
Combining multiple Scanners

(This extends the previous lecture that introduced Java’s Scanner and highlighted how to use it
with the standard input stream.)

Connecting a Scanner to other sources

As explained earlier, Scanner provides additional structure to input data: it interprets the input
bytes and converts them to Java’s native data types.

Also as explained earlier, it is possible to “connect” as Scanner to any existing InputStream, in
particular Java’s standard input stream named System.in.

In addition to this, Scanner can be connected to a character string, to provide additional struc-
ture to the characters. This is done by making the Scanner as follows:

Scanner <somename> = new Scanner(<somestring>);

For example:

String myString = "12 34 567";
Scanner myIn = new Scanner(myString);

When doing this, the scanner uses the characters from the string as input bytes for interpre-
tation. In this specific example, using nextInt() on myIn will return twelve, thirty-four and five
hundred and sixty-seven, in this order.

Input delimiters

During the data interpretation, a question arises: where to stop interpreting data? For example,
how does Scanner know that the string of digits “1234” represents a single number, and not two
numbers “1” then “234” or “123” then “4”?

By default, “Scanner“ interprets data until the next white space character. In other words, when
a program uses one of Scanner’s services, eg. readInt(), the Scanner reads multiple bytes from its
underlying input stream until it encounters some white space, then interprets theses bytes to the
desired type, then returns the converted value to the program.

For example, if a Scanner encounters the string “12 34 56” in the input stream, a program’s first
call to nextInt() will return twelve, the second call will return thirty-four, and the third call will
return fifty-six.

We say that “the standard delimiter for Scanner is white space”. The delimiter is the character
(or group of characters) that Scanner detects as a separation between subsequent values returned
to the program.

1

intro-scanner.html

Changing the input delimiter

If the program must read data from a source using a custom format, often the format specifies a
different delimiter than white space. For example, the standard spreadsheet format “CSV” uses a
comma (“,”) as delimiter between subsequent values.

If we attempt to connect a Scanner to a CSV source and use nextInt() directly, chances are Java
will complain as an error, that it does not know how to interpret a comma in the input. To interpret
the comma as a delimiter, we must use another Scanner service, useDelimiter():

Definition:

useDelimiter(String newDelimiter)

Semantics:

Changes this Scanner’s delimiter to the specified string. The change takes
effect directly for the next data item read from the input.

For example, the following code reads floating-point approximate numbers between 0.0 and
1.0, separated by commas, from the standard input stream, and prints each number in turn as a
percentage between 0% and 100%:

Scanner myIn = new Scanner(System.in);

myIn.useDelimiter(","); // <- this!

while (myIn.hasNext())
{

double value = myIn.nextDouble();

System.out.printf("%d%%\n", (int)(value * 100.));

}

A special delimiter: the “new line” character

There is a special character in the input that is always interpreted as a delimiter by Scanner: the new-
line character, with ASCII code 10. So even if a Scanner has been configured with useDelimiter()

to use a comma as delimiter, two values on separate lines will be interpreted separately without
errors.

The addition of this special role in turn enables an important extra service of Scanner:

Definition:

String nextLine()

Semantics:

Reads bytes until and including the first subsequent newline character, and
returns the resulting bytes without the final newline character. Reports an
error if end-of-stream was reached. Pauses the program if no bytes are yet
available for reading and end-of-stream was not reached yet; the execution
is resumed only when data becomes available or end-of-stream is reached.

2

This service is useful when an input format has a variable number of columns in each line. If a
program is only interested in, say, the third column, it can read the first 3 columns of each line
using nextInt() (or any other service of Scanner) then skip all remaining input on the same line
until the beginning of the next line. For example:

Scanner myIn = new Scanner(System.in);
myIn.useDelimiter(",");

while (myIn.hasNext())
{

myIn.next(); // read 1st column
myIn.next(); // read 2nd column;
String v = myIn.next(); // read 3rd column
System.out.println(v);

myIn.nextLine(); // skip until beginning of next line

}

This code reads comma-separated tabular data from the standard input and prints the contents
of the 3rd column on each line; if there are more columns than 3, they are automatically skipped.

Combining multiple Scanners

A common application is the use of programs to process multi-dimensional data sets. An input
data file containing a multi-dimensional data set usually has multiple levels of delimiters.

For example, a 3-D data set that contains a time sequence of 2-dimensional points could be
specified to use the following format:

∙ the coordinates for one point are separated by commas; and

∙ different points are separated by semicolons.

For example, an input stream in this format could be “4,2;5,2;1,1;0,-1”, to represent 4 points
with coordinates (4,2), (5,2), (1,1) and (0,-1).

How to go about writing a program that reads multi-dimensional data? In this general case,
you should think about combining “Scanner“ multiple times. There is a general method for this:

∙ make a 1st Scanner for the outer dimension, configured with the outer dimension’s delimiter,
and read each element in the outer dimension in turn as a String using next();

∙ for every String read in this way, make a 2nd Scanner for the 2nd outermost dimension,
configured with that dimension’s delimiter, and read each element in turn as a String using
next();

∙ and so on, for all outer dimensions;

∙ for every String read in this way, make a last Scanner for the inner dimension, then read the
individual values using nextInt(), nextDouble() or the otherwise appropriate interpretation
service from Scanner.

For example, using the 3-D format described above, there is only 1 outer dimension, so we
start as follows:

3

Scanner in1 = new Scanner(System.in);

in1.useDelimiter(";"); // outer delimiter

while (in1.hasNext())
{

String outerElement = in1.next();

...

}

Then we fill the missing part with the logic for the inner dimension:

Scanner in1 = new Scanner(System.in);

in1.useDelimiter(";");

while (in1.hasNext())
{

String outerElement = in1.next();

Scanner in2 = new Scanner(outerElement);

in2.useDelimiter(","); // inner delimiter

while (in2.hasNext())
{

int value = in2.nextInt();
System.out.printf("Found a value: %d", value);

}

}

Of course, as soon as there are two or more layers nested in this way, you should also introduce
new functions that isolate each piece of logic. For example, the code above can be rewritten as
follows:

// readPoints(): read 2D points separated by semicolons
void readPoints()
{

Scanner in1 = new Scanner(System.in);

in1.useDelimiter(";");

while (in1.hasNext())
{

String outerElement = in1.next();

readCoordinates(outerElement);
}

}

// readCoordinates(): read scalars separated by commas
void readCoordinates(String element)
{

Scanner in2 = new Scanner(element);

in2.useDelimiter(",");

while (in2.hasNext())
{

int value = in2.nextInt();

4

System.out.printf("Found a value: %d", value);
}

}

Important concepts

∙ connecting Scanner to a String;

∙ delimiters and useDelimiter();

∙ new line characters and nextLine();

∙ combining multiple scanners for multi-dimensional input data.

Further reading

∙ Programming in Java, section 11.1.5 (pp. 541-542)

∙ Absolute Java, sections 2.2 (pp. 79-88)

Copyright and licensing

Copyright c○ 2014, Raphael ‘kena’ Poss. Permission is granted to distribute, reuse and modify
this document according to the terms of the Creative Commons Attribution-ShareAlike 4.0 In-
ternational License. To view a copy of this license, visit http://creativecommons.org/licenses/
by-sa/4.0/.

5

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

	Connecting a Scanner to other sources
	Input delimiters
	Changing the input delimiter
	A special delimiter: the “new line” character
	Combining multiple Scanners
	Important concepts
	Further reading
	Copyright and licensing

