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Abstract

Dashed lines are a common element in line drawings. This paper deals with

the inference of a dashed lines' grammar, given a stream of graphical sym-

bols. A method is presented, based on syntactical pattern recognition, capa-

ble of inferring arbitrary grammars without a priori knowledge. A detailed

complexity-analysis of the developed algorithms is presented, as well as exper-

iments demonstrating the usefullness of our method.
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1 Introduction

In the automated conversion of line drawings ([12], [18]), such as cartographic

maps, engineering drawings and dress patterns, dashed lines are a common ele-

ment. An automated system for interpreting line drawings needs to detect both

the direction and location of the curve as well as its composition of graphical

symbols.

A dashed line is de�ned by the center line and a grammar. The grammar

de�nes the repetition of the pattern along the line. The grammar ranges from

quite simple to more complex patterns. The center line of the grammar is the

line following the center points of the objects (for example line-segments or

crosses).

This paper deals with inferring the pattern of a dashed line given a stream

of graphical symbols. Thus in this paper we tackle the problem of �nding

the underlying pattern of a string of symbols. This problem also appears in

as diverse applications like beat-induction in music [3] and the recognition of

birdsongs [17].

Detecting the location of the dashed line is treated as a separate prob-

lem. There are several ways to tackle this problem, for example by tracking as

demonstrated in the experiments. Whatever approach is chosen to detect the

centerline of a dashed line, the problem of inferring the grammar needs to be

solved.

In literature, a dashed line is sometimes viewed as a discontinuous curved

or straight line with, not necessarily regularly placed, gaps. The pattern of the
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dashed line is not explicitly reconstructed. An example of this is described in

[1]. With the use of tube-directional morphological operations, line-segments

are connected. The standard line-detecting procedures �nd the lines in the

image. A drawback of this procedure is that the grammar of the dashed line

is lost in the process. In addition, di�erent collinear lines are merged. The

authors point at the sensitivity of the procedure to noisy data. In [4] a system

merging short line-segments into longer lines is described. The grammar of this

line is derived on the basis of heuristics, but plays no explicit role in the dashed

line detection. The algorithm performs well on the narrow class of admitted

grammars. In [19] and [16] general systems for interpreting line-drawings are

presented of which dashed lines are part. Both systems rely heavily on speci�c

drawing criteria for selected line-types. In conclusion, these methods fail to

make an explicit reconstruction of the dashed line. Therefore, these methods

can not be generalized to detect more complex dashed lines.

Methods that reconstruct the pattern of a dashed line include [15]. The

algorithm is capable of segmenting a string of symbols into a set of dashed

lines. The match between a set of symbols and a grammar is based on stretch,

substitution and ommision operations. The set of operations is not robust

against frequent object fragmentation. The system is capable of checking the

observed linear texture against a list of given grammars, and no other one. In

[12] and [9] similar approaches are described, although the class of grammars is

restricted even further. The above mentioned algorithms have in common that

the class of admitted grammars is small and prede�ned. In contrast it is our

goal to develop an algorithm capable of detecting arbitrary grammars.
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In our approach, the detection of the grammar is based on methods from

the �eld of syntactic pattern recognition. In syntactic pattern recognition,

a pattern in a class is described by a string of symbols, which is generated

by a grammar. Parsing algorithms are used as recognition procedures. The

grammar which accepts the string identi�es the pattern. The parse of the

string provides structural information. Parsing a string becomes di�cult when

errors are introduced in the string. In general there are several ways of dealing

with errors, for example the use of stochastic grammars [6], and the use of error-

correcting parsing [7]. Grammatical inference, and especially error-correcting

parsing, is a natural approach to tackle the problem of recovering the grammar

of a dashed line.

The paper is organized as follows. In section 2 the de�nition of a dashed

line is given. In section 3 the detection and classi�cation of graphical symbols is

described, a neccesary step before grammatical inference. In section 5 methods

to generate possible grammars, given a string of literals, is presented. Section 4

describes the algorithm that decides which of the tested hypotheses is correct.

Finally, in section 6 systematic experiments are described, and some conclusions

are drawn.

2 The de�nition of a dashed line

In de�ning a dashed line, the following de�nitions are used:

� Literal. A symbol or a gap.

� String. A sequence of literals.
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� Symbol. An element of the alphabet of detectable symbols. A symbol

can be, for example, a line-segment, a cross or a dot. Each symbol is

parametrized. For example line-segments have length, position, width and

orientation as their parameters. The orientation of a symbol is measured

in relation to the center line, as is demonstrated in �gure 3.

� Gap. Distance between consecutive symbols, as measured along the center

line (see �gure 3). Gaps are denoted with Sj. The parameters of a gap

are its location.

� Cyclic group. A sequence of literals.

A dashed line is characterized by a cyclic group and a center line. Several

concatenations of the cyclic group form the stream of literals of the dashed line.

The center line then localizes the stream of literals in the image.

3 Object detection

In this section the object detection step is described, which is a necessary step

preceeding the dashed line detection. In principal, the range of objects is un-

bounded. But, to be able to detect objects, an alphabet of objects must be

determined. This alphabet is, of course, application dependent. Extending the

alphabet will increase the generality of the detection-procedure.

The desired output of the object detection step is a description of the im-

age in terms of object-occurrences. Each occurrence of an object needs to be

assigned a certainty. A set of pixels may occur in di�erent object occurrences.

This is a consequence of both the uncertainties in detection and a consequence
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of the fact that detection occurs before interpretation. Consider for example

�gure 4. The circled object is identical in both images, but its interpretation

depends on the context. Both interpretations must be allowed by the object

detection step.

4 Matching a grammar against a string

In this section, the method of �nding the cyclic group best describing a sequence

of literals (from now on called the string) is described. This method consists

of two steps. First, a list of hypotheses for the cyclic group is generated. Then

each hypothesis is evaluated. The hypothesis resulting in the best �t (referred to

as the shortest distance) is selected as the most likely cyclic group. In the next

section, the hypothesis-generation is discussed. In this section, the calculation

of the distance between an hypothesis and the string is discussed. In �gure 5 an

overview of the grammatical inference procedure is presented. There are three

di�erent methods of generating hypotheses, to be detailed later.

4.1 Cyclic graph matching

In recovering the cyclic group of a string, it is assumed that because of drawing

and detection errors, there is no perfect match between the grammar and the

string. For example, the string abcabcabd might be generated by the cyclic group

abc, with the last element erroneously detected. In general, there are three types

of errors. An insert (extra literal in the string), a delete (missing literal) and

a substitute (replaced (group of) literal(s)). Note that any substitution can be

written as a sequence of inserts and deletes.

8



Figure 1: Fragment of a simple dashed line in an engineering drawing.

(a)

(b)

(c)

(d)

(e)

(f)

Figure 2: Dashed lines consist of a wide range of objects.

α

α

Carrier line

gap
A

B

Figure 3: Objects on a center line, with parameters.

Figure 4: Example of context dependant interpretation of graphical symbols.
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Figure 5: Overview of the grammatical inference procedure. There are three alterna-

tives for the hypothesis-generation, of which one needs to be selected.
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We de�ne the distance between a cyclic group and a string as the mini-

mal cost of a sequence of inserts, substitutes and deletes necessary to map the

string on concatenations of the cyclic group. See �gure 6 for an example of

calculating the distance. This distance is an extension of the Levenshtein dis-

tance ([14], which is a distance measure between two �nite strings, whereas the

string generated by concatenating cyclic groups is in�nite. Computation of

the Levenshtein-distance was shown to be solvable with dynamic programming

in [17]. The problem of matching a cyclic string with a string is explored [8]

and enhanced in [9]. We will present a variation on these methods suitable

for extension to multi-literal substitutions. Our main contribution stems from

rewriting the string matching problem to �nding the shortest path in a directed

graph. This provides for more exibility without increasing the computational

load.

The graph shown in �gure 7 is constructed from n by m nodes, with n the

number of literals, and m the size of the cyclic group. Each edge in the graph

represents an operation of the type insert (pi), delete (pd) or match/substitute

(pm=s). Each node is denoted as k[x; y] where x and y are the positions in the

string and cyclic group respectively. In �gure 7, because of the basic insert,

delete and match/substitute operations, only adjacent nodes are connected. In

contrast to the matching methods referred to earlier, we also allow multiple

object substitution. For example, the literals abc might be replaced with a

single d.

We de�ne a penalty table P , a matrix with sets of symbols on both axes.

The value associated with two sets of symbols is the cost of substituting one set
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A C A C A C A C

A B C A A AB D C B C

AC B CB BACBA C A

String

ddsd

s i

(AC)

(ABC)

Hypothesis

Hypothesis
2 errors (s+i)

4 errors (3d+s)

Figure 6: Mapping two cyclic groups on a string, with examples of all three error-types.

The cyclic group (AC) results in four errors, three deletes and a substitute. The cyclic

group (ABC) results in only two errors. It is decided as the most likely cylcic group to

have generated the string.

L1         L2         L3         L4         L5         ........            Ln

G1

G2

G3

...

Gm

Pd

Pi

Pm/s

K[3,3]

Start end

0

0

Figure 7: The matching graph with the three incoming edges of one node, corresponding

to the simple m=s, i, and d operations.
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with the other. The value p(x; i; y; j), which is the weight of the edge connecting

the nodes k[x�i; y�j] and k[x; y], is the cost of matching fL[x�i]; � � � ;  L[x�1]g

with fG[y� j]; � � � ; G[y� 1]g. As de�ned, these values p(x; i; y; j) are tabulated

in P . In �gure 8 is it demonstrated that this de�nition allows for the three

basic operations as well as multiple object substitution.

To �nd the cheapest way to arrive at a node, we de�ne:

k[x; y] =

8>>><
>>>:

0 : x = 0

min0�i�x;0<j�y k[x� i; y � j mod m] + p(x; i; y; j) : x > 0

:(1)

Finding the minimal number of errors in the match now reverts to �nding

the shortest path in the graph. See �gure 9 for an example. In this example

a simple penalty-table is used. So, p(x; 1; y; 0) = p(x; 1; y; 1) = p(x; 0; y; 1) = 1

for any combination of x and y. All other edges have weight 1.

4.2 Cyclic group matching applied to dashed line detection

Using literal-speci�c knowledge, we can now generate substitution rules. In this

section, an example of this generation is given for straight line-segments.

The entries in the penalty table P must be higher when the substituted lit-

erals di�er more. Consider for example line-segments. The criteria to compare

line-segments include width, angle and length. So, the more two line segments

di�er in these parameters, the costlier the subsitution.

Multiple literal substitution is depicted in �gure 10.(b). Here two line-

segments and a gap are replaced by one long line-segment. The criteria for

single segment substitution also apply here.

Observe �gure 11, in which substitution plays an important role. Here an
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Start end

G1

G2

G3

L1         L2         L3         L4         L5

B

p(2,1,3,2)

A
p(4,2,3,1)

C

p(4,1,2,1)

p(5,1,4,0)

D

p(1,0,3,1)

E

Figure 8: Edge A substitutes string elements L2 and L3 into cyclic-group element G2.

Edge B substitutes string element L1 into cyclic-group elements G1 and G2. Edge C is

a match/substitute, edge D a delete and E an insert.

A B C A B D A C A B C

A

B

C

A B C A B D A C A B C

A

B

C

A B C A B D A C A B C

A

B

C

(a)

(c)(b)

Figure 9: In graph (a), the dotted line indicates a penalty 1, the solid lines penalty 0.

The shortest path in the graph between the start and term node has penalty 2, which

is the distance between the string abcabdacabc and the cyclic group abc. Note that

there are two walks between the start and end-node with penalty 2. The �rst walk (b)

substitutes the D for a C and inserts a B. The second walk (c) deletes DA.

(A) (B)

Figure 10: Substitution examples. (a) Valuation of substitution must be based on

width, angle and length. (b) The same holds for multi-literal substitution.
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example image is presented with the detected line-segments. In �gure 11.c

the resulting gaps and line-segments with their assigned class are shown. In

�gure 11.d, the interpretation that follows from the match with the cyclic group

xayaya is presented. Multiple literal substitution is used twice to interpret a

long line-segment and short gap as a middle-sized line-segment and gap. It is

clear the cyclic group xayaya results in a very good match.

The function used to generate substitution rules is derived from the cluster-

ing function described in [10]. Several substitution rules were generated, shown

in �gure 12. Here gaps are denoted by dashed boxes. In example 11, only rule

(b) was used. Other rules might have been used if the match was performed

on a di�erent cyclic group. Applying these rules in a match is very cheap, be-

cause these rules retain the length of the dashed line. In other words, the rules

explain missing or superuous ink, they do not stretch or shrink the observed

dashed line.

4.3 Complexity

The complexity, measured in the number of considered edit-operations, of eval-

uating a single hypothesis is n�m� s. Here, n is the number of literals in the

string, m the size of the cyclic group, and s the average number of substitution

rules and edit operations that can be applied at a node in the matching graph.

Observe that s is proportional to the size of the alphabet, and typically very

small, but at least 3.
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x a y a y a x a y a y a x zb ya a x a y a z b x

x

y

a

y

a

a

(e)

x y y x y y x y y xy

Cyclic group

y x
a a a a a a a a a a a a

(d)

x x y x z y x z xy y y y
a a a a a a a a a a bb

(c)

(b)

(a)

Substitution
example

Figure 11: Example of matching. (a) Input image. (b) detected line-segments. (c)

classi�ed gaps (a,b) and line-segments (x,y,z). (d) The match with a, regularly spaced,

cyclic group xayaya.

x

y

z

y

xx a

z

a

a

b

b

Figure 12: Example of three generated rules, with low cost. The low cost is due to com-

parable sizes of the (sequence of) literals on the top and bttom part of the substitution

rules.
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5 Finding the optimal cyclic group

Given the alphabet and the number of literals in the list, the number of pos-

sible cyclic groups is bounded. It is limited to all possible permutations of the

alphabet within the possible grammar sizes. To consider this complete list of

all permutations is, however, very costly. If the number of di�erent symbols

and gaps is denoted as ws and wg respectively, then w
m=2
s w

m=2
g is the number of

possible cyclic groups of size m. As the maximum length of the cyclic group is

half the length of the string, we arrive at O(
Pn=2

m=1
(w

m=2
s w

m=2
g nm)) for the com-

plexity of the algorithm evaluating all possible cyclic groups. We can evaluate

this equation as O(n2w
n=2
l w

n=2
g ). Figure 13 gives a plot.

One way to reduce the amount of tested hypotheses is to impose constraints

on the allowed grammars. For example, dashed lines in standard engineering

drawings do not consist of cyclic groups with length greater than �ve. Gram-

mars used in engineering drawings and cartographic maps are of a distinct type

of grammar. With A and B line-segments C a gap, these grammars can be

described by (AC(BC)m), with m usually between 0 and 4.

These assumptions on the size and semantics of the cyclic group lead to a

di�erent computation of the complexity. The amount of possible hypotheses

now equals wlwg + 4w2

l wg. Combining this with the O(nm) complexity of the

graph matching, we get a complexity of O((wlwg + 4w2

l wg)
P

4

i=0(ni)) = O(n).

5.1 Heuristics for general solutions

While in most practical applications assumptions on the grammar reduce the

computational load, this might not always be possible. In this section we inves-
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tigate methods that use heuristics to arrive at an algorithm with an acceptable

complexity.

We observe that literals often occur after one another in the string. As a

consequence, they should also be neighbors in the cyclic group. In �gure 14, a

matrix is presented. In the matrix the number of times one literal is followed

by another is tabulated. The matrix is visualized by a weighted directed graph,

as shown in �gure 14.(b).

A cyclic group can be, as was shown for a string, written as a directed graph.

The derived graph is Hamiltonian1 if we add an edge between the last and the

�rst element in the cyclic group. Starting from the string's neighbor-graph Gs,

we determine classes of feasible hypotheses in an attempt to reduce the number

of hypotheses.

We de�ne the set of cyclic group-graphs, denoted by C. Each element C 2 C

is a graph with the same vertices as Gs, and its edges form a closed walk in

Gs. C is a weighted directed multigraph, with the sum of weights of the edges

between two vertices v1 and v2 equal to the weight of the same vertices in Gs.

The edges of the graph C are denoted as Vc. C
n is de�ned as the set of all the

closed walks in Gs with length � n. For an illustration see �gure 15.

Each graph C 2 Cn can be written as a cyclic group by noting the order in

which the vertices are travelled in a Hamilton-walk. The derived cyclic group

is not unique. The example of �gure 16 shows the smallest 2 graph yielding two

1A Hamilton-walk is a closed walk in the graph that travels all the edges exactly once and

has equal start point and end point. A graph is Hamiltonian if such a walk exists.

2In order to obtain two rotational variant Hamilton walks, at least six edges are needed.
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Figure 13: The number of possible cyclic groups with varying stringsize. wg = wl = 3.
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Figure 14: (a). The neighbors matrix of an example string. (b) The directed graph.
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di�erent not rotationally symmetric cyclic groups. A graph with six edges can

lead to two di�erent cyclic groups, but the number of di�erent Hamilton walks

grows rapidly in relation to the amount of edges.

For each graph C 2 Cn, f(C;Gs) measures the extend to what C explains

Gs. The weight of an edge is denoted as jvj, �(Gs) is the sum of the weights

in Gc and 
(C) is the number of (non-zero weight) edges in C. 
(C) thus

calculates the length of the cyclic group. We now de�ne the graph penalty

function:

f(C;Gs) =
X
v2Vc

(jvj � (�(Gs)=
(C)))2: (2)

f(C;Gs) calculates the sum of squared di�erences between the edge weights in

C and the relative length of the string.

In �gure 15, the right hand graph of length 3 leads to a cyclic group of

(ABD). If the original string (ABCABDABCAC), was produced by this cyclic

group, a value of 10=3 = 3:3, using the penalty function, would be expected

at each edge. The values in the graph are much lower than 3:3, so the cyclic

group ABD does not seem to be likely. In �gure 17 the graphs from �gure 15

are presented, along with their graph penalty. Note that in both measures,

the same ordering is only preserved for all graphs of the same length. This is

due to the fact that the heuristic favors graphs with many edges (large cyclic

groups) because the square term awards a low expected weight. In general the

heuristic does not answer the question which groupsize was most likely used to

generate the string.

Given the measure f(C;Gs) we can construct an algorithm that, given a
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Figure 16: Graph with di�erent Hamilton walks.
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an insert, delete and substitute operation have penalty 1.
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string, quickly computes the subgraphs with lowest penalty. This algorithm

generates all Hamiltonian subgraphs of Gs and computes the graph penalty

function for each of the generated graphs. The number of admissable subgraphs

is large. It is proportional to the number of subgraphs which is 2n (3). Because

the algorithm only needs to generate the cheapest (in terms of graph penalty

function) Hamiltonian graphs of a �xed length, this algorithm need not have a

high average case complexity.

In practice, the Hamiltonian graphs are generated in a recursive process.

The algorithm is described in pseudo-code in �gure 5.1. The procedure SelectNextEdge

selects the edge with highest multiplicity in the original graph G not yet part

of subgraph SG. In the procedure OrderMultiplicity the multiplicity of the

selected edges are ordered according to the minimal contribution to the sub-

graph's penalty. Only subgraphs which can result in a Hamiltonian subgraph

of size size and a lower penalty than found previously are being considered.

The algorithm considers all possible subgraphs in principle. But it does so in

a manner that limits the amount of completely considered subgraphs consider-

ably.

An analysis of this algorithm in more detail is beyond the scope of this

paper. Figure 19 gives an indication of the performance of the algorithm.

3We arrive at 2n because there are n edges, and a subgraph is formed by swithing edges

on and o�.
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procedure FindHamiltonian(Graph G, Graph SG, Integer size, Integer current)

if current = size

Best  SG

return

endif

Edge  SelectNextEdge(G,SG)

MultList  OrderMultiplicity(G,Edge,current)

for Multiplicity 2 MultList

NSG  AddEdge (SG,Edge,Multiplicity)

if Hamiltonian(NSG,size) = TRUE

Eval  Evaluate(NSG,size,current+Multiplicity)

if Eval < BestEval

FindHamiltonian(G,NSG,size,current+Multiplicity)

endif

endif

endfor

return

Figure 18: Pseudo-code of the optimal subgraph �nder
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5.2 Substrings

A reasonable assumption is that the cyclic group occurs at least once in the

string. Using this assumption, the number of cyclic groups to check reduces

even further. In �gure 20 the probability is shown that a cyclic group is a

substring of the string it has generated. In appendix A it is shown how to

calculate this graph.

Even though the cyclic group may not be a substring of the generated string,

using substrings may still be optimal. This is due to the fact that the cyclic

group not necessarily has the lowest penalty of all possible hypotheses. In �gure

21 this e�ect is demonstrated. In this �gure, the probability that the optimal

hypothesis is excluded by the employed heuristics is presented. This �gure is

derived by repeated testing (every combination of m and n was repeated 50

times). Therefore, it appears not as smooth as �gure 20. As can be seen in

�gure 21, the algorithm based on heuristics occasionally makes an error. But

this does not occur too often, and mainly with high cyclicgroupsize=stringsize

ratios. Given the fact that generating all possible hypotheses is not feasible in

practical applications, it is concluded that the heuristics perform well.

5.3 Complexity analysis

Please recall that all substrings of the string are taken as potential cyclic groups.

There are n�m possible substrings of length m in a string of length n. Because

evaluating one hypothesis has a complexity of O(nms), where s si again the

average number of applicable substitution rules, evaluating all substrings of a

string as hypotheses has a complexity of O(
Pn=2

m=1
(n �m)nms). We evaluate
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this, using summation rules, as

O(s(5n4=24 � n3=24 � n2=12)); (3)

which is equivalent to O(n4).

First it is noted that the order of n4 is an upper limit, and only valid in

the pathological case. For example, it does not take into account the many

redundancies in substrings. How this workes out is demonstrated in �gure 22.

The order-analysis assumes that every hypothesis is tested in full. This is

not necessary in general, for the algorithm is only interested in the best �t. Only

a rather naive algorithm would �rst evaluate all the hypotheses completely, and

then select the best �t. A smarter algorithm, incrementing the evaluation of

every hypothesis, leads to an algorithm with an acceptable average-case com-

plexity. This does not change the worst-case however, for it will always be

possible to construct an example where every hypothesis will need to be evalu-

ated in full.

When the method of using substrings is combined with the neighbor-graph

approach (only hypotheses that pass both criteria are tested), the number of

hypotheses is reduced again. In practice we adopt this approach. The results

of this approach are outlined in section 6.

5.4 Imposing a maximum on the size of the cyclic group

In practice, there is an upper limit for the length of the cyclic groups used in

the drawing. When the analysis is limited to cyclic groups of a �xed length of
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Figure 22: Number of hypotheses in relation to the size of the string. The graph

was obtained by repeatedly generating strings based on a cyclic group of length 6 and

determining the number of di�erent substrings. The probability of an error was set to

0:2.
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[1; : : : ;mmax], equation 3 changes to

t(n) =
mmaxX
m=1

(n�m)nms; (4)

which can be rewritten to t(n) = (1
2
nm2

max + 1

3
m3

max)ns. This has a worst-

case order of n2, a considerably improvement over the complexity in the case

where no constraints were placed on the grammar. In practise the amount

of hypotheses to be tested, captured in the �rst term, is sublinear due to the

redundancy-factor described earlier. Observe �gure 23 for an illustration of this

sublinearity. So, in e�ect a nearly linear result is achieved.

6 Experiments

In �gure 24.(a)-(e) a dashed line is shown with increasing degradation. The

ground truth in these images is the same, but in each successive image more gaps

and short line-segments were added to the image. The images are synthetic,

and generated by an algorithm described in [2].

The dashed lines in these experiment consist of straight line segments and

gaps. The line segments are classi�ed by a simple procedure segmenting the

length histogram. Signi�cant peaks are detected by iteratively convolving the

histogram with a Gaussian 1D-kernel until the number of peaks does not change

in succesive steps. Each line segment is then classi�ed to the nearest peak in

the length histogram. The initial size and increment of the Gaussian kernel is

based on experience. Experience shows that a small initial size and increment

gives good results. It is stressed that in this paper we concentrate on the

grammatical inference. The object detection and classi�cation procedures can
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be freely chosen.

A simple method for detecting the dashed line and classifying the objects is

employed before the grammatical inference is invoked. The dashed line detector

is invoked by given an initial estimation of the dashed line (represented by an

object and a direction). The dashed line is incrementally extended by added

the object in the image that is aligned to the dashed line. If there are more than

one object available, the object leading to the grammar with lowest penalty is

selected.

Figure 24.(a) displays an undisturbed images. Among the dashed lines in

�gure 24, only the last one did not result in a correct classi�cation of the

grammar.

In �gure 25, the relationship between the amount of degradation and recognition-

succes is depicted. The undisturbed image consists of 29 line segments in a

regular pattern. The image is disturbed by adding random gaps and lines. The

�gure shows that the recognition breaks down when around 6 lines and gaps

are added. In e�ect it means that recognition stops when less than 60 percent

of the correct line segments remain. In those cases, human perception also

breaks down. See for example �gure 26 for an image that was generated with

6 additional gaps en line segments. It is clear that this type of image causes

problems for the human eye.

In �gure 27 the time to infer the grammar in relation to the size of the

dashed line is presented. The tested image is 24.(c).
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Figure 23: The number of hypotheses to be tested when the maximum size of the cyclic

group is set to 10. This graph was generated by repeatedly generating strings based on

a cyclic group of length 6, and the chance of an error set to 0; 2.
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Figure 24: Dashed line with increasing degradation. (a)-(d) were correctly classi�ed.
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Figure 25: A dashed line (consisting of 29 line segments) is degraded with a number

of gaps and additional lines (the x-axis) before the dashed line detection is employed.

In the graph, the amount of disturbance is depicted againt the detection rate. A dashed

line is correctly classi�ed if both the grammar, and the parameters of the line-segments

and gaps are correctly extracted. The pattern to be detected consists of one short and

two long straight line segments separated by small gaps. Thirty images were generated

for every degradation level.

Figure 26: Example dashed line, consisting of 29 line segments in a regular pattern

and dewgraded by added 6 random line segments and gaps.
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. Our algo-

rithms are implemented on a Sun sparc station, 50 Mhz.
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7 Conclusions

In this paper a method was developed to infer the grammar of a string of

symbols. First the graphical symbols present in the image need to be detected

and the centerline of the dashed line must be determined. These two steps are

necessary prerequisite before the grammar of the dashed line can be inferred.

We showed, by extending known techniques, how the matching distance

between a grammar and a string of graphical symbols can be determined using

dynamic programming. The complexity if the matching algorithm is O(nm)

with n and m the length of the string and the grammar respectively.

Methods were investigated to generate the set of possible grammars that

could have generated the string. It was shown that an exhaustive search of

all possible grammars was implausible. There are two ways to overcome this

problem. First, restrictions can be imposed on the size and type of the gram-

mer. These restrictions can often be derived from domain knowledge about the

line-drawings under study, and lead to an algorithm with acceptable perfor-

mance. When the size of the grammar is restricted, the order of the grammat-

ical inference-algorithm is O(n2).

The second way to reduce the computational load of the grammatical infer-

ence is by introducing heuristics. We observed that symbols often occur after

one another in the string. As a consequence, they probably are also be neigh-

bors in the cyclic group. Based on this, a small subset of all possible grammars

can be generated. The resulting algorithm has a complexity of O(n4), which is

acceptable for strings of practical length.
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In the experiments we have shown that the algorithm is capable of recog-

nizing common dashed lines without a priori knowledge about the type and

length of the grammar. The recognition breaks down when the dashed line is

degraded beyond human recognition capability.

The work presented in this paper is extendable to other applications where

patterns in a linear stream of symbols must be inferred. Examples of such

applications are as diverse as the detection of birdsong, musical beat-induction

and inference of heart-rhythms. Extendability to two-dimensional applications

like texture matching although interesting in itself, is not straight forward.
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A Substring probabilities

The probability of a cyclic group occurring as a substring of the generated

string depends on the probability of an error, and the length of the cyclic group

and generated string. This problem has a natural analogy to a well known coin

tossing problem. Namely, the chance of a run of m heads in a sequence of n

trials, where n � m. This problem is explored in [5].

Calculating these probabilities can be done by approximation, as in the

reference, but also exact. This is done by constructing a graph, as shown in

�gure 28 for calculating the probability of a run of 3 heads in a sequence of 8

tries. In this graph, every node has two outgoing edges, one for a tail (t) and

one for a head (h). The nodes are denoted by coordinates i; j, where i refers

to the number of previous tries, and i the current run of h's. A t-edge exiting

from an i; j node leads to the i+ 1; 0 node. This is not true for t-edges exiting

from an i;m-node, which insteads leads to the i + 1;m-node.

The value in a node (i; j), denoted by C[i; j] is computed by summing the

products of the weights of incoming edges with the value of the node they exited

from. The value of node 0; 0 is set to 1. Now, C[i;m] represents the probability

of a sequence of m h0s in i tries.

This graph can be represented by the following (with m the size of the

cyclic group, n the length of the string, and 1 � p the probability of an error)
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recurrence-relations:

C[i; j] =

8>>>>>>>>>>>><
>>>>>>>>>>>>:

1 : i = 0; j = 0

Pm�1
k=0 (1 � p)C[i� 1; k] : i > 0; j = 0

pC[i� 1; j � 1] : i > 0; 1 � j < m

C[i� 1; j] + pC[i� 1; j � 1] : i > 0; j = m

With 1 � k � n, and C[n;m] being the desired probability. There is no known

closed-form formula for C[n;m]. To simplify, the C[i;m] nodes could also be

expressed in each other:

C[j;m] =

8>>>>>>><
>>>>>>>:

0 : j < m

pm : j = m

C[j � 1;m] + (1 � p)pm(1 � C[j �m� 1;m]) : j > m

(5)

Because we are only interested in C[n;m], equation 5 allows for fast computa-

tion of the desired probability.
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Figure 28: Graph used to calculate probability of a run of 3 h's in a sequence of 7

tries. A solid line denotes a head (h), with P (h) = p. A dashed line denotes a tail (t),

with P (t) = 1� P (h).
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