
Control structures: switch

As explained previously, one can use the if control structure to conditionally perform a com-
putation. If there are many different conditions to handle, the program quickly becomes complex.

For example, consider the task of writing a function which, for a given month number returns
the number of days in this month, or -1 if the month number is invalid. For this we can use the
following code:

int daysInMonth(int month)
{

int result;

if (month == 1)
result = 31;

else if (month == 2)
result = 28;

else if (month == 3)
result = 31;

else if (month == 4)
result = 30;

else if (month == 5)
result = 31;

else if (month == 6)
result = 30;

else if (month == 7)
result = 31;

else if (month == 8)
result = 31;

else if (month == 9)
result = 30;

else if (month == 10)
result = 31;

else if (month == 11)
result = 30;

else if (month == 12)
result = 31;

else
result = -1;

return result;

}

We can try to “compress” this function using compound tests, as follows:

int daysInMonth(int month)
{

int result;

if (month == 1 || month == 3 || month == 5
|| month == 7 || month == 8 || month == 10
|| month == 12)
result = 31;

1

else if (month == 4 || month == 6 || month == 9
|| month == 11)

result = 30;
else if (month == 2)

result = 28;
else

result = -1;

}

Yet although this code is shorter, it is not particularly more readable.
To simplify this situation, different languages offer different solutions; however they are all

based on the same general idea, called a multi-way branch:

∙ at the top, you write only once the variable containing the value to test;

∙ on subsequent lines, you write the different values that are recognized, and next to this what
needs to be done in each case.

The particular multi-way branch construct offered by Java is inherited from the C language; it
is called the switch statement. It is defined as follows:

Switch statement:

Syntax:

switch (<expression>) {

[

[case <constant value> :]*

[<statement>]*

]*

[default :]?

[<statement>]*

}

(the “switch” keyword, followed by an expression between parentheses, followed by
an opening brace, followed by zero or more occurrences of zero or more “case” and
zero or more statements, followed by an optional default: followed by zero or more
statements, followed by a closing brace).

Semantics: the expresssion at the top is evaluated. Then the flow of control is trans-
ferred to the case label that matches the value of the expression; or to the default label if
no label matches the expression.

Note
A “case label” is a construct of the form “case <value>”.

For example:

2

int daysInMonth(int month)
{

switch (month)
{

case 1: case 3: case 5:
case 7: case 8: case 10:
case 12:

result = 31;
break;

case 4: case 6: case 9:
case 11:

result = 30;
break;

case 2:
result = 28;
break;

default:
result = -1;

}

}

This example uses one switch with 12 case labels and a default label.
Note how each case uses the “break” statement. To understand why, read the “semantics” def-

inition above: control is transferred to the label that matches, but then the flow of control continues
within the switch statement, even into the next cases.

For example with the following code:

int n = 3;
switch (n) {

case 3:
out.println("three");

case 5:
out.println("four");

}

this code would print “three” but also “four”: once the flow of control jumps to the case label
“case 3”, it continues uninterrupted until the end of the switch statement. In order to ensure only
the code for “case 3” runs, you need to add break as follows:

int n = 3;
switch (n) {

case 3:
out.println("three");
break;

case 5:
out.println("four");

}

Limitations of switch in Java

For historical reasons, switch in Java can only be used with very few data types in the condition.
The full list of types that can be used with switch is:

∙ int;

∙ String;

3

∙ byte, short, char;

∙ enumerated types (we will cover this later);

∙ a few special object classes that wrap around primitive types: Character, Byte, Short, and
Integer.

In particular, switch cannot match approximate real values of type float or double. If you must
write a complex condition using values of these types, you are limited to using if.

Note
This limitation is a restriction historically inherited from C. Many other programming
languages have more comprehensive multi-way branches that can match on many more
types. When learning a new programming language, pay special attention to which
multi-way branches it supports. This is important as it will greatly enhance your pro-
ductivity when writing your own code.

Important concepts

∙ multi-way branching;

∙ the switch statement;

∙ case labels;

∙ why break is necessary;

∙ which data types are compatible with switch.

Further reading

∙ Absolute Java, chapter 3 (pp. 107-112)

∙ Introduction to Programming, section 3.6 (pp. 104-109)

Copyright and licensing

Copyright c○ 2014, Raphael ‘kena’ Poss. Permission is granted to distribute, reuse and modify
this document according to the terms of the Creative Commons Attribution-ShareAlike 4.0 In-
ternational License. To view a copy of this license, visit http://creativecommons.org/licenses/
by-sa/4.0/.

4

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

	Limitations of switch in Java
	Important concepts
	Further reading
	Copyright and licensing

