
Computational Semantics and Pragmatics
Autumn 2011

Raquel Fernández

Institute for Logic, Language & Computation
University of Amsterdam

Raquel Fernández COSP 2011 1 / 18

Plan for Today

Discussion of Bos & Markert (2005). Along the way we’ll discuss:
• the use of automatic reasoning tools for Textual Entailment
∗ Theorem provers
∗ model building

• WordNet

[N.B.: these slides are only a guideline; most of the discussion took place
in class and is not recorded here.]

Raquel Fernández COSP 2011 2 / 18

Bos & Markert’s Approach to TE

• Shallow semantic analysis
• Deep semantic analysis
• Comparison of approaches
• Hybrid approach

Raquel Fernández COSP 2011 3 / 18

Bos & Markert’s Shallow Semantic Analysis
Surface string similarity based on three shallow features:
wnoverlap, length of T , length of H , relative length H /T .

• Tokenization: separating out (tokenizing) words from running text.
E.g. ‘New York’ and ‘rock’n’roll’ are individual words, while ‘I’m’ and
‘don’t’ are not and should be separated into two words.

• Lemmatization: mapping from related word forms that may differ in
their surface realisation to their common root or lemma. E.g. ‘sang’,
‘sung’, ‘sings’ → ‘sing’.

• Related lemmas via WordNet.
• The inverse document frequency of a lemma l is calculated as follows,

where N is the total number of documents in the corpus and dfl
(document frequency) is the number of documents in the corpus that
contain term l .

idfl = log
N
dfl

.

For more detailed definitions of these notions you can check Jurafsky & Martin (2009) Speech and Language
Processing.

Raquel Fernández COSP 2011 4 / 18

Bos & Markert’s Deep Semantic Analysis

Recall from the previous class...

We may want to think of TE in terms of logical consequence:

Let the logical meaning representations of T and H be φT and φH , and
B be a conjunction of axioms or knowledge base.
If (φT ∧ B) |= φH , then 〈T , H 〉 is a correct textual entailment pair.

Obvious challenges:
• assigning φT and φH to natural language expressions T and H
• defining B
• checking whether (φT ∧ B) |= φH holds

What do these challenges involve and how can we address them
with computational tools?

Raquel Fernández COSP 2011 5 / 18

Validity

Assuming we have been able to assign φT and φH and define B , how do
we check whether (φT ∧ B) |= φH is a valid argument?

• φH is a logical consequence of (φT ∧ B) if and only if whenever the
premises φT , B are satisfied in some model using some variable
assignment (i.e. are true), the conclusion φH is also satisfied in the
same model and using the same variable assignment (i.e. is also true).

Valid arguments are closely related to valid formulas:

ϕ1, . . . , ϕn |= ψ if and only if |= (ϕ1 ∧ . . . ∧ ϕn) → ψ

• A formula ϕ is valid if it is satisfied in all models under any variable
assignment: if it is impossible to find a situation and a context where
it is not satisfied, e.g.: robber(x) ∨ ¬robber(x).

• A formula ϕ that fails to be satisfied in at least one model is invalid:
e.g., robber(x) is invalid.

Raquel Fernández COSP 2011 6 / 18

Undecidability

So – we can conclude that 〈T , H 〉 is a true textual entailment pair
if we can prove that (φT ∧ B) |= φH is a valid argument or
equivalently that (φT ∧ B) → φH (or φT ∧ B ∧ φH) is a valid
formula.

First Order Logic is undecidable: checking validity requires us to
check all possible models – that’s an infinite number of models!

⇒ there is no algorithm that can correctly decide in finite time
whether an arbitrary first-order formula is valid or not.

Raquel Fernández COSP 2011 7 / 18

Theorem Provers

A theorem prover is a system that provides us with a systematic method
for checking whether or not it is possible to build a model in which some
given formula is true or false.

Methods for theorem proving are investigated within a branch of
computer science called automated reasoning. The crucial feature of such
proof methods is that they concentrate on the syntactic structure of formulas.

Such a systematic method gives us a way to test a formula for validity:

• a formula ϕ would be valid if and only if the method told us that there
is no way to build a model that falsifies ϕ (that is, a model for ¬ϕ).

Typically, theorem provers use refutation proof methods: to show that ϕ
is valid, we show that ¬ϕ leads to a contradiction.

Raquel Fernández COSP 2011 8 / 18

Theorem Provers and Undecidability

Due to the undecidability of FOL, if a theorem prover fails to prove
a formula this can be due to two rather different reasons:

• the formula may be not valid, hence no proof exists, and so the
prover cannot find a proof;

• the formula may be valid but very difficult to prove, so the
prover may use up all its resources without finding a proof
(even if it exists).

We can never be sure! A theorem prover thus cannot prove
non-validity. It can only prove validity (of formulas that are not
extremely complex nor tricky to prove).

Raquel Fernández COSP 2011 9 / 18

Theorem Provers and TE

How can we use a theorem prover to decide whether 〈T , H 〉 is a
true or a false textual entailment pair?

• if we give (φT ∧B) → φH to a theorem prover, it will try to show that
¬[(φT ∧ B) → φH] leads to a contradiction. [B&M 1. in §3.2]

∗ if it succeeds, we know that (φT ∧B) → φH is valid and hence that
〈T , H 〉 is TRUE.

• if we give it ¬[(φT ∧ B) → φH], it will try to show that
(φT ∧ B) → φH leads to a contradiction. [B&M 2. in §3.2]
∗ if it succeeds, we know that ¬[(φT ∧ B) → φH] is valid and hence

that 〈T , H 〉 is FALSE.

Raquel Fernández COSP 2011 10 / 18

Bonus Exercise
As a “bonus” exercise, I encourage you to try an automatic
theorem prover to prove e.g. one of the 〈T , H 〉 pairs from HW#1.

You can download Prover9 and the model builder Mace4 and
install them in your personal computer (Linux, Mac, Windows).
They are also available in all the Linux machines in the Faculty of
Science. To activate them, you need to do the following:

• Log in with your student account.
• In your home directory you’ll find the file .pkgrc. This is a hidden file; if you can’t

see it, tick the option “Show Hidden Files” under “View”.
• Open .pkgrc with a text editor, add ladr at the bottom of the file, and save it.
• Open a terminal, run the command eval ’softpkg’ and kill the terminal.

Instructions on how to install and run the programs, create input
files, the syntax of formulas, etc. can be found at:
http://www.cs.unm.edu/~mccune/prover9/ In class we tried the
command line interface, but there is also a GUI version.

Raquel Fernández COSP 2011 11 / 18

http://www.cs.unm.edu/~mccune/prover9/

Bonus Exercise: Test
• As a test, we considered the following 〈T , H 〉:
T : Ener bought Nival. H : Nival was sold to Ener.

• Recall that we want to prove the validity of (φT ∧ B) → φH
• Using the syntax of Prover9 for first-order logic, we came up

with the following formulas:

φT : exists x exists y (ener = x & nival = y & buy(x,y)).
φH : exists x exists y (ener = x & nival = y & sell(y,x)).
B : all x all y (buy(x,y) <-> sell(y,x)).

• Using a text editor (not a word processor), we created an input
file for the prover (test.in) that included the following lines:

formulas(sos).
exists x exists y (ener = x & nival = y & buy(x,y)).
all x all y (buy(x,y) <-> sell(y,x)).
end_of_list.

formulas(goals).
exists x exists y (ener = x & nival = y & sell(y,x)).
end_of_list.

Raquel Fernández COSP 2011 12 / 18

Bonus Exercise: Test

• Using the command line interface (a terminal) from the directory
where our input file test.in had been saved, we run the prover
with the command “prover9 -f test.in > test.out”

∼: prover9 -f test.in > test.out
–––– Proof 1 ––––
THEOREM PROVED
––– process 31610 exit (max_proofs) –––

• The freshly created file test.out contains the proof.
• If the background knowledge B is not included in the premises:

∼: prover9 -f test.in > test.out
SEARCH FAILED
––– process 31730 exit (sos_empty) –––

You may want to use the Graphical User Interface instead of the
command line (especially convenient for Windows users I guess):
http://www.cs.unm.edu/~mccune/prover9/gui/v05.html

Raquel Fernández COSP 2011 13 / 18

http://www.cs.unm.edu/~mccune/prover9/gui/v05.html

Theorem Provers and TE

How can we use a theorem prover to decide whether 〈T , H 〉 is a
true or a false textual entailment pair?

• if we give (φT ∧B) → φH to a theorem prover, it will try to show that
¬[(φT ∧ B) → φH] leads to a contradiction. [B&M 1. in §3.2]

∗ if it succeeds, we know that (φT ∧B) → φH is valid and hence that
〈T , H 〉 is TRUE.

• if we give it ¬[(φT ∧ B) → φH], it will try to show that
(φT ∧ B) → φH leads to a contradiction. [B&M 2. in §3.2]
∗ if it succeeds, we know that ¬[(φT ∧ B) → φH] is valid and hence

that 〈T , H 〉 is FALSE.

Problems:
• the theorem prover may not return a proof due to undecidability.
• it may return the wrong answer due to lack of background knowledge.
• many FALSE pairs are not contradictory: we can’t prove non-validity

without contradiction.

Raquel Fernández COSP 2011 14 / 18

Model Building

But we can prove non-validity by other means:

• if we can find a model for ¬[(φT ∧ B) → φH], then we know
that (φT ∧ B) → φH in not valid ...

• ... and hence that 〈T , H 〉 is (perhaps) FALSE.

Model builders are relatively new automated reasoning tools that
take a formula and try to build a model that satisfies it.

• They do not build arbitrary infinite models, so even when some
possible models exist they may not be able to always build them.

• Model builders are only capable to build relatively small finite models.
• Often the domain size can be specified (e.g. up to 20 elements).

Raquel Fernández COSP 2011 15 / 18

Bos & Markert’s Deep Semantic Analysis

The theorem prover and the model builder require background
knowledge.

• Features generated by the theorem prover:
∗ entailed
∗ inconsistent

• Features generated by the model builder:
∗ domain size
∗ model size
∗ domain size absolute difference
∗ domain size relative difference
∗ model size absolute difference
∗ model size relative difference

Raquel Fernández COSP 2011 16 / 18

Bos & Markert’s Evaluation Methods
Notions used in the evaluation of their results:

• Accuracy: percentage of correct judgements
• Confidence-weighted average score

Measures computed per class (TRUE / FALSE)
• Precision: proportion of correct hypotheses for class X given the total

of hypothesis for that class.
• Recall: proportion of correct hypotheses for class X given the total

number of items labeled with class X.
• F-measure: combination of precision (P) and recall (R) as follows:

Fβ = (β2 + 1)PR/β2P + R. Normally, the parameter β = 1, therefore
F1 = 2PR/P + R. If β > 1, recall is favoured, while β < 1 would
favour precision.

Other important aspects:

• Baseline
• z -test: when are results significantly different?

Raquel Fernández COSP 2011 17 / 18

Next Week

We’ll start to look into Vector Space Models of word meaning.

Readings (see the overview bibliography on the website):
• Adam Kilgarriff (1997) I don’t believe in word senses, Computers and

the Humanities, 31:91-113.
• A. Lenci (2008) Distributional Semantics in Linguistic and Cognitive

Research, in Lenci (ed.), From context to meaning: Distributional
models of the lexicon in linguistics and cognitive science, special issue
of the Italian Journal of Linguistics, 20(1):1-30.

Raquel Fernández COSP 2011 18 / 18

