
Introduction to Java’s Scanner

Programs are not all about changing numbers into other numbers; a great part of automated
process is interacting with the world around the computer. For example, a program may input data
entered using a keyboard or mouse, and output diagrams visually to a screen.

The most common interface for input in imperative languages is the sequential poll: a program
repeatedly performs a call over time to a system API to ask “is there some input available?”, and
the system responds either “no, no data available yet” or “yes, here is some data”.

(There are other general interfaces to input data in programs than sequential polling. We will
see another in a later course called “event loops”; others also exist.)

Sequential input stream

In languages with a sequential poll interface, an API exists to query the availability of input data
“from the outside world”. As data arrives, it is delivered to the program in the order of availability.
We say that the program “reads” input data in sequential time order.

This ordering of input data over time is called input streaming, the input-side counterpart to
output streaming seen in a previous lecture.

An input stream is an abstract concept, which models the arrival of fresh data into the program
over time. An input stream is said to be terminated when there is a point time after which no data
can be read any more. This point is called the end-of-stream (sometimes also called “end of file”)
event.

Data structuring in Java

At the level of hardware, input devices like a keyboard, mouse or network adapter delivers raw
bits of data to the computer. Like for memory, it is the role of programming languages to provide
structure to input data to ease the programmer’s task.

In Java, two interfaces exist to give structure to bits of input data: InputStream to read input
byte by byte, and Scanner to read input using more complex data types.

Raw bytes using Java’s InputStream

Java’s InputStream interface can be used in a program to read input byte per input byte. A byte is
the numeric interpretation of 8 bits of raw data, interpreted as the binary representation of a value
between 0 and 255.

The InputStream interface defines its main service read as follows:

1

Definition:

int read()

Semantics:

returns the next byte readable from the input stream as a value between 0
and 255. If the end of stream was reached, returns -1. This service will pause
the program if it is called and no data is available yet; when this happens,
execution only resumes when either at least one byte is available for reading
or the end-of-stream has been reached.

Moreover, the standard input stream of a program, usually connected to the user’s keyboard, is
defined as an InputStream named System.in.

For example, the following code reads data from the standard input stream byte by byte, prints
the numeric code of each byte on a separate line, and prints “goodbye” when the end-of-stream is
reached:

int c;

do
{

// Read one byte.
c = System.in.read();

if (c == -1) // end-of-file?
System.out.println("goodbye");

else
System.out.println(c);

} while (c >= 0);

Structuring data using Scanner

Although bytes can represent all possible data input from the outside world, usually input data is
structured in other ways: for example a number is usually encoded using its base-10 representa-
tion.

It is possible in Java to add a layer of additional interpretation to any InputStream using another
interface called Scanner. To use this, the program must first “make” a Scanner using the following
notation:

Scanner <somename> = new Scanner(<source>);

This notation will be explained in a subsequent lecture; for the time being, just use it as-is.
You must replace “<somename>” by a name of your choosing and “<source>” by the name of an
InputStream that can input bytes, for example System.in:

Scanner myIn = new Scanner(System.in);

Once a Scanner is available, it offers to your program several services of interest, including:

2

Definition:

boolean hasNext()

Semantics:

Returns “true” if data is available and the end-of-stream has not been reached
yet. Returns “false” if the end-of-stream has been reached. Pauses the pro-
gram if no data is available yet and the end-of-stream has not yet been reached,
until either data becomes available or end-of-stream is encountered.

Definition:

int nextInt()

Semantics:

Interprets the next bytes from the input as the representation of an integer in
base 10 (for example “123” is interpreted to represents a hundred and twenty-
three). Any leading minus sign (“-”), if present, is interpreted to denote a
negative integer. Returns the integer value of the input representation. Re-
ports an error if the end-of-stream is encountered. Pauses the program if
no data is available yet and end-of-stream is not encountered; execution re-
sumes only when some data is available or end-of-stream is encountered.

Definition:

double nextDouble()

Semantics:

Same as nextInt(), except that the input bytes are interpreted as the scien-
tific representation of a floating-point approximate number in base 10 (for
example “314.15e-2” is interpreted to represent an approximation of 3.1415).

Definition:

String next()

Semantics:

Return the next word as a string without interpretation. Reports an error
if the end-of-stream is encountered. Pauses the program if no data is avail-
able yet and end-of-stream is not encountered; execution resumes only when
some data is available or end-of-stream is encountered.

For example, the following program reads floating-point numbers from the standard input
stream, until the end-of-stream is reached, and then prints their average if at least one value could
be read:

3

Scanner myIn = Scanner(System.in);
int numberOfValues = 0;
double sum = 0;

while (myIn.hasNext())
{

double value = myIn.nextDouble();
sum = sum + value;
numberOfValues = numberOfValues + 1;

}

if (numberOfValues > 0)
{

double average = sum / (double)numberOfValues;
System.out.printf("Average: %f\n", average);

}

For more comprehensive examples, refer to the files Gemiddelde.java and NumberGame.java
in the accompanying source code repository.

Important concepts

∙ sequential polling

∙ input stream

∙ standard input stream in Java

∙ Difference between InputStream and Scanner

∙ Scanner’s hasNext(), nextInt() and nextDouble()

Further reading

∙ Programming in Java, sections 2.4.6 (pp. 46-47) and 11.1.5 (pp. 541-542)

∙ Absolute Java, section 2.2 (pp. 76-78)

Copyright and licensing

Copyright c○ 2014, Raphael ‘kena’ Poss. Permission is granted to distribute, reuse and modify
this document according to the terms of the Creative Commons Attribution-ShareAlike 4.0 In-
ternational License. To view a copy of this license, visit http://creativecommons.org/licenses/
by-sa/4.0/.

4

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

	Sequential input stream
	Data structuring in Java
	Raw bytes using Java's InputStream
	Structuring data using Scanner
	Important concepts
	Further reading
	Copyright and licensing

