Computational Semantics and Pragmatics Graded Word Sense Assignment Katrin Erk and Diana McCarthy

Article given by Raquel Fernández Rovira

Cecilia Chávez Aguilera

University of Amsterdam

December 12, 2012

ILLC

Cecilia Chávez Aguilera

Computational Semantics and Pragmatics

Motivation	Corpora	Evaluation Methods	Models	Results

1 Motivation

2 Corpora

3 Evaluation Methods

<ロ>
<日>
<日>
<日>
<10</p>
<10</p

ILLC

Cecilia Chávez Aguilera Computational Semantics and Pragmatics

Motivation	Corpora	Evaluation Methods	Models	Results

Agenda

1 Motivation

- **2** Corpora
- **3** Evaluation Methods

4 Models

<ロ>
<日>
<日>
<日>
<10>
<10</p>
<10</

ILLC

Cecilia Chávez Aguilera Computational Semantics and Pragmatics

Motivation	Corpora	Evaluation Methods	Models	Results

• Inter-annotator agreement

- Fine-grained word senses
 - 69 % HECTOR Dictionary (Krishnamurthy and Nicholls 2000)
 - 78.6% WordNet (Landes et al. 1998)
- Coarse-grained word senses
 - 90% OntoNotes (Hovy et al. 2006)
- Graded annotation
- Aim: Predict graded judgments of word sense applicability.

ILLC

Computational Semantics and Pragmatics

Motivation	Corpora	Evaluation Methods	Models	Results

- Inter-annotator agreement
 - Fine-grained word senses
 - 69 % HECTOR Dictionary (Krishnamurthy and Nicholls 2000)
 - 78.6% WordNet (Landes et al. 1998)
 - Coarse-grained word senses
 - 90% OntoNotes (Hovy et al. 2006)
- Graded annotation
- Aim: Predict graded judgments of word sense applicability.

Motivation	Corpora	Evaluation Methods	Models	Results

- Inter-annotator agreement
 - Fine-grained word senses
 - 69 % HECTOR Dictionary (Krishnamurthy and Nicholls 2000)
 - 78.6% WordNet (Landes et al. 1998)
 - Coarse-grained word senses
 - 90% OntoNotes (Hovy et al. 2006)
- Graded annotation
- Aim: Predict graded judgments of word sense applicability.

Motivation	Corpora	Evaluation Methods	Models	Results

- Inter-annotator agreement
 - Fine-grained word senses
 - 69 % HECTOR Dictionary (Krishnamurthy and Nicholls 2000)
 - 78.6% WordNet (Landes et al. 1998)
 - Coarse-grained word senses
 - 90% OntoNotes (Hovy et al. 200
- Graded annotation
- Aim: Predict graded judgments of word sense applicability.

Motivation	Corpora	Evaluation Methods	Models	Results

- Inter-annotator agreement
 - Fine-grained word senses
 - 69 % HECTOR Dictionary (Krishnamurthy and Nicholls 2000)
 - 78.6% WordNet (Landes et al. 1998)
 - Coarse-grained word senses
 - 90% OntoNotes (Hovy et al. 2006)
- Graded annotation
- Aim: Predict graded judgments of word sense applicability.

Motivation	Corpora	Evaluation Methods	Models	Results

- Inter-annotator agreement
 - Fine-grained word senses
 - 69 % HECTOR Dictionary (Krishnamurthy and Nicholls 2000)
 - 78.6% WordNet (Landes et al. 1998)
 - Coarse-grained word senses
 - 90% OntoNotes (Hovy et al. 2006)
- Graded annotation
- Aim: Predict graded judgments of word sense applicability.

Motivation	Corpora	Evaluation Methods	Models	Results

- Inter-annotator agreement
 - Fine-grained word senses
 - 69 % HECTOR Dictionary (Krishnamurthy and Nicholls 2000)
 - 78.6% WordNet (Landes et al. 1998)
 - Coarse-grained word senses
 - 90% OntoNotes (Hovy et al. 2006)
- Graded annotation
- Aim: Predict graded judgments of word sense applicability.

イロト イポト イヨト イヨト

Motivation	Corpora	Evaluation Methods	Models	Results

- Inter-annotator agreement
 - Fine-grained word senses
 - 69 % HECTOR Dictionary (Krishnamurthy and Nicholls 2000)
 - 78.6% WordNet (Landes et al. 1998)
 - Coarse-grained word senses
 - 90% OntoNotes (Hovy et al. 2006)
- Graded annotation
- Aim: Predict graded judgments of word sense applicability.

イロト イポト イヨト イヨト

Motivation	Corpora	Evaluation Methods	Models	Results
Agenda				

1 Motivation

2 Corpora

3 Evaluation Methods

4 Models

5 Results

Motivation	Corpora	Evaluation Methods	Models	Results

Graded Word Sense dataset

lemma	#	# training	
(PoS)	senses	SemCor	SE-3
add (v)	6	171	238
argument (n)	7	14	195
ask (v)	7	386	236
different (a)	5	106	73
important (a)	5	125	11
interest (n)	7	111	160
paper (n)	7	46	207
win (v)	4	88	53
total training s	1047	1173	

Table : Lemmas used in this study

A D > A B > A B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Motivation	Corpora	Evaluation Methods	Models	Results

- The scale used 1:= completely different, 2:= mostly different, 3:= similar, 4:= very similar, 5:= identical.
- It was obtained a single judgment for each sense with a normalized average of the three annotators, with the following normalization:

normalized
$$-$$
 judgment $=$ $\frac{judgment - 1.0}{4.0}$

Ν	Aotivation	Corpora	Evaluation Methods	Models	Results

- The scale used 1:= completely different, 2:= mostly different, 3:= similar, 4:= very similar, 5:= identical.
- It was obtained a single judgment for each sense with a normalized average of the three annotators, with the following normalization:

$$normalized - judgment = \frac{judgment - 1.0}{4.0}$$

Motivation	Corpora	Evaluation Methods	Models	Results

- The scale used 1:= completely different, 2:= mostly different, 3:= similar, 4:= very similar, 5:= identical.
- It was obtained a single judgment for each sense with a normalized average of the three annotators, with the following normalization:

$$normalized - judgment = \frac{judgment - 1.0}{4.0}$$

Motivation	Corpora	Evaluation Methods	Models	Results

Example

	senses							
Sentence	1	2	3	4	5	6	7	Annotator
This can be justified thermo-	2	3	3	5	5	2	3	Ann. 1
dynamically in this case, and	1	3	1	3	5	1	1	Ann. 2
this will be done in a separate	1	5	2	1	5	1	1	Ann. 3
paper which is being prepared.	1.3	3.7	2	3	5	1.3	1.7	Avg

Table : A sample annotation in the GWS experiment. The senses are:1 material from cellulose 2 report 3 publication 4 medium for writing5 scientific 6 publishing firm 7 physical object

worwation	Corpora	Evaluation Methods	mouels	ixcounto
Agenda				

3.4

2 Corpora

3 Evaluation Methods

4 Models

5 Results

<ロ>
<日>
<日>
<日>
<10</p>
<10</p

ILLC

Cecilia Chávez Aguilera Computational Semantics and Pragmatics

Motivation	Corpora	Evaluation Methods	Models	Results
Correla	tion			

- Let *G* be the set of golden tuples, and *A* the set of assigned tuples; *L* be the set of lemmas, and *S*_l the set of sense numbers for lemma *l*, and *T*, the set of sentence numbers:
- lemma $G_{lemma=l}$ and $A_{lemma=l}$ $\forall l \in L$
- lemma + sense $G_{lemma=l,senseno.=i}$ and $A_{lemma=l,senseno.=i}$ $\forall l \in L, i \in S_l$
- lemma + sentence $G_{lemma=l,sentence=t}$ and $A_{lemma=l,sentence=t}$ $\forall l \in L, t \in T$

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Motivation	Corpora	Evaluation Methods	Models	Results
Correla	ation			

- Let *G* be the set of golden tuples, and *A* the set of assigned tuples; *L* be the set of lemmas, and *S*_l the set of sense numbers for lemma *l*, and *T*, the set of sentence numbers:
- **lemma** $G_{lemma=l}$ and $A_{lemma=l}$ $\forall l \in L$
- lemma + sense $G_{lemma=l,senseno.=i}$ and $A_{lemma=l,senseno.=i}$ $\forall l \in L, i \in S_l$
- lemma + sentence $G_{lemma=l,sentence=t}$ and $A_{lemma=l,sentence=t}$ $\forall l \in L, t \in T$

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

Motivation	Corpora	Evaluation Methods	Models	Results	
Correlation					

- Let *G* be the set of golden tuples, and *A* the set of assigned tuples; *L* be the set of lemmas, and *S*_l the set of sense numbers for lemma *l*, and *T*, the set of sentence numbers:
- **lemma** $G_{lemma=l}$ and $A_{lemma=l}$ $\forall l \in L$
- lemma + sense $G_{lemma=l,senseno.=i}$ and $A_{lemma=l,senseno.=i}$ $\forall l \in L, i \in S_l$
- lemma + sentence $G_{lemma=l,sentence=t}$ and $A_{lemma=l,sentence=t}$ $\forall l \in L, t \in T$

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

Motivation	Corpora	Evaluation Methods	Models	Results	
Correlation					

- Let *G* be the set of golden tuples, and *A* the set of assigned tuples; *L* be the set of lemmas, and *S*_l the set of sense numbers for lemma *l*, and *T*, the set of sentence numbers:
- **lemma** $G_{lemma=l}$ and $A_{lemma=l}$ $\forall l \in L$
- lemma + sense $G_{lemma=l,senseno.=i}$ and $A_{lemma=l,senseno.=i}$ $\forall l \in L, i \in S_l$
- lemma + sentence $G_{lemma=l,sentence=t}$ and $A_{lemma=l,sentence=t}$ $\forall l \in L, t \in T$

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト

Motivation	Corpora	Evaluation Methods	Models	Results
Spearn	nan's ρ			

• Uses the Pearson's coefficient:

$$\rho(X,Y)\frac{cov(X,Y)}{\sigma_X\sigma_Y}$$

computed over rankings

- The rankings are assigned by sorting in ascending order the value of the variables. Equal values get the average of their positions
- Significance of the values is found against a probability *p* of the observed extreme cases

Motivation	Corpora	Evaluation Methods	Models	Results
Spearn	nan's ρ			

• Uses the Pearson's coefficient:

$$\rho(X,Y)\frac{cov(X,Y)}{\sigma_X\sigma_Y}$$

computed over rankings

- The rankings are assigned by sorting in ascending order the value of the variables. Equal values get the average of their positions
- Significance of the values is found against a probability *p* of the observed extreme cases

Motivation	Corpora	Evaluation Methods	Models	Results
Spearn	nan's o			

• Uses the Pearson's coefficient:

$$\rho(X,Y)\frac{cov(X,Y)}{\sigma_X\sigma_Y}$$

computed over rankings

- The rankings are assigned by sorting in ascending order the value of the variables. Equal values get the average of their positions
- Significance of the values is found against a probability *p* of the observed extreme cases

Motivation	Corpora	Evaluation Methods	Models	Results
Agenda				

1 Motivation

2 Corpora

3 Evaluation Methods

(日)

ILLC

Cecilia Chávez Aguilera Computational Semantics and Pragmatics

Motivation	Corpora	Evaluation Methods	Models	Results
Prototy	pe			

Cx/2	until, IN, soft, JJ, remaining, VBG, ingredient,
	NNS
Cx/50	for, IN, sweet-sour, NN, sauce, NN,, to, TO,
	a, DT, boil, NN
Ch	OA, OA/ingredient/NNS

Table : Sample features for add in BNC occurrence For sweet-sour sauce, cook onion in oil until soft. **Add** remaining ingredients and bring to a boil. Cx/2 (Cx/50): context of size 2 (size 50) either side of the target. Ch: children of target.

Motivation	Corpora	Evaluation Methods	Models	Results
Prototy	'pe			

- Dimensions: Features, Coordinates: Raw counts
- Vector representation for a sense: centroid of its training occurrences
- Predicted judgment for sentence *t*, and sense *s*: similarity of its vectors.
- Like instance based-learners measures the distance between feature vectors but within a single category

Motivation	Corpora	Evaluation Methods	Models	Results
Prototy	pe			

- Dimensions: Features, Coordinates: Raw counts
- Vector representation for a sense: centroid of its training occurrences
- Predicted judgment for sentence *t*, and sense *s*: similarity of its vectors.
- Like instance based-learners measures the distance between feature vectors but within a single category

Motivation	Corpora	Evaluation Methods	Models	Results
Prototy	pe			

- Dimensions: Features, Coordinates: Raw counts
- Vector representation for a sense: centroid of its training occurrences
- Predicted judgment for sentence *t*, and sense *s*: similarity of its vectors.
- Like instance based-learners measures the distance between feature vectors but within a single category

Motivation	Corpora	Evaluation Methods	Models	Results
Prototy	pe			

- Dimensions: Features, Coordinates: Raw counts
- Vector representation for a sense: centroid of its training occurrences
- Predicted judgment for sentence *t*, and sense *s*: similarity of its vectors.
- Like instance based-learners measures the distance between feature vectors but within a single category

< ロ ト < 同 ト < 三 ト < 三 ト

Mouvation	Corpora	Evaluation Methods	wiodels	Results
Agenda				

1 Motivation

2 Corpora

3 Evaluation Methods

4 Models

<ロ>
<日>
<日>
<日>
<10</p>
<10</p

ILLC

Cecilia Chávez Aguilera Computational Semantics and Pragmatics

Motivation	Corpora	Evaluation Methods	Models	Results

	by lemma			by lemma+sense			by lemma+sentence			
Model	ρ	*	**	ρ	*	**	ρ	*	**	
WSD/single	0.267	87.5	75.0	0.053	6.3	4.2	0.28	2.8	1.8	
WSD/conf	0.396	87.5	87.5	0.177	33.3	18.8	0.401	10.8	3.0	
Prototype	0.245	62.5	62.5	0.053	20.8	8.3	0.396	15.3	2.5	
Prototype/2	0.292	87.5	87.5	0.086	14.6	4.2	0.478	22.8	7.5	
Prototype/N	0.396	100.0	100.0	0.137	22.9	14.6	0.396	15.3	2.5	
Prototype/2N	0.465	100.0	100.0	0.168	29.8	23.4	0.478	22.8	7.5	
baseline	0.338	87.5	87.5	0.0	0.0	0.0	0.355	10.3	3.0	

Table : Evaluation: computational models, and baseline. *, **: percentage significant at $p \le 0.05$, $p \le 0.01$

イロト イポト イヨト イヨト

Motivation	Corpora	Evaluation Methods	Models	Results
Summe	arv			

.....

- Graded annotation was proposed as an alternative view of sense assignment.

- The GWS should be tested with more sophisticated vector

ILLC

Cecilia Chávez Aguilera

Motivation	Corpora	Evaluation Methods	Models	Results
Summa	iry			

- Graded annotation was proposed as an alternative view of sense assignment.
- Adequate measures to evaluate performance of graded sense assignment were proposed.
- Evaluation is significant, but system performance is below humans performance
- The authors have already worked a second round of annotation
- The lemma + sense and lemma + sentence correlation measures seem to be the most promising useful measures
- The GWS should be tested with more sophisticated vector models.

Motivation	Corpora	Evaluation Methods	Models	Results
Summa	arv			

- Graded annotation was proposed as an alternative view of sense assignment.
- Adequate measures to evaluate performance of graded sense assignment were proposed.
- Evaluation is significant, but system performance is below humans performance
- The authors have already worked a second round of annotation
- The lemma + sense and lemma + sentence correlation measures seem to be the most promising useful measures
- The GWS should be tested with more sophisticated vector models.

Motivation	Corpora	Evaluation Methods	Models	Results
Summa	arv			

- Graded annotation was proposed as an alternative view of sense assignment.
- Adequate measures to evaluate performance of graded sense assignment were proposed.
- Evaluation is significant, but system performance is below humans performance
- The authors have already worked a second round of annotation
- The lemma + sense and lemma + sentence correlation measures seem to be the most promising useful measures
- The GWS should be tested with more sophisticated vector models.

Motivation	Corpora	Evaluation Methods	Models	Results
Summa	arv			

- Graded annotation was proposed as an alternative view of sense assignment.
- Adequate measures to evaluate performance of graded sense assignment were proposed.
- Evaluation is significant, but system performance is below humans performance
- The authors have already worked a second round of annotation
- The lemma + sense and lemma + sentence correlation measures seem to be the most promising useful measures.
- The GWS should be tested with more sophisticated vector models.

Motivation	Corpora	Evaluation Methods	Models	Results
Summa	arv			

- Graded annotation was proposed as an alternative view of sense assignment.
- Adequate measures to evaluate performance of graded sense assignment were proposed.
- Evaluation is significant, but system performance is below humans performance
- The authors have already worked a second round of annotation
- The lemma + sense and lemma + sentence correlation measures seem to be the most promising useful measures.
- The GWS should be tested with more sophisticated vector models.