
Computational Semantics and Pragmatics 2012

Raquel Fernández – ILLC, University of Amsterdam

Homework #2 Due: 19/11/2012, 10:00AM

The starting point for this set of exercises is the Haskell code in the companion files COSPhw2 FOL.hs
and COSPhw2 NL.hs (based on code introduced in the book Computational Semantics with Functional
Programming (CSFP)). The file COSPhw2 FOL.hs contains an implementation of the syntax and semantics
of First Order Logic. The file COSPhw2 NL.hs contains an implementation of a simple natural language
grammar and corresponding semantic representations.

All the exercises below ask you to extend these basic implementations. Each exercise focuses on a particular
aspect (e.g. the addition of ditransitive verbs or of pre-nominal adjectives), but note that to make each of
these aspects work you may have to extend the implementations with additional components that may not
be explicitely mentioned in the exercises. In general, you probably want to enrich the vocabulary covered
by the grammar (e.g. with more nouns, verbs, or determiners) so that you can construct a more varied set
of sentences.

Submit two Haskell files with your extended versions of COSPhw2 FOL.hs and COSPhw2 NL.hs. For every
exercise, include brief explanations (indicating which bit of code corresponds to which exercise) and the
result of relevant sample queries as comments within the same Haskell file.

1. The definition of the logical form for the definite article the in COSPhw2 NL.hs follows the theory
of definite descriptions proposed by Russell (see pages 131–132 of CSFP). Implement a FOL model
in which the logical form of the sentences Alice admires the princess, Alice admires every princess,
and Alice admires some princess are all true. Include the result of queries with lfSent and eval as
comments within the Haskell file.

2. Extend the basic implementation with the quantifier most and with the quantified pronouns someone
and nothing. Include the result of queries with lfSent and eval as comments within the Haskell file.

3. Extend your implementation with a ditransitive verb such as offer. Note that ditransitive verbs with
a direct and an indirect object can be used in two types of constructions: a double NP construction
such as Alice offers Bob a drink and an NP-PP construction such as Alice offers a drink to Bob. Make
sure that the two types of syntactic constructions are licenced by your implementation and that both
of them yield the same logical form. Include the result of queries with lfSent and eval as comments
within the Haskell file.

4. Extend your implementation with adjectives such as happy or blond in pre-nominal positions, as in a
happy princess laughs. Account for the fact that an indeterminate number of adjectives are possible
(e.g. some silly blond princess laughs). The semantics of adjectives can be rather complex. You may
want to limit yourself to intersective adjectives. Include the result of queries with lfSent and eval as
comments within the Haskell file.

5. Extend your implementation with relational prepositions such as on or under to account for prepositional
phrases that modify a noun as in the sentence every boy on the roof cheered. Include the result of
queries with lfSent and eval as comments within the Haskell file.


