5/12/12

Erk & Padó (2010)

Exemplar-Based Models for Word Meaning in Context

Discussion of papers on Distributional Semantics - Isabel Keijer

Distributional models

- Distributional Hypothesis: words that occur in the same context tend to have similar meanings.
- Representing meaning as context: the meaning of a word is represented by a vector that records co-occurrence with context features.
- (At least) two possibilities:
 - Based on prototype theory
 - Based on exemplar theory

Prototype-based approach

- Prototype theory (quick recap):
 - prototype = summary representation
 - features that are usually found in the category members, weighted
 - "contradictory" features may be included with different weights
 - categorization criterion based on feature weights
 - no feature is required to be present
- Distributional model implementation:
 - one vector per category/term (what we've seen so far)

Exemplar models

- Exemplar theory (quick recap):
 - there is not just one representation that encompasses an entire concept
 - a concept is just the set of instances of that concept that one person remembers
 - to categorise new items, we weight them by how similar they are to the items in our memory
- Distributional model implementation:
 - memorize each seen instance of a category (/term);
 - perform categorization by comparing a new stimulus to each remembered exemplar vector

Why an exemplar-based approach?

- Polysemy:
 - (according to Erk & Padó) problematic for the prototype-based approach
 - because only one vector per category, all the different senses (and contexts) of the target are lumped together
 - solution to this problem: exemplar-based approach
 - only activate the relevant exemplars
 - there are different exemplar sets for each sense

Exemplar Activation

Model polysemy by activating relevant exemplars of a lemma *E* in a given sentence context *s*.

- Activation of a set E by exemplar s: $act(E,s) = \{e \in E \mid sim(e,s) > \theta(E,s)\}$
- Setting the threshold:
 - <u>kNN activation</u>: θ is set to the similarity of the k-th most similar exemplar
 - q-percentage activation: θ is set to the (100-q)-th percentile of the sim(e, s) distribution

Task: paraphrasing

Predicting paraphrase felicity

- Given:
 - target lemma *T*;
 - in a particular sentential context s;
 - a list of potential paraphrases of *T*,
- Predict which of the paraphrases are applicable in s.

How? actT vs. actP

- We are given a target lemma *T*, plus its context *s*, and a list of potential paraphrases *P*.
- We have already computed a VSM based on the BNC, with instance-vectors grouped into sets of exemplars (senses).
- Activation approaches:
 - *actT*: activate the target, rank the paraphrases
 - actP: activate the paraphrase, using s as target word
 - No act. : ranks paraphrase candidates by the distance between their type vectors and the target's type vector

Evaluation

Generalized Average Precision (GAP)

$$GAP(P,G) = \frac{1}{\sum_{j=1}^{m} I(y_j)\overline{y_j}} \sum_{i=1}^{n} I(x_i)\overline{x_i}$$

- The higher the number, the more correct predictions
- Used to evaluate other models, so can be used to accurately compare the results of different models

actT vs. actP - results

para-	actT		actP	
meter	kNN	perc.	kNN	perc.
10	36.1	35.5	36.5	38.6
20	36.2	35.2	36.2	37.9
30	36.1	35.3	35.8	37.8
40	36.0	35.3	35.8	37.7
50	35.9	35.1	35.9	37.5
60	36.0	35.0	36.1	37.5
70	35.9	34.8	36.1	37.5
80	36.0	34.7	36.0	37.4
90	35.9	34.5	35.9	37.3
no act.	34.6		35.7	
random BL	28.5			

Table 2: Activation of T or P individually on the full LexSub dataset (GAP evaluation)

Joint activation

P activation (%) \Rightarrow	10	20	30
T activation (kNN) \downarrow			
5	38.2	38.1 37.8 37.4 37.2	38.1
10	37.6	37.8	37.7
20	37.3	37.4	37.3
40	37.2	37.2	36.1

Table 3: Joint activation of P and T on the full LexSub dataset (GAP evaluation)

Compared to other models

		Model	S
	EP08	EP09	TDP09
EP08 dataset	27.4	NA	NA
EP09 dataset	NA	32.2	36.5
	actT	actP	actTP
EP08 dataset	36.5	38.0	39.9
EP09 dataset	39.1	39.9	39.6

EP08: Erk & Padó (2008) EP09: Erk & Padó (2009) TDP09: Thater et al. (2009)

Table 4: Comparison to other models on two subsets of LexSub (GAP evaluation)

Important points

- Distributional model of meaning
- Incorporating cognitive theory
- Prototype vs. Exemplar
- Polysemy
- Paraphrasing / Lexical substitution task