
Algorithms for Non-Linear Di�usion
Matlab in a Literate Programming Style

Rein van den Boomgaard

Intelligent Sensory Information Systems

University of Amsterdam

The Netherlands

Original Image Perona and Malik Diffusion

This report de�nes the Matlab code used for the course on non-
linear di�usion in image processing. In this report you will �nd
algorithms for Gaussian convolutions, scalar nonlinear di�usion
(e.g. the Perona and Malik type of di�usion) and tensor di�usion
(e.g. edge enhancing di�usion and coherence enhancing di�usion).

A literate programming style is used for the speci�cation of the

Matlab code. This means that the actual code is derived from the

(electronic version of the) text in this document.

Draft: please send your comments and sug-
gestions to the corresponding au-
thor

Algorithms for Non-Linear Di�usion

Contents

1 Introduction 1

2 Gaussian derivatives 1

3 Nonlinear Scalar Di�usion 4

3.1 Perona and Malik Di�usion . 8

4 Non-Linear Tensor Di�usion 10

4.1 Edge Enhancing Di�usion . 13
4.2 Coherence Enhancing Di�usion . 16

5 Conclusion 19

A Literate programming using noweb 19

B Generate the Matlab code 19

C Generate the �gures 20

Intelligent Sensory Information Systems

Department of Computer Science
University of Amsterdam
Kruislaan 403
1098 SJ Amsterdam
The Netherlands

tel: +31 20 525 7463

fax: +31 20 525 7490

http://www.science.uva.nl/research/isis

Corresponding author:

Rein van den Boomgaard
tel: +31(20)525 7560
rein@science.uva.nl

http://www.science.uva.nl/~rein

Section 1 Introduction 1

1 Introduction

This report de�nes the Matlab code used for the course on non-linear di�usion in
image processing. In this report you will �nd algorithms for:

Gaussian convolutions. These image operators are the basic operators in any
linear scale-space based approach to computer vision.

Scalar di�usion. A generic algorithm for scalar non linear di�usion is presented.
As an example the classical Perona and Malik type of di�usion is implemented.

Tensor di�usion. A simple generic algorithm for tensor di�usion is presented. Ex-
amples using this scheme are edge enhancing di�usion and structure enhancing

di�usion.

The algorithms presented in this report are largely based on the papers by Weickert
[?]. The eÆcient AOS schemes that he presents in his papers are not implemented
in this report; only the simple forward Euler schemes are given.

The code presented in this report is not meant as production quality code but
merely to test the principles of non linear di�usion on real images. Matlab is used
as programming language.

2 Gaussian derivatives

This section gives the code for the Gaussian (derivative) convolutions. The gD

function provides the basic functionality for any scale-space based vision application.
We make use of the build-in function conv2 in Matlab to do the actual convolution.
Only derivatives up to order 2 can be used in the gD function. The minimal scale to
be used is 1 (although there is no check on the given scale).

The main structure of the program gD to calculate the Gaussian derivative of an
image is like:

1a hgD.m 1ai�
function g = gD(f, scale, ox, oy)

% Gaussian (Derivative) Convolution

hCalculate sample points 1bi
hSample Gaussian function and normalize 2ai
hCalculate the derivatives in x and y-direction 2bi
hDo the convolutions 3ai

This de�nition is continued in chunk 2c.
Root chunk (not used in this document).

We sample the 1D functions in the integer valued sample points �K;�K +
1; : : : ;�1; 0; 1; : : : ;K � 1;K, where we set K = 3� scale.

1b hCalculate sample points 1bi�
K = ceil(3 * scale);

x = -K:K;

This code is used in chunk 1a.

2 Rein van den Boomgaard

Then we calculate the zero-order 1D kernel by sampling the continuous Gaussian
function. This implies that we can only use scales larger then 1 (well. . . scales down to
0.7 are used in practice as well). For more accurate Gaussian convolutions at smaller
scales we have to resort to a discrete convolution kernel based on an interpolation
technique (see [?]).

2a hSample Gaussian function and normalize 2ai�
Gs = exp(- x.^2 / (2*scale^2));

Gs = Gs / sum(Gs);

This code is used in chunk 1a.

To calculate the required derivative of the Gaussian kernel we make use of the fact
that:

dGs

dx
= �

x

s2
Gs(x)

and
d2Gs

dx2
=

x2 � s2

s4
Gs(x)

Unfortunately the Hermite polynomials are not available in Matlab as a standard
function (else it would be extremely simple to support any order of di�erentiation.

In Matlab code we have:

2b hCalculate the derivatives in x and y-direction 2bi�
Gsx = gDerivative(ox, x, Gs, scale);

Gsy = gDerivative(oy, x, Gs, scale);

This code is used in chunk 1a.

where the (local) function is de�ned as:

2c hgD.m 1ai+�
function r = gDerivative(order, x, Gs, scale)

switch order

case 0

r = Gs;

case 1

r = -x/(scale^2) .* Gs;

case 2

r = (x.^2-scale^2)/(scale^4) .* Gs;

otherwise

error('only derivatives up to second order are supported');

end

Finally the actual convolution is done using the build-in Matlab function conv2.
This function can take two 1D kernel arguments and then does two consecutive
convolutions (along the columns and along the rows).

2d hDo the convolutions (not used) 2di�
g = conv2(Gsx, Gsy, f, 'same');

Root chunk (not used in this document).

Section 2 Gaussian derivatives 3

Although the above code chunk leads to running programs, the standard Matlab
choice of padding the image with zeros leads to unwanted and unnecessary artifact
at the border of the image. A better choice is to repeat the border. Instead of calling
the function conv2 we call a new function convSepBrd:

3a hDo the convolutions 3ai�
g = convSepBrd(f, Gsx, Gsy);

This code is used in chunk 1a.

This function convSepBrd �rst makes a larger images such that a convolution using
the buildin function conv2 with the 'valid' parameter used, returns an image of
the original size again.

To build the correct border around the given image, consider the following 1D
example:

f = [9 8 7 6 5];

If we want to convolve this image with repetition of the border using the kernel 1/25
* [1 1 1 1 1] (i.e. a local average in a 1� 5 neighborhood we �rst construct the
larger `image' fwithborder:

fwb = [9 9 9 8 7 6 5 5 5];

This image is easily constructed from f using the indexing facilities of Matlab:

fwb = f([1 1 1 2 3 4 5 5 5]);

i.e. we put two starting indices (value 1) in front of the original index list 1 2 3 4

5 and append the last index twice. We need two extra `pixels' in front and at the
end of the list because of the size of the kernel that is used.

For a 2D image we can use this program construction for both axes. Here we
assume that the kernel is o� odd sizes and that the center of the kernel is in the
center. This is indeed the case for the Gaussian (derivative) kernels.

3b hconvSepBrd.m 3bi�
function g = convSepBrd(f, w1, w2)

% convolve along colums + along rows with repetition of the border

N = size(f,1);

M = size(f,2);

K = (size(w1(:),1)-1)/2;

L = (size(w2(:),1)-1)/2;

iind = min(max((1:(N+2*K))-K,1),N);

jind = min(max((1:(M+2*L))-L,1),M);

fwb = f(iind,jind);

g=conv2(w1,w2,fwb,'valid');

Root chunk (not used in this document).

4 Rein van den Boomgaard

It should be noted that the Image Processing Toolbox version 3 introduces the
imfilter function that has the border replication option build in. Unfortunately it
doesn't have the option of separable kernels.

Based on the gD function we provide the functions to calculate the 1-jet and 2-jet
of a given image at given scale. The image in the jet are returned separately (using
the Matlab way of returning multiple results from a function1.

4a hg1Jet.m 4ai�
function [fs, fsx, fsy] = g1Jet(f, scale)

% First order Gaussian jet

fs = gD(f, scale, 0, 0);

fsx = gD(f, scale, 1, 0);

fsy = gD(f, scale, 0, 1);

Root chunk (not used in this document).

4b hg2Jet.m 4bi�
function [fs, fsx, fsy, fsxx, fsxy, fsyy] = g2Jet(f, scale)

% Second order Gaussian jet

fs = gD(f, scale, 0, 0);

fsx = gD(f, scale, 1, 0);

fsy = gD(f, scale, 0, 1);

fsxx = gD(f, scale, 2, 0);

fsxy = gD(f, scale, 1, 1);

fsyy = gD(f, scale, 0, 2);

Root chunk (not used in this document).

To test the gD and jet functions consider the following code (the result is shown
in Fig. 1).

4c hgDtest.m 4ci�
a = imread('cameraman.tif');

a = im2double(a);

[L, Lx, Ly, Lxx, Lxy, Lyy] = g2Jet(a, 3);

subplot(3,3,1); imshow(L, []); title('L');

subplot(3,3,4); imshow(Lx, []); title('Lx');

subplot(3,3,5); imshow(Ly, []); title('Ly');

subplot(3,3,7); imshow(Lxx, []); title('Lxx');

subplot(3,3,8); imshow(Lxy, []); title('Lxy');

subplot(3,3,9); imshow(Lyy, []); title('Lyy');

Root chunk (not used in this document).

3 Nonlinear Scalar Di�usion

In this section we consider the following non-linear di�usion scheme:

@tL = r � (crL)

1It would be nice of course to use a more appropriate data structure to keep all image in the jet
together (e.g. a Matlab structure)

Section 3 Nonlinear Scalar Di�usion 5

L

Lx Ly

Lxx Lxy Lyy

Figure 1: Test of gD function. The 2-jet of the cameraman.tif image is shown.

where c is a scalar function dependent on the gradient norm krLk. Here we only
consider forward Euler explicit numerical schemes.

In our numerical solution schemes we use the notation Lt
i;j where t is the time

and i; j are the spatial indices2. Furthermore we write cti;j to denote the function c

as a function of space and time (note that it is a function of time as well because c
is dependent on the gradient norm krLk).

Writing the above PDE in its spatial components leads to:

@tL = @x(c@xL) + @y(c@yL):

From this expression we see that in case we discretize this PDE using a symmetric
scheme for the �rst order derivatives (in a 3� 3 stencil) we end up with a numerical
scheme in a 5� 5 stencil. In this report we follow Weickert [] in the construction of
a numerical scheme within a 3� 3 stencil.

2Throughout this report we assume that the sampling grid has unit sampling distances along all
spatial axes. Therefore the spatial indices directly correspond with spatial coordinates in the visual
plane.

6 Rein van den Boomgaard

First we consider the term @x(c@xL). The `trick' is to use asymmetric schemes
for @x. Let Fi (we concentrate here on the x-dependence) be a function the we de�ne
the left derivative:

@�x F = Fi � Fi�1

and right derivative
@+x F = Fi+1 � Fi

Now we can restrict the stencil for the term @x(c@xL) to a 3� 3 stencil by using @+x
for the innermost derivative and @�x for the outer derivative or vice versa of course.
The average of both possible choices makes the total scheme symmetrical.

@x(c@xL) �
1

2

�
@+x (c@

�
x L) + @�x (c@

+
x L)

�
We have:

@+x (c@
�
x L) = @+x (ci(Li � Li�1))

= ci+1(Li+1 � Li)� ci(Li � Li�1)

and

@�x (c@
+
x L) = @�x (ci(Li+1 � Li))

= ci(Li+1 � Li)� ci�1(Li � Li�1)

combining to

@x(c@xL) �
1

2
((ci + ci+1)(Li+1 � Li)� (ci�1 + ci)(Li � Li�1))

It should be carefully noted that we have omitted the j-subscript in all above ex-
pressions for the discrete derivative. For all spatial terms the j-index is the same:

@x(c@xL) �
1

2
((ci;j + ci+1;j)(Li+1;j � Li;j)� (ci�1;j + ci;j)(Li;j � Li�1;j))

For the term @y(c@yL the same analysis leads to

@y(c@yL) �
1

2
((ci;j + ci;j+1)(Li;j+1 � Li;j)� (ci;j�1 + ci;j)(Li;j � Li;j�1))

The discretization of the PDE then becomes

Lt+dt
i;j = Lt

i;j +
dt

2
((cti;j + cti+1;j)(L

t
i+1;j � Lt

i;j)� (cti�1;j + cti;j)(L
t
i;j � Lt

i�1;j) +

(cti;j + cti;j+1)(L
t
i;j+1 � Lt

i;j)� (cti;j�1 + cti;j)(L
t
i;j � Lt

i;j�1))

where the stepsize dt should be chosen less then 0.25 in order to result in a stable
solution scheme (see Weickert []).

The function snldStep (scalar non-linear di�usion) calculates the `step value'
in the right hand side of the above expression.

Section 3 Nonlinear Scalar Di�usion 7

6 hsnldStep.m 6i�
function r = snldStep(L, c)

% Discrete numerical scheme of dL/dt for scalar diffusion

N = size(L, 1);

M = size(L, 2);

hTranslations of c image 7bi
hTranslations of L image 8ai
hCalculate dL/dt 8bi

Root chunk (not used in this document).

Matlab is eÆcient in dealing with pixel wise image operators. Therefore we �rst
construct images such that the expression to be implemented is a pixel wise combi-
nation of several images. For this we need several translated images. As we need so
many translations we de�ne a function to do so.

The translation function is based on Matlabs capability to use index vectors.
As an example consider the 1D image (vector) a=[6 5 4 3 2 1]. Translating this
`image' two pixels to the left by using an index of the form iind=[3 4 5 6 6 6].
Then the translated image [4 3 2 1 1 1] is obtained as a[iind].

7a htranslateImage.m 7ai�
function r = translateImage(f, di, dj)

% Translation of an image

N = size(f, 1);

M = size(f, 2);

if di>0

iind = [(di+1):N, N*ones(1,di)];

elseif di<0

iind = [ones(1,-di), 1:(N+di)];

else

iind = 1:N;

end

if dj>0

jind = [(dj+1):M, M*ones(1,dj)];

elseif dj<0

jind = [ones(1,-dj), 1:(M+dj)];

else

jind = 1:M;

end

r = f(iind, jind);

Root chunk (not used in this document).

7b hTranslations of c image 7bi�
cpc = translateImage(c, 1, 0);

cmc = translateImage(c, -1 , 0);

ccp = translateImage(c, 0, 1);

ccm = translateImage(c, 0, -1);

This code is used in chunk 6.

Now cpc is the image such that cpc(i,j)=c(i+1,j). Note that cpc stands for
c-image with coordinate shifts i plus 1 and no coordinate shift (translation) in the
j coordinate (the c denotes the `central' point).

8 Rein van den Boomgaard

We can do this for the L image as well:

8a hTranslations of L image 8ai�
Lpc = translateImage(L, 1, 0);

Lmc = translateImage(L, -1, 0);

Lcp = translateImage(L, 0, 1);

Lcm = translateImage(L, 0, -1);

This code is used in chunk 6.

This makes the �nal calculation a simple pixel wise expression in Matlab:

8b hCalculate dL/dt 8bi�
r = ((cpc+c).*(Lpc-L) - (c+cmc).*(L-Lmc) + ...

(ccp+c).*(Lcp-L) - (c+ccm).*(L-Lcm)) / 2;

This code is used in chunk 6.

Observe that for c = 1 (i.e. a constant function) the right hand side of the
discretized PDE (what the snldStep function calculates) reduces to:

r = Lpc + Lmc + Lcp + Lcm � 4 � L

the classical approximation of the Laplacian. Indeed in this special case the PDE is
the linear di�usion equation.

3.1 Perona and Malik Di�usion

Perona and Malik were the �rst to introduce non-linear di�usion within the image
processing context. We consider only one of the conductivity functions that they
introduced:

c(krLk) = exp

�
krLk2

k2

!

The Matlab code for Perona and Malik di�usion is:

8c hpmc.m 8ci�
function g = pmc(f, k, stepsize, nosteps, verbose)

% Perona and Malik Diffusion

hIf verbose then show original image 9bi
hRun di�usion step 'nosteps' times 9ai

Root chunk (not used in this document).

For every step the gradient norm and the c-function of the gradient norm should be
calculated and the function snldStep is called to calculate the change in the image.

8d hCalculate the (square) of the gradient norm 8di�
gx = gD(g, 1, 1, 0);

gy = gD(g, 1, 0, 1);

grad2 = gx.*gx + gy.*gy;

This code is used in chunk 9a.

8e hCalculate the conductivity function 8ei�
c = exp(-grad2 / (k^2));

This code is used in chunk 9a.

Section 3 Nonlinear Scalar Di�usion 9

9a hRun di�usion step 'nosteps' times 9ai�
g = f;

for i=1:nosteps

hCalculate the (square) of the gradient norm 8di
hCalculate the conductivity function 8ei

g = g + stepsize * snldStep(g, c);

hIf verbose then show di�used image 9ci
end

This code is used in chunk 8c.

A verbose parameter equal to zero means that no images are shown of interme-
diate results. Other verbose values indicate the Matlab �gure number in which
intermediate results are depicted.

9b hIf verbose then show original image 9bi�
if verbose

figure(verbose);

subplot(1,2,1); imshow(f); title('Original Image'); drawnow;

end

This code is used in chunk 8c.

9c hIf verbose then show di�used image 9ci�
if verbose

figure(verbose);

subplot(1,2,2); imshow(g);

title('Perona and Malik Diffusion'); drawnow;

end

This code is used in chunk 9a.

To test the Perona and Malik di�usion consider the following code (the results
are shown in Fig. 2). Only a small part from the cameraman image is selected to
speed up processing and to show the details.

9d hpmctest.m 9di�
a = imread('cameraman.tif');

a = im2double(a);

ad = a(1:100,75:150);

b = pmc(ad, 0.1, .24, 10, 1);

Root chunk (not used in this document).

Other types of conductivity functions can be easily incorporated into the code
presented in this section. It would be interesting to look at:

� The Charbonnier conductivity function:

c(krLk) =
1q

1 + krLk2

k2

that results in an inherently stable PDE (compared to the P&M PDE that
may be unstable when trying to do inverse di�usion).

10 Rein van den Boomgaard

Original Image Perona and Malik Diffusion

Figure 2: Test of pmc function. On the left the original image is shown. On the
right the result of Perona and Malik di�usion. For the parameters see the pmctest
code.

� The conductivity functions proposed by Black [?] that are based on a robust
statistical interpretation of non linear di�usion.

� Constructing conductivity functions based on higher order image structure.
One might argue that the di�usion should be linked to the isophote curvature.

4 Non-Linear Tensor Di�usion

In this section we consider anisotropic di�usion described with the PDE:

@tL = r � (DrL)

whereD is a positive semi de�nite symmetric di�usion tensor. Here we only consider
2D images. The di�usion tensor is then assumed to be a the form:

D =

a b

b c

!
:

All elements of the tensor are functions of the local image structure and hence
functions of the spatial coordinates. In Cartesian coordinates we have:

@tL = (@x @y)

a b

b c

!
@xL

@yL

!

= (@x @y)

a @xL+ b @yL

b @xL+ c @yL

!

Section 4 Non-Linear Tensor Di�usion 11

= @x(a @xL+ b @yL) + @y(b @xL+ c @yL)

= @x(a @xL) + @x(b @yL) + @y(b @xL) + @y(c @yL):

If we compare this PDE with the case of scalar di�usion we see that two new terms
arise: @x(b @yL) and @y(b @xL). For the other two terms the same numerical schemes
can be used as we have developed in the previous section.

For the mixed terms we can use the symmetrical central di�erences and still
come up with a scheme is a 3� 3 neighborhood. Now we take

@cxF =
1

2
(Fi+1;j � Fi�1;j)

and

@cyF =
1

2
(Fi;j+1 � Fi;j�1):

This leads to:

@x(b @yL) � @cx(b @
c
yL)

= @cx

�
1

2
bi;j(Li;j+1 � Li;j�1)

�

=
1

2

�
1

2
bi+1;j(Li+1;j+1 � Li+1;j�1)�

1

2
bi�1;j(Li�1;j+1 � Li�1;j�1)

�

=
1

4
(bi+1;j(Li+1;j+1 � Li+1;j�1)� bi�1;j(Li�1;j+1 � Li�1;j�1)) :

For the other mixed term we obtain:

@y(b @xL) �
1

4
(bi;j+1(Li+1;j+1 � Li�1;j+1)� bi;j�1(Li+1;j�1 � Li�1;j�1)) :

The non linear tensor di�usion PDE now is:

Lt+dt
i;j = Lt

i;j + dt (

�
bi�1;j + bi;j+1

4
Li�1;j+1 +

ci;j+1 + ci; j

2
Li;j+1 +

bi+1;j + bi;j+1

4
Li+1;j+1 +

ai�1;j + ai;j

2
Li�1;j �

ai�1;j + 2ai;j + ai+1;j + ci�1;j + 2ci;j + ci+1;j

2
Li;j +

ai+1;j + ai;j

2
Li+1;j

bi�1;j + bi;j�1

4
Li�1;j�1 +

ci;j�1 + ci; j

2
Li;j�1 +�

bi+1;j + bi;j�1

4
Li+1;j�1):

Note that all terms in the rhs of the PDE are all linear in the values of Li;j. This
allows us to write the discretization of the PDE as a quasi convolution kernel (sten-
cil). It is not a real convolution as the values in the 3 � 3 kernel are dependent on
the di�usion tensor and thus dependent on the spatial position. The stencil is:

�
bi�1;j+bi;j+1

4
ci;j+1+ci;j

2
bi+1;j+bi;j+1

4
ai�1;j+ai;j

2
ai�1;j+2ai;j+ai+1;j+ci�1;j+2ci;j+ci+1;j

2
ai+1;j+ai;j

2
bi�1;j+bi;j�1

4
ci;j�1+ci;j

2 �
bi+1;j+bi;j�1

4

12 Rein van den Boomgaard

For implementing this discretization of the PDE in Matlab we again use the
`trick' �rst to construct translated versions of the images and then implement the
scheme as a pixel wise combination of (a lot of) images. We need all 9 translations
of L within a 3� 3 neighborhood and 10 more translations of the images a, b and c,
making a total of 19 images.

12a htnldStep.m 12ai�
function r = tnldStep(L, a, b, c)

% Discrete numerical scheme of dL/dt for tensor diffusion

N = size(L, 1);

M = size(L, 2);

hTranslations of L (tnldStep) 12bi
hTranslations of a (tnldStep) 12ci
hTranslations of b (tnldStep) 12di
hTranslations of c (tnldStep) 12ei
hCalculate dL/dt (tnldStep) 13i

Root chunk (not used in this document).

We need all translation of L within the 3� 3 neighborhood.

12b hTranslations of L (tnldStep) 12bi�
Lpc = translateImage(L, 1, 0);

Lpp = translateImage(L, 1, 1);

Lcp = translateImage(L, 0, 1);

Lmp = translateImage(L, -1, 1);

Lmc = translateImage(L, -1, 0);

Lmm = translateImage(L, -1, -1);

Lcm = translateImage(L, 0, -1);

Lpm = translateImage(L, 1, -1);

This code is used in chunk 12a.

We only need two translations of a besides the image a itself.

12c hTranslations of a (tnldStep) 12ci�
amc = translateImage(a, -1, 0);

apc = translateImage(a, +1, 0);

This code is used in chunk 12a.

For b we need 4 translations:

12d hTranslations of b (tnldStep) 12di�
bmc = translateImage(b, -1, 0);

bcm = translateImage(b, 0, -1);

bpc = translateImage(b, +1, 0);

bcp = translateImage(b, 0, +1);

This code is used in chunk 12a.

And for c we need again only two translated versions:

12e hTranslations of c (tnldStep) 12ei�
ccp = translateImage(c, 0, +1);

ccm = translateImage(c, 0, -1);

This code is used in chunk 12a.

Section 4 Non-Linear Tensor Di�usion 13

This makes the �nal expression simple (although long...)

13 hCalculate dL/dt (tnldStep) 13i�
r = -1/4 * (bmc+bcp) .* Lmp + ...

1/2 * (ccp+c) .* Lcp + ...

1/4 * (bpc+bcp) .* Lpp + ...

1/2 * (amc+a) .* Lmc - ...

1/2 * (amc+2*a+apc+ccm+2*c+ccp) .* L + ...

1/2 * (apc+a) .* Lpc + ...

1/4 * (bmc+bcm) .* Lmm + ...

1/2 * (ccm+c) .* Lcm - ...

1/4 * (bpc+bcm) .* Lpm;

This code is used in chunk 12a.

The numerical scheme presented in this subsection is not the best possible one.
It may lead in certain situations to behaviour that is not in accordance with the
smoothing properties we have in mind while developing the (continuous) theory.
Weickert gives a somewhat more complex numerical scheme on a 3� 3 stencil that
eliminates these problems (at the expense that the anisotropy should be somewhat
limited). We leave the implementation of that scheme to the interested reader (and
kindly ask to mail me the code).

4.1 Edge Enhancing Di�usion

In many situations the local gradient (measured at in�nitesimally small scale) does
not provide a useful indication of the local perceptual orientation in an image. Often
the edges are quite noisy causing the gradient to uctuate considerably, both in
magnitude as well as in direction.

Edge enhancing di�usion is based on the idea that a better estimate of the per-
ceptual signi�cant orientation of the edge direction can be obtained by constructing
the di�usion tensor based on an orientation estimate obtained from observing the
image at a larger scale. We use the name `edge enhancing di�usion' as was intro-
duced by Weickert, although it might be better called `edge preserving smoothing'.

Edge enhancing di�usion constructs the di�usion tensor D as follows:

D = RT

c1 0
0 c2

!
R

where R is the rotation matrix describing the local coordinate system aligned with
the gradient vector observed at scale u.

R =
1q

(Lu
x)

2 + (Lu
y)

2

Lu
x �Lu

y

Lu
y Lu

x

!

where Lu denotes the image observed at scale u. This leads to a di�usion tensor

D =
1

(Lu
x)

2 + (Lu
y)

2

c1(L

u
x)

2 + c2(L
u
y)

2 (c2 � c1)L
u
xL

u
y

(c2 � c1)L
u
xL

u
y c1(L

u
y)

2 + c2(L
u
x)

2

!
:

14 Rein van den Boomgaard

Note that c1 is the conductivity in the direction of the gradient (observed at scale u)
and the c2 is the conductivity along the isophote. In order to compare edge enhancing
di�usion with scalar di�usion (Perona and Malik type) we set the di�usion along the
edge to be equal to the isotropic di�usion in the Perona and Malik di�usion discussed
earlier and set the conductivity across the edge to be one �fth of the conductivity
along the edge.

c2(L
u
w) = e

�
(Luw)2

k2

c1(L
u
w) =

1

5
c2(L

u
w)

Here Lu
w =

q
(Lu

x)
2 + (Lu

y)
2 is the gradient norm.

14a heed.m 14ai�
function R = eed(L, k, uscale, stepsize, nosteps, verbose)

% eed: edge enhancing diffusion

hShow original image if verbose 15ai
hRun edge enhancing di�usion 'nosteps' times 14bi

Root chunk (not used in this document).

The edge enhancing di�usion is:

14b hRun edge enhancing di�usion 'nosteps' times 14bi�
R = L;

for i = 1:nosteps

hCalculate Rx, Ry and Rw2 at scale u 14ci
hCalculate c1 and c2 14di
hCalculate di�usion tensor components 14ei
R = R + stepsize * tnldStep(R, a, b, c);

hIf verbose show edge enhanced di�usion result 15bi
end

This code is used in chunk 14a.

14c hCalculate Rx, Ry and Rw2 at scale u 14ci�
Rx = gD(R, uscale, 1, 0);

Ry = gD(R, uscale, 0, 1);

Rw2 = Rx.^2 + Ry.^2;

Rw = sqrt(Rw2);

This code is used in chunk 14b.

14d hCalculate c1 and c2 14di�
c2 = exp(- (Rw / k).^2);

c1 = 1/5 * c2;

This code is used in chunk 14b.

14e hCalculate di�usion tensor components 14ei�
a = (c1 .* Rx.^2 + c2 .* Ry.^2) ./ (Rw2+eps);

b = (c2-c1) .* Rx .* Ry ./ (Rw2+eps);

c = (c1 .* Ry.^2 + c2 .* Rx.^2) ./ (Rw2+eps);

This code is used in chunk 14b.

Section 4 Non-Linear Tensor Di�usion 15

Original Image Edge Enhancing Diffusion

Figure 3: Test of eed function. On the left the original image is shown. On the
right the result of the edge enhancing di�usion. For the parameters see the eedtest
code.

Settting the verbose parameter to a positive integer value, the corresponding
Matlab �gure will show the original image and the �nal result.

15a hShow original image if verbose 15ai�
if verbose

figure(verbose);

subplot(1,2,1); imshow(L); title('Original Image'); drawnow;

end

This code is used in chunk 14a.

15b hIf verbose show edge enhanced di�usion result 15bi�
if verbose

figure(verbose);

subplot(1,2,2); imshow(R);

title('Edge Enhancing Diffusion'); drawnow;

end

This code is used in chunk 14b.

To test edge enhancing di�usion consider the following code.

15c heedtest.m 15ci�
a = imread('cameraman.tif');

a = im2double(a);

ad = a(1:100,75:150);

b = eed(ad, 0.1, 1, .24, 10, 2);

Root chunk (not used in this document).

16 Rein van den Boomgaard

The resultant images are depicted in Fig. 3. Comparing the results with the classical
Perona and Malik di�usion we see that in the homogenuous regions the smoothing is
comparable but that the edge enhancing di�usion preserves the edges much better.

4.2 Coherence Enhancing Di�usion

In some situations estimating the local orientation as the direction of the gradient
vector is not possible. Consider the �nger print image in Fig. ??(a). In �gure (b),
(c) and (d) the same image is shown observed at scales 0.7, 1.0 and 2.0. It is obvious
that the local structure one is interested in, i.e. the orientation of the �nger print
pattern is totally wipes out when observing the image at scale 2. However observing
it at smaller scales makes the orientation estimation very noise sensitive and renders
it useless in practical applications.

One such practical application is image smoothing where we do like to smooth
the image, without of course destroying the �nger print lines. The isotropic Gaussian
smoothing is of no great help here (as shown in Fig. ??). We would like to �nd the
prominent (perceptual) local orientation and smooth along the �nger print lines but
not accross them.

The local orientation estimation is based on the structure tensor3:

S =

s11 s12
s12 s22

!
=

LxLx �G

u LxLy �G
u

LxLy �G
u LyLy �G

u

!

whose eigenvectors indicate the most prominent orientation. The di�erence between
the two eigenvalues is an indication of the anistropy in a local neighborhood in the
image.

Coherence enhancing di�usion constructs the di�usion tensor D as follows:

D =

d11 d12
d12 d22

!
= RT

c1 0
0 c2

!
R

Here is the rotation matrix whose columns are the eigenvectors of the structure

tensor S (i.e. indicting the local orientation of an image patch) and c1 and c2 are
the conductivity coeÆcients along the principal directions.

The eigenvectors of the structure tensor and thus the rotation matrix R can be
calculated analytically (using for instance Mathematica). This leads to the di�usion
tensor D with components:

d11 =
1

2

�
c1 + c2 +

(c2 � c1)(s11 � s22)

�

�

d12 =
(c2 � c1)s12

�

d22 =
1

2

�
c1 + c2 �

(c2 � c1)(s11 � s22)

�

�
:

3In my opinion one should take ~Lx = Lx�hLxi where hLxi is the mean gradient (component) in
the neighborhood. This way a correction for a constant gradient term is build in). It would make
the calculation of the structure tensor somewhat more complex than a convolution. Maybe that is
the reason that such a correction is not described in the literature.

Section 4 Non-Linear Tensor Di�usion 17

where
� =

q
(s11 � s22)2 + 4s212:

The eigenvalues of the structure tensor are given by:

�1;2 =
1

2
(s11 + s22 � �) :

These eigenvalues determine the di�usion `speeds' c1 and c2. We select:

c1 = max(0:01; 1 � e�(�1��2)
2=k2); c2 = 0:01;

17a hced.m 17ai�
function R = ced(L, k, obsscale, intscale, stepsize, nosteps, verbose)

% ced: coherence enhancing diffusion

hShow original image if verbose (ced) 18ai
hRun coherence enhancing di�usion 'nosteps' times 17bi

Root chunk (not used in this document).

The coherence enhancing di�usion is:

17b hRun coherence enhancing di�usion 'nosteps' times 17bi�
R = L;

for i = 1:nosteps

hCalculate structure tensor components 17ci
hCalculate c1 and c2 (ced) 17di
hCalculate di�usion tensor components (ced) 17ei
R = R + stepsize * tnldStep(R, d11, d12, d22);

hIf verbose show coherence enhanced di�usion result 18bi
end

This code is used in chunk 17a.

The components of the structure tensor (S) are calculated as:

17c hCalculate structure tensor components 17ci�
Rx = gD(R, obsscale, 1, 0);

Ry = gD(R, obsscale, 0, 1);

s11 = gD(Rx.^2, intscale, 0, 0);

s12 = gD(Rx.*Ry, intscale, 0, 0);

s22 = gD(Ry.^2, intscale, 0, 0);

alpha = sqrt((s11-s22).^2 + 4*s12.^2);

el1 = 1/2 * (s11 + s22 - alpha);

el2 = 1/2 * (s11 + s22 + alpha);

This code is used in chunk 17b.

17d hCalculate c1 and c2 (ced) 17di�
c1 = max(0.01, 1-exp(-(el1-el2).^2 / k^2));

c2 = 0.01;

This code is used in chunk 17b.

17e hCalculate di�usion tensor components (ced) 17ei�
d11 = 1/2 * (c1+c2+(c2-c1).*(s11-s22)./(alpha+eps));

d12 = (c2-c1).*s12./(alpha+eps);

d22 = 1/2 * (c1+c2-(c2-c1).*(s11-s22)./(alpha+eps));

This code is used in chunk 17b.

18 Rein van den Boomgaard

Original Image Coherence Enhancing Diffusion

Figure 4: Test of ced (coherence enhancing di�usion) function. On the left
the original image (showing a detail of a �ngerprint) is shown. On the right the
result of the coherence enhancing di�usion is shown. For the parameters see the
cedtest code.

Settting the verbose parameter to a positive integer value, the correspondingMatlab
�gure will show the original image and the �nal result.

18a hShow original image if verbose (ced) 18ai�
if verbose

figure(verbose);

subplot(1,2,1); imshow(L,[]); title('Original Image'); drawnow;

end

This code is used in chunk 17a.

18b hIf verbose show coherence enhanced di�usion result 18bi�
if verbose

figure(verbose);

subplot(1,2,2); imshow(R,[]);

title('Coherence Enhancing Diffusion'); drawnow;

end

This code is used in chunk 17b.

To test the coherence enhancing di�usion algorithm consider the following code.

18c hcedtest.m 18ci�
a = imread('fp.jpg');

a = im2double(a);

ad = a(51:125, 76:150);

bd = ced(ad, 0.001, 0.7, 5, 0.2, 10, 1);

Root chunk (not used in this document).

The resultant image is depicted in Fig. 4. The remarkable result is due to the combi-
nation of the local orientation measurement using the eigenvalues and eigenvectors
of the structure tensor and the tensor di�usion where we direct the di�usion along
the �ngerprint lines.

Section 5 Conclusion 19

5 Conclusion

In this report we have only presented the very simple forward Euler numerical
schemes to solve the di�usion PDE's. Implicit schemes are more eÆcient (stable
for arbitrary time step). It seems doable to implement these in Matlab as well. Any
volunteers...???

A Literate programming using noweb

Let us change our traditional attitude to the construction of programs:

Instead of imagining that our main task is to instruct a computer what

to do, let us concentrate rather on explaining to human beings what we

want a computer to do.

D. Knuth, 1984

This is not the place to explain what literate programming is about. If you couldn't
understand this report (especially the way Matlab code should be `constructed' from
the chunks that are presented in the text) or in case you would like to read more
about literate programming I suggest you take a look at

� www.literateprogramming.com: a site containing a lot of useful material.

� The literate programming FAQ. Also a source of a lot of information (http:
//shelob.ce.ttu.edu/daves/lpfaq/faq.html).

This report uses the noweb literate programming tool. Look at the website http:

//www.eecs.harvard.edu/~nr/noweb/ for more information on noweb. If anyone
dares to make a Windows version of the noweb3 program, please send me an email. . .

B Generate the Matlab code

The mltangle.bat script (batch �le) simpli�es the calling sequence of the notangle
script somewhat. It assumes the current working directory is the directory where
the noweb �le resides and that a matlab subdirectory exists.

19 hmltangle.bat 19i�
call notangle -R%2 %1 > matlab\%2

Root chunk (not used in this document).

20 Rein van den Boomgaard

The tangleAll.bat �le tangles all Matlab functions embedded in a noweb �le
and places them into the matlab directory. Please note that it should be doable to
construct the tangleAll script automatically from all chunks ending with .m. For
now the script below is constructed manually.

20a htangleAll.bat 20ai�
call mltangle nldiffusioncode.w gD.m

call mltangle nldiffusioncode.w convSepBrd.m

call mltangle nldiffusioncode.w g1Jet.m

call mltangle nldiffusioncode.w g2Jet.m

call mltangle nldiffusioncode.w gDtest.m

call mltangle nldiffusioncode.w snldStep.m

call mltangle nldiffusioncode.w pmc.m

call mltangle nldiffusioncode.w pmctest.m

call mltangle nldiffusioncode.w tnldStep.m

call mltangle nldiffusioncode.w translateImage.m

call mltangle nldiffusioncode.w eed.m

call mltangle nldiffusioncode.w eedtest.m

call mltangle nldiffusioncode.w ced.m

call mltangle nldiffusioncode.w cedtest.m

call mltangle nldiffusioncode.w generateFigures.m

Root chunk (not used in this document).

C Generate the �gures

This �le assumes that a directory ..\figures exists where all �gures are stored.

20b hgenerateFigures.m 20bi�
gDtest;

print -depsc2 ..\figures\gDtest.eps

pmctest;

print -depsc2 ..\figures\pmctest.eps

eedtest;

print -depsc2 ..\figures\eedtest.eps

cedtest;

print -depsc2 ..\figures\cedtest.eps

Root chunk (not used in this document).

Acknowledgements

I would like to thank Joachim Weickert for patiently answering email questions
concerning the nitty gritty details of nonlinear di�usion numerical schemes.

