:=y_{0}$. We define

$$
\begin{array}{ll}
e_{n}^{F}:=y\left(x_{n}\right)-y_{n}^{F}, & T_{n}^{F}:=\frac{y\left(x_{n+1}\right)-y\left(x_{n}\right)}{h}-f\left(x_{n}, y\left(x_{n}\right)\right) \\
e_{n}^{B}:=y\left(x_{n}\right)-y_{n}^{B}, & T_{n}^{B}:=\frac{y\left(x_{n+1}\right)-y\left(x_{n}\right)}{h}-f\left(x_{n+1}, y\left(x_{n+1}\right)\right)
\end{array}
$$

(a) It is known that $\left|T_{n}^{F}\right| \leq \frac{1}{2} h \max _{x \in\left[x_{0}, X_{M}\right]}\left|y^{\prime \prime}(x)\right|$ for $n \in\{0, \ldots, N-1\}$. Prove the same estimate for T_{n}^{B}.

From here on, we consider f to be of the form $f(x, y)=-\lambda y+g(x)$ for some continuous function g and constant $\lambda \geq 0$.
(b) Determine σ^{F}, σ^{B} such that

$$
e_{n+1}^{F}=\sigma^{F} e_{n}^{F}+h T_{n}^{F}, \quad e_{n+1}^{B}=\sigma^{B}\left(e_{n}^{B}+h T_{n}^{B}\right)
$$

(c) Show that $\left|e_{n}^{B}\right| \leq\left(X_{M}-x_{0}\right) \max _{0 \leq i \leq N-1}\left|T_{i}^{B}\right|$. Also show that $\left|e_{n}^{F}\right| \leq$ $\left(X_{M}-x_{0}\right) \max _{0 \leq i \leq N-1}\left|T_{i}^{F}\right|$ when $h \lambda$ is sufficiently small. What can you expect from Forward Euler when the last condition is violated?

