Computational Semantics and Pragmatics Autumn 2011

Raquel Fernández

Institute for Logic, Language & Computation University of Amsterdam

Last Week

Gricean pragmatics: conversational principles (the maxims) can be exploited to derive inferences (implicatures) that enrich the literal meaning of an utterance.

Generation of Referring Expressions: how to generate expressions in accord with Gricean principles, in particular that contain *the right amount of information*.

- Algorithms implementing different interpretations of the Maxim of Quantity/Brevity.
- Incremental Algorithm: in theory closer to human expressions, computationally less costly than stricter interpretations of the maxims.
- Evaluation of GRE algorithms relies on heavily annotated corpora, such as the Tuna corpus from HW#3.

The Incremental Algorithm - simplified

Let:

- r be the target referent;
- A be the set of properties a=v that characterise r;
- *C* be the set of distractors (the contrast set);
- RulesOut(a=v) be the subset of C ruled out by property $a=v \in A$;
- P be an ordered list of task-dependent preferred attributes; and
- L be the set of properties to be realised in our description.

```
MakeReferringExpression(r, C, P)
```

```
\begin{array}{l} \overline{L \leftarrow \{\}} \\ \text{for each member } a_i \text{ of list } P \text{ do} \\ \text{ if } \texttt{RulesOut}(a_i = v) \neq \emptyset \text{ (for some } a_i = v \in A) \\ \text{ then } L \leftarrow L \cup \{a_i = v\} \\ C \leftarrow C - \texttt{RulesOut}(a_i = v) \\ \text{ endif} \\ \text{ if } C = \{\} \text{ then} \\ \text{ if } \{\texttt{type=}v\} \in L \text{ (for some value } v \text{ such that } \texttt{type=}v \in A) \\ \text{ then return } L \\ \text{ else return } L \cup \{\texttt{type=}v\} \\ \text{ endif} \\ \text{ return failure} \end{array}
```

Plan for Today

Computational, data-driven approach to resolving indirect answers to polar questions (de Marneffe, Manning & Potts, 2010)

de Marneffe, Manning & Potts (2010) "Was it good? It was provocative." Learning the meaning of scalar adjectives. In *Proceedings of ACL 2010*, pp. 167-176.

(1) A: Is it tasty? (2) A: Are you coming to the party? B: It is edible. B: I have work to do.

The authors focus on indirect answers such as (1), where so-called scalar implicatures may be at play.

Scalar Implicature

The term *scalar implicature* refers to conversational implicatures that are related to the Maxim of Quantity and that can be characterised in terms of *scales*.

- Maxim of Quantity:
 - * Make your contribution as informative as is required (for the current purposes of the exchange).
 - * Do not make your contribution more informative than is required.

Scales

Scales are orderings of contrastive alternatives that differ in their semantic/pragmatic *strength*. There are two main types of scales:

• Entailing scales (Horn-scales): stronger expressions within the scale entail weaker expressions but not vice versa.

<all, some=""></all,>	All boxes exploded \models Some boxes exploded
<pre><excellent, good=""></excellent,></pre>	The movie was excellent \models The movie was good
<,ten, nine, eight,>	I have ten euros \models I have nine euros

 Non-entailing scales: stronger expressions within the scale are informationally richer than weaker ones, but do not entail them.

<succeed,< th=""><th>try></th><th>John succeeded without even trying</th></succeed,<>	try>	John succeeded without even trying
<general,< td=""><td>colonel, lieutenant></td><td>John is a general $ot\models$ John is a colonel</td></general,<>	colonel, lieutenant>	John is a general $ ot\models$ John is a colonel

Scalar Implicature

Given a scale $\langle S, W \rangle$ with strong (S) and weak (W) expressions, the use of W implicates the negation of S.

<all, some=""></all,>	All boxes exploded ⊨ Some boxes exploded Some boxes exploded → Not all boxes exploded
<excellent, good=""></excellent,>	The movie was excellent \models The movie was good The movie was good \rightsquigarrow It was not excellent
<,ten, nine, eight,>	I have ten euros ⊨ I have nine euros I have nine euros → I don't have ten euros
<succeed, try=""></succeed,>	John succeeded without even trying John tried to set up a studio John didn't succeed
<general, colonel=""></general,>	John is a general ⊭John is a colonel John is a colonel ↔ John is not a general

Negation reverses the scales: the use of $\neg S$ implicates W.

<all, some=""></all,>	Not all boxes exploded ~>> Some boxes did.
<,ten, nine, eight,>	I don't have ten euros \rightsquigarrow I have less than ten.
<succeed, try=""></succeed,>	John didn't succeed to set up a studio \rightsquigarrow He tried.

de Marneffe, Manning & Potts (2010) "Was it good? It was provocative"

- Phenomenon studied: indirect answers to polar questions where a "yes" / "no" answer is not explicitly given.
- Focus on two types of indirect question-answer pairs (QA):
 - * QA1: Both the answer and the question include a gradable modifier:

A: Do you think this is a good idea? A: Is he qualified? B: I think it is an excellent idea. B: I think he's young.

* QA2: The question includes a gradable modifier and the answer a numerical expression:

A: Are your kids little? B: I have a 7-year-old and a 10-year-old. A: Have you been living here very long? B: I've been here about 12.5 years.

Gradable Adjectives

- Gradable adjectives refer to properties that are gradable (that may hold to different degrees).
 - * They admit adverbs of degree such as *very*, *rather*, *highly*, *fairly*, *slightly* and comparative/superlative morphology.
 - * Most adjectives are gradable (e.g. *interesting*, *unusual*, *tall*, *little*, *expensive*), but not all are (e.g. *vegetarian*, *mammal*, *impossible*).
- They are also called *scalar adjectives* because the different degrees to which the relevant property may hold form a scale: <excellent, very good, rather good, good>

Gradable Adjectives

Most gradable adjectives have the following two features:

- Context-dependence: What counts as tall or expensive depends on the class of entities being considered. For instance, 3 Euros may count as expensive if we are talking about cups of coffee, but not so if we are talking about sandwiches.
- Vagueness: Even when we know the class of entities we are talking about, there isn't a sharp line delimiting what counts as not expensive, expensive, or very expensive there are always borderline cases.

Grounding the Meaning of Scalar Adjectives

What do we need to resolve these two types of indirect QA pairs – to infer yes/no from the indirect answer?

• QA1: Both the answer and the question include a gradable modifier:

A: Do you think this is a good idea? A: Is he qualified? B: I think it is an excellent idea. B: I think he's young.

- \Rightarrow Need to find out the relevant scale and relative ordering of the adjectives in the question and the answer.
 - QA2: The question includes a gradable modifier and the answer a numerical expression:

A: Are your kids little?A: Have you been living here very long?B: I have a 7-year-old and a 10-year-old.B: I've been here about 12.5 years.

 \Rightarrow Need to find out whether the numerical expression counts as a positive or negative instance of the adjective.

Corpus

The authors develop methods to deal with QA1 and QA2. To evaluate them, they need a corpus with some sort of gold standard annotation.

- Corpus of 205 QA1 pairs and 19 QA2 pairs from CNN interviews and the Switchboard corpus of telephone conversations.
- Use of Mechanical Turk to annotated each pair with an *answer assessment*: yes, probably yes, probably no, no, uncertain.
- Inter-annotator agreement is assessed with a version of kappa and with *entropy*.
- Uncertainty is important because not all indirect answers are intended to convey a clear yes / no – the speaker may not be committed to a particular answer.

QA1: Learning Scales

Knowing the relative scalar ordering of the modifier in the question P_Q and in the answer P_A gives us a way to infer the conveyed answer. Assuming ">" stands for "stronger than", then intuitively:

 $\begin{array}{ll} P_A > P_Q & \rightarrow \mbox{yes} \\ P_Q > P_A & \rightarrow \mbox{no} \\ P_Q ~? ~P_A & \rightarrow \mbox{uncertain} \end{array}$

- To derive the strength of an adjective, a corpus of online movie reviews is used:
 - * The strength of an adjective w depends on the rating category (the number of stars) most commonly associated with it.
 - * Expected rating value ER(w): average rating category for w
- A simple algorithm is then used to decide what answer is conveyed on the basis of the derived strengths or ERs.

QA2: Interpreting Numerical Answers

For each adjective and modified type of entities, they search the Web for positive and negative instances.

```
What counts and does not count as "little kids"?

'(little kinds'', n '(year-old'' \rightarrow n = \text{positive instance}

'(not little kinds'', n '(year-old'') \rightarrow n = \text{negative instance}
```

- The gathered numerical expressions automatically classified as pos / neg are used to calculate the probability that a particular n is a positive of negative instance of the relevant class.
- The probabilities are categorised as follows to decide what answer is conveyed:

 $\begin{array}{lll} 0-0.33 & \rightarrow \text{ no} \\ 0.33-0.66 & \rightarrow \text{ uncertain} \\ 0.66-1 & \rightarrow \text{ yes} \end{array}$

Evaluation

- To evaluate the decision procedures for QA1 and QA2, their output needs to be compared to the gold standard given by the Mechanical Turk annotations.
- This requires some manual processing/annotation of the corpus:
 - * The QA1 algorithm requires identifying P_Q and P_A and detecting the presence of negation
 - * The QA2 procedure requires identifying the adjective ("little"), the modified entity ("kids") and the unit of measure ("years old") to be able to construct the Web queries.
- Measures: accuracy of each algorithm with respect to the gold standard and Recall, Precision, and F1 for each response type.
- The accuracy of the system correlates with the level of agreement amongst annotators.

Summary

- Data-driven approach: grounding modifier scales and pos/neg instance of gradable adjectives on data.
- Rule-based decision procedures for assigning the conveyed polarity (yes/no) of the indirect answer.
- A probabilistic approach could also be possible using supervised machine learning on the annotated corpus.

What's Next

- Three sessions left + presentations of final project
- We'll look into issues related to Dialogue Modelling * to get an overview, read my draft chapter on Dialogue
- Spend time working on your final projects!!