Computational Semantics and Pragmatics

Raquel Fernández

Institute for Logic, Language \& Computation
University of Amsterdam

Autumn 2016

Outline

- timing coordination - turn taking
- meaning coordination - dialogue acts
- meaning coordination - grounding
- style coordination - alignment and adaptation
- language acquisition in interaction

Outline

Today:

- Main theories of first language acquisition.
- Nativist
- Empiricist
- Interactive
- Interaction view: two examples of my own work:
- language coordination in child-adult interaction
- corrective feedback

Next Tuesday:
Discussion of a recent paper on language learning in artificial agents:

```
Wang, Liang & Manning. ACL }2016
Learning Language Games through Interaction
```


The nativist view

Knowledge of grammar is innate, in the form of a Universal Grammar that is the initial state of the language faculty.
> "Language learning is not really something that the child does; it is something that happens to the child placed in an appropriate environment, much as the child's body grows and matures in a predetermined way when provided with appropriate nutrition and environmental stimulation"
> (Chomsky 1993, p. 519)

Main motivation:

- Acquisition is fast and easy,
- in spite of inadequate input (poverty of stimulus),
- and happens without direct instruction (no negative evidence).

None of these claims is well supported empirically.

The nativist view: counter evidence

- Fast?

Children are exposed to language around 10 hours per day (millions of words/sentence in the first 5 years).

- Easy?

Children go through learning stages and make errors over several years (meaning extension, morphological regularisation, word order).

- Poor input?

Child-directed speech is simpler, clearer, and more well formed than adult-adult speech.

- No negative evidence?

Typically no explicit correction, but plenty of implicit feedback (more later).

The empiricist vs. interaction views

input vs. interaction

sensitivity to statistical regularities in the input ignoring interaction
sensitivity to when \& how the input is offered in interaction

```
Adult: Help me put your toys away, darling.
Child: I'm going to Colin's and I need some toys.
Adult: You don't need a lot of toys.
Child: Only a little bit toys.
Adult: You only need a few.
Child: Yes, a few toys.
```

child \rightarrow adult language learning child \leftarrow adult child-directed speech

The interactive view

"Relevant input" - joint attention, engagement, topic continuity, contingent replies ... - has been shown to be a positive predictor of language development (Tamis-LeMonda et al. 2001; Hoff \& Naigles, 2002; Rollins, 2003; Mazur et al. 2005; Hoff, 2006; a.o.)

McGillion et al. (2013): what sort of responsiveness matters?

- semantic responsiveness: related to the child's focus of attentions
- temporal responsiveness: temporally contingent with an act produced by the child.
\rightsquigarrow combined measure only significant predictor of vocabulary growth

Open question: use computational modelling to investigate how these aspects relate to the learning mechanisms employed by the child - and what this can tell us about theories of dialogue.

Examples today: recent work on methodologies for studying interaction and contingent responsiveness in corpus data.

Two examples of concrete work

Ways of investigating how speakers pick up on each other's language (coordinate) at different degrees of locality.

```
R. Fernández & R. Grimm. Quantifying Categorical and Conceptual Convergence in Child-Adult Dialogue,
36th Annual Conference of the Cognitive Science Society. }2014
```

Empirical study on impact of one particular interactive phenomenon on learning:

[^0]
Turn-based Cross-Recurrence Plots

Two-party dialogue transcript
Cross-recurrence plot: each cell corresponds to a pair of turns (i, j)

```
A1: which one do you want first
B1}\mathrm{ : that one
A}\mp@subsup{A}{2}{}\mathrm{ : you like this one
B2: yeah, give me
```

Recurrence (coordination) score for each (i, j)

- global recurrence: average coordination over all turn pairs
- local recurrence: recurrence in (semi-)adjacent turns, separated by at most distance $d<n$ (diagonal line of incidence)
- upper recurrence: child's turn comes after adult's adult \leftarrow child
- lower recurrence: adult's turn comes after child's child \leftarrow adult

Turn-based Cross-Recurrence Plots

CRP of a dialogue with Abe (2.5 years old):

Same global recurrence but very different local recurrence
\rightsquigarrow global: chance recurrence regardless of temporal development of interaction

Linguistic Measures of Recurrence

Syntactic recurrence: number of shared part-of-speech bigrams factoring out lexical identity, normalised by length of longest turn.

Lexical recurrence: shared lexeme unigrams / biagrams factoring out lexical identity, normalised by length of longest turn.

```
Adult: you are pressing a button and what happens ?
    PROlyou AUXIbe PARTIpress DETla Nlbuttton CJland PROlwhat Vlhappen
Child: what happens the horse tail
    PROlwhat Vlhappen DET|the Nlhorse N|tail
```

Conceptual recurrence: semantic similarity, e.g., $\langle\mathrm{N} \mid \mathrm{dog}\rangle \approx\langle\mathrm{V}|$ bark \rangle

- distributional semantic model: 2-billion-word WaCuk corpus and the DISSECT toolkit (Dinu, Pham \& Baroni, 2013)
- one vector per turn by adding up the lexical vectors
- cosine of a turn pair (i, j) as the convergence score

Data

379 child-adult dialogues from 3 children over a period of ~ 3 years.

corpus	age range	\# dialogues	av. \# turns/dialogue	
Abe	$2 ; 5-5 ; 0$	210	191	$(\mathrm{sd}=74)$
Sarah	$2 ; 6-5 ; 1$	107	340	$(\mathrm{sd}=84)$
Naomi	$1 ; 11-4 ; 9$	62	152	$(\mathrm{sd}=100)$

We generate a CRP for each dialogue, computing convergence values for all turn pairs (i, j) for each of the linguistic convergence measures: lexical, syntactic, conceptual.

Results: child-adult dialogue

- local vs. global: significantly more local coordination.
- directionality: both coordinate more at local levels, but the adult recurs with the child significantly more.

Results: adult-adult dialogue

For comparison: ~1000 adult-adult dialogues from Switchboard. We ignore backchannels ("uh huh") since they are not considered proper turns (19% of all utterances).

- Semantic lexical/conceptual measures, same trend: above-chance convergence in close-by turns.
- Syntactic measure: very different coordination patterns, with adults showing syntactic divergence at adjacent turns:
\rightsquigarrow less recurrence than expected by chance.

Why?

Contrast with previous evidence of syntactic alignment in adult-adult dialogue (e.g., Pickering \& Ferreira 2008), but not surprising
\rightsquigarrow advancing a conversation requires different dialogue acts with distinct syntactic patterns.

Why is there syntactic recurrence in child-adult dialogue?

- feedback mechanism to ratify linguistic constructions?
- possibly related to reformulations / recasts / corrective feedback

```
Child: you're good to sharing.
Mother: I'm good at sharing?
```


Reformulations

M. Chouinard \& E. Clark (2003) Adult reformulations of child errors as negative evidence, Journal of Child Language.

- Adults check up on the meaning intended by the child.
- 3 English and 2 French children (longitudinal data)
- Around $2 / 3$ of erroneous utterances are reformulated by the adult.
- All types of errors (phonology, morphology, lexicon, syntax).
- Children attend to and respond to the reformulations

\% of Abe's conventional utterances replayed and erroneous utterances reformulated.

Aim: large scale data-driven analysis to test the influence of corrective feedback on language learning

Outline of the approach:
Operationalize the phenomenon

- Definition and taxonomy of corrective feedback (CF)

Corpus study

- Identify frequencies of different kinds of CF
- In a manually annotated subset of the data

Investigate the influence of CF on language learning

- Focus on subject omission errors (SOE)
- Automatically detect errors and corrections in a larger dataset
- Test whether CF can predict decrease in SOE, when controlling for other predictors

Corrective Feedback

```
CHI: don't want to.
MOT: you don't want to?
```

Child-adult utterance pair meeting all these constraints:

1. The child's utterance contains a grammatical anomaly.
2. There is some overlap between the adult and child utterances.
3. There is some contrast: the adult's utterance is not a mere repetition.
4. This contrast offers a correct counterpart of the child's erroneous form.

Data Selection and Preprocessing

All relevant files from the English part of the CHILDES database

25 children	Total
transcripts	1,683
utterances	$1,598,838$
candidate CF	$\mathbf{1 3 6 , 1 5 2}$
(exchanges with partial overlap)	

Additional information added automatically:

- Morphological decomposition, POS tags (CLAN)
- Syntactic dependency parsing (MEGRASP)
- Information on overlap between child-adult utterance pairs (CHIP)

Data Selection and Preprocessing

```
CHI: I climb up daddy .
    - POS & morph %mor: pro.sub|I v|climb prep|up n|daddy
    -dependency %gra: 1|2|SUBJ 2|0|ROOT 3|2|JCT 4|3|POBJ
DAD: you did climb over daddy.
    - POS & morph %mor: pro|you v|do.PAST v|climb prep|over n|daddy
    -dependency %gra: 1|2|SUBJ 2|O|ROOT 3|2|OBJ 4|3|JCT 5|4|POBJ
    - overlap %adu: $EXA:climb $EXA:daddy $ADD:you did $ADD:over
    $DEL:i $DEL:up $REP=0.40
    manual annotation %cof: $CF $ERR=umorph:prep; $TYP=subst
```


Corpus Study

4 children, 4-6 transcripts per child, 2,627 candidate CF exchanges.

Examples

subject, omission:
CHI: don't want to.
MOT: you don't want to?
irregular past, substitution:
CHI: he falled out and bumped his head.
MOT: he fell out and bumped his head.
auxiliary verb, addition
CHI: I'm read it.
DAD: you read it to mummy.

	Om	Add	Sub	Total
Syntax				
subject	171	-	1	172
verb	90	1	-	91
object	13	-	-	13
N morph				
poss -'s	4	1	-	5
regular pl	-	3	-	3
irregular pl	-	-	3	3
\checkmark morph				
3rd person	4	-	-	4
regular past	10	1	-	11
irregular past	1	-	4	5
Unb. morph				
det	79	-	6	85
prep	21	1	12	34
aux verb	114	5	1	120
progressive	9	0	0	9
Other	4	2	19	25
Total	520	14	46	580

Focus: subject omission errors (SOE)

Automatic Detection

- Find high-precision automatic classifiers for SOE and CF on SOE
- To enable an analysis of the whole dataset
- Using the manually annotated data as training set
- 5-fold cross validation for feature tuning

Detection of	Classifier	Precision	Recall	Total \#
SOE	rule-based	0.83	0.8	287,309
CF on SOE	SVM	0.89	0.36	31,080

Adam, Brown corpus

MLU: mean length of utterance in words SOE: subject omission errors
CF: corrective feedback on subject omission errors

Corrective Feedback and Learning

Relative error reduction (rer) of subject omission errors:

$$
\operatorname{rer}\left(t_{0}, t_{1}\right)=\frac{S O E_{t_{0}}-S O E_{t_{1}}}{S O E_{t_{0}}}
$$

Linear regression models

- with rer as dependent variable
- including / excluding CF

3 experimental settings

- t_{0} : starting age
- $d\left(t_{0}, t_{1}\right)$: time lag

Results

Setting 1: any t_{0} and any $d\left(t_{0}, t_{1}\right) \geq 1$ month

- Positive correlation between $C F_{t_{0}}$ and $\operatorname{rer}\left(\mathrm{t}_{0}, \mathrm{t}_{1}\right)$ $r=0.29, p<0.001$
- Linear regression model: CF explains a significant proportion of rer, independently of other predictors

Results

Setting 2: any t_{0} and fixed $d\left(t_{0}, t_{1}\right)$ Setting 3: fixed t_{0} and fixed $d\left(t_{0}, t_{1}\right)$

CF has an impact after a time lag of 7-12 months...

...for all starting ages for which there is data available.

Conclusions of this study

- Local interaction can function as negative input and contribute to language learning
- Our analysis shows that CF contributes to learning of subject inclusion in English, after a lag of at least 7-9 months
- Large scale data-driven analysis using automatic classifiers
- Caution required regarding possible bias introduced by classification errors

Possible next steps:

- Extend the analysis to other kinds of errors
- How can we model this interactive process for automated learners?

[^0]: S. Hiller \& R. Fernández (2016) A Data-driven Investigation of Corrective Feedback on Subject Omission Errors in First Language Acquisition. In Proceedings of CoNLL.

