Computational Semantics and Pragmatics

Raquel Fernández

Institute for Logic, Language & Computation University of Amsterdam

Autumn 2016

- timing coordination turn taking
- meaning coordination dialogue acts
- meaning coordination grounding
- style coordination alignment and adaptation
- language *acquisition* in interaction

Outline

Today:

- Main theories of first language acquisition.
 - Nativist
 - Empiricist
 - Interactive
- Interaction view: two examples of my own work:
 - ► language coordination in child-adult interaction
 - corrective feedback

Next Tuesday:

Discussion of a recent paper on language learning in artificial agents:

Wang, Liang & Manning. *ACL 2016.* Learning Language Games through Interaction Knowledge of grammar is innate, in the form of a Universal Grammar that is the initial state of the language faculty.

"Language learning is not really something that the child does; it is something that happens to the child placed in an appropriate environment, much as the child's body grows and matures in a predetermined way when provided with appropriate nutrition and environmental stimulation" (Chomsky 1993, p. 519)

Main motivation:

- Acquisition is fast and easy,
- in spite of inadequate input (poverty of stimulus),
- and happens without direct instruction (no negative evidence).

None of these claims is well supported empirically.

• Fast?

Children are exposed to language around 10 hours per day (millions of words/sentence in the first 5 years).

• Easy?

Children go through learning stages and make errors over several years (meaning extension, morphological regularisation, word order).

• Poor input?

Child-directed speech is simpler, clearer, and more well formed than adult-adult speech.

• No negative evidence?

Typically no explicit correction, but plenty of implicit feedback (more later).

input vs. interaction

sensitivity to statistical regularities in the input ignoring interaction sensitivity to when & how the input is offered in interaction

Adult: Help me put your toys away, darling. Child: I'm going to Colin's and I need some toys. Adult: You don't need a lot of toys. Child: Only a little bit toys. Adult: You only need a few. Child: Yes, a few toys.

 $child \rightarrow adult$ language learning $child \leftarrow adult$ child-directed speech

The interactive view

"Relevant input" — *joint attention, engagement, topic continuity, contingent replies* ... — has been shown to be a positive predictor of language development (Tamis-LeMonda et al. 2001; Hoff & Naigles, 2002; Rollins, 2003; Mazur et al. 2005; Hoff, 2006; a.o.)

McGillion et al. (2013): what sort of responsiveness matters?

- semantic responsiveness: related to the child's focus of attentions
- *temporal responsiveness*: temporally contingent with an act produced by the child.
- \rightsquigarrow combined measure only significant predictor of vocabulary growth

Open question: use computational modelling to investigate how these aspects relate to the learning mechanisms employed by the child – and what this can tell us about theories of dialogue.

Examples today: recent work on methodologies for studying *interaction* and *contingent responsiveness* in corpus data.

Ways of investigating how speakers pick up on each other's language (*coordinate*) at different degrees of locality.

R. Fernández & R. Grimm. Quantifying Categorical and Conceptual Convergence in Child-Adult Dialogue, 36th Annual Conference of the Cognitive Science Society. 2014.

Empirical study on impact of one particular interactive phenomenon on learning:

S. Hiller & R. Fernández (2016) A Data-driven Investigation of Corrective Feedback on Subject Omission Errors in First Language Acquisition. In *Proceedings of CoNLL*.

Turn-based Cross-Recurrence Plots

- global recurrence: average coordination over all turn pairs
- *local recurrence*: recurrence in (semi-)adjacent turns, separated by at most distance d < n (diagonal line of incidence)
- *upper recurrence*: child's turn comes after adult's *adult* ← *child*
- *lower recurrence*: adult's turn comes after child's *child* ← *adult*

Turn-based Cross-Recurrence Plots

CRP of a dialogue with Abe (2.5 years old):

Same *global* recurrence but very different *local* recurrence

 \rightsquigarrow global: chance recurrence regardless of temporal development of interaction

Linguistic Measures of Recurrence

Syntactic recurrence: number of shared part-of-speech bigrams factoring out lexical identity, normalised by length of longest turn.

Lexical recurrence: shared lexeme unigrams / biagrams factoring out lexical identity, normalised by length of longest turn.

Adult: you are pressing a button and what happens ? PRO|you AUX|be PART|press DET|a N|button CJ|and PRO|what V|happen Child: what happens the horse tail PRO|what V|happen DET|the N|horse N|tail

Conceptual recurrence: semantic similarity, e.g., $\langle N | dog \rangle \approx \langle V | bark \rangle$

- distributional semantic model: 2-billion-word WaCuk corpus and the DISSECT toolkit (Dinu, Pham & Baroni, 2013)
- one vector per turn by adding up the lexical vectors
- cosine of a turn pair (i, j) as the convergence score

379 *child-adult dialogues* from 3 children over a period of \sim 3 years.

corpus	age range	# dialogues	av. # turns/dialogue
Abe	2;5 - 5;0	210	191 (sd=74)
Sarah	2;6 - 5;1	107	340 (sd=84)
Naomi	1;11 - 4;9	62	152 (sd=100)

We generate a *CRP* for each dialogue, computing convergence values for all turn pairs (i, j) for each of the linguistic convergence measures: *lexical, syntactic, conceptual.*

Results: child-adult dialogue

- local vs. global: significantly more local coordination.
- *directionality*: both coordinate more at local levels, but the adult recurs with the child significantly more.

Results: adult-adult dialogue

For comparison: ~ 1000 *adult-adult dialogues* from Switchboard. We ignore backchannels (*"uh huh"*) since they are not considered proper turns (19% of all utterances).

- Semantic lexical/conceptual measures, same trend: above-chance convergence in close-by turns.
- Syntactic measure: very different coordination patterns, with adults showing syntactic *divergence* at adjacent turns:
 - \rightsquigarrow less recurrence than expected by chance.

Contrast with previous evidence of syntactic alignment in adult-adult dialogue (e.g., Pickering & Ferreira 2008), but not surprising

advancing a conversation requires *different dialogue acts* with distinct syntactic patterns.

Why is there syntactic recurrence in child-adult dialogue?

- *feedback mechanism* to ratify linguistic constructions?
- possibly related to reformulations / recasts / corrective feedback

Child: you're good to sharing. Mother: I'm good at sharing? M. Chouinard & E. Clark (2003) Adult reformulations of child errors as negative evidence, Journal of Child Language.

- Adults check up on the meaning intended by the child.
- 3 English and 2 French children (longitudinal data)
- Around 2/3 of erroneous utterances are reformulated by the adult.
- All types of errors (phonology, morphology, lexicon, syntax).
- Children attend to and respond to the reformulations

% of Abe's conventional utterances replayed and erroneous utterances reformulated.

S. Hiller & R. Fernández (2016) A Data-driven Investigation of Corrective Feedback on Subject Omission Errors in First Language Acquisition. In *Proceedings of CoNLL*.

Aim: large scale data-driven analysis to test the influence of corrective feedback on language learning

Outline of the approach:

Operationalize the phenomenon

• Definition and taxonomy of corrective feedback (CF)

Corpus study

- Identify frequencies of different kinds of CF
- In a manually annotated subset of the data

Investigate the influence of CF on language learning

- Focus on subject omission errors (SOE)
- Automatically detect errors and corrections in a larger dataset
- Test whether CF can predict decrease in SOE, when controlling for other predictors

```
CHI: don't want to.
MOT: you don't want to?
```

Child-adult utterance pair meeting all these constraints:

- 1. The child's utterance contains a grammatical anomaly.
- 2. There is some *overlap* between the adult and child utterances.
- 3. There is some *contrast*: the adult's utterance is not a mere repetition.
- 4. This contrast offers a *correct counterpart* of the child's erroneous form.

All relevant files from the English part of the CHILDES database

25 children	Total
transcripts	1,683
utterances	1,598,838
candidate CF	136,152
(exchanges with pa	artial overlap)

Additional information added automatically:

- Morphological decomposition, POS tags (CLAN)
- Syntactic dependency parsing (MEGRASP)
- Information on overlap between child-adult utterance pairs (CHIP)

CHI: I climb up daddy	
– POS & morph	%mor: pro.sub $ $ I v $ $ climb prep $ $ up n $ $ daddy
 dependency 	%gra: 1 2 SUBJ 2 0 ROOT 3 2 JCT 4 3 POBJ
DAD: you did climb ov	er daddy .
– POS & morph	%mor: pro you v do.PAST v climb prep over n daddy
 dependency 	%gra: 1 2 SUBJ 2 0 ROOT 3 2 OBJ 4 3 JCT 5 4 POBJ
 overlap 	%adu: \$EXA:climb \$EXA:daddy \$ADD:you did \$ADD:over
	\$DEL:i \$DEL:up \$REP=0.40
manual annotation	%cof: \$CF \$ERR=umorph:prep; \$TYP=subst

Corpus Study

4 children, 4-6 transcripts per child, 2,627 candidate CF exchanges.

Examples		Оm	Add	Sub	Total
Examples	Syntax				
subject, omission:	subject	171	-	1	172
5	verb	90	1	-	91
CHI: don't want to.	object	13	-	-	13
MOT den it went to?	N morph				
MUI: you don't want to?	poss -'s	4	1	-	5
	regular pl	-	3	-	3
irregular past substitution	irregular pl	-	-	3	3
	V morph				
CHI: he falled out and bumped his head.	3rd person	4	-	-	4
· · · · · · · · · · · · · · · · · · ·	regular past	10	1	-	11
MOT: he fell out and bumped his head.	irregular past	1	-	4	5
	Unb. morph				
auxiliany verb addition	det	79	-	6	85
auxiliary verb, addition	prep	21	1	12	34
CHI: I'm read it.	aux verb	114	5	1	120
	progressive	9	0	0	9
DAD: you read it to mummy.	Other	4	2	19	25
	Total	520	14	46	580

Focus: subject omission errors (SOE)

- Find high-precision automatic classifiers for SOE and CF on SOE
- To enable an analysis of the whole dataset
- Using the manually annotated data as training set
- 5-fold cross validation for feature tuning

Detection of	Classifier	Precision	Recall	Total #
SOE	rule-based	0.83	0.8	287,309
CF on SOE	SVM	0.89	0.36	31,080

Adam, Brown corpus

- MLU: mean length of utterance in words
- SOE: subject omission errors
 - CF: corrective feedback on subject omission errors

Corrective Feedback and Learning

Relative error reduction (rer) of subject omission errors:

$$\operatorname{rer}(t_0, t_1) = \frac{SOE_{t_0} - SOE_{t_1}}{SOE_{t_0}}$$

control variables

- child age
- child / adult MLU
- \bullet child / adult vocabulary size
- adult subject omissions
- proportion of child speech

Linear regression models

- with rer as dependent variable
- including / excluding CF
- 3 experimental settings
 - t₀: starting age
 - $d(t_0, t_1)$: time lag

Setting 1: any t_0 and any $d(t_0, t_1) \ge 1$ month

- Positive correlation between CF_{t_0} and $rer(t_0, t_1)$ r = 0.29, p < 0.001
- Linear regression model: CF explains a *significant proportion* of rer, *independently* of other predictors

Results

Setting 2: any t_0 and fixed $d(t_0, t_1)$ **Setting 3:** fixed t_0 and fixed $d(t_0, t_1)$

Conclusions of this study

- Local interaction can function as negative input and contribute to language learning
- Our analysis shows that *CF contributes to learning* of subject inclusion in English, after a lag of at least 7–9 months
- Large scale data-driven analysis using automatic classifiers
- Caution required regarding possible bias introduced by classification errors

Possible next steps:

- Extend the analysis to other kinds of errors
- How can we model this interactive process for automated learners?