
Control structures: if

Like a recipe tells the cook what to do, a program tells the computer what to do; in imperative
languages like Java, lines in the program are imperative statements and you can imagine the com-
puter running the program by pointing to each line in turn, like a cook follows the statements one
after the other.

In a recipe, sometimes you find conditional instructions: “if you have parsley available, use
three ounces of parsley; otherwise, use a branch of thyme.” This instructs the cook to do different
things depending on what he/she has available at the moment the recipe is used.

The corresponding construct in imperative language is the conditional statement, defined as
follows:

Conditional statement:

Syntax:

if (<expression>) <block-or-statement>

[else <block-or-statement>]?

(the keyword “if” followed by an expression between parentheses, followed
by either a statement block between “{” and “}” or a single statement, fol-
lowed optionally by the keyword “else”, followed by either a statement
block or a single statement.)

Semantics:

The expression between parentheses, also called conditional expression, is eval-
uated first. If its value is equivalent to true, the first block-or-statement is
executed, otherwise, the first block-or-statement is skipped, and if there is a
“else” part, its block-or-statement is executed instead.

For example:

if (x > 0)
{

System.out.println("x is positive");

}

(if x is positive, the program prints “x is positive”; otherwise, nothing is printed)
or:

1

if (x > 0)
{

System.out.println("x is positive");
}
else
{

System.out.println("x is zero or negative");

}

(if x is positive, the program prints “x is positive”; otherwise, the program prints “x is zero or
negative”)

Relational operators

The condition can contain any expression, or formula, that computes a value that is either “true” or
“false”. For this you can use the following operators in most programming languages, also called
relational operators:

Operator Description
x == y tests if x is equal to y
x != y tests if x is different from y
x > y tests if x is strictly greater than y
x < y tests if x is strictly lower than y
x >= y tests if x is greater or equal to y
x <= y tests if x is lower or equal to y

Note
Beware of the difference between the single “=” and the double “==”. The first is the
assignment operator, and “x = 3” means “change the value of the variable x to become 3”;
the second is the test for equality operator, and “x == 3” means “test whether the value of
variable x is equal to 3”.

In Java, the relational operators are designed primarily to compare numbers; in particular you
cannot use them to compare character strings (String). You will see later how to compare strings
in Java.

Also, you must compare things that are comparable; in particular, both sides must have compara-
ble types. For example it is not possible in Java to compare a value of type int with a value of type
double. When in doubt, always ensure both sides have the same type.

Nested conditionals

The one or two “branches” of a if statement are themselves statements, so we can combine a if

inside an if. This is called nesting: using a control structure “inside” of another. For example:

if (x == 0)
{

System.out.println("x is zero");

2

}
else
{

if (x > 0)
{

System.out.println("x is positive");
}
else
{

System.out.println("x is negative");
}

}

In this example, the expression “x == 0” is first evaluated. If it is true, the first message is
printed. Otherwise, the second if is executed and the expression “x > 0” is evaluated. If it is
true, the 2nd message is printed. Otherwise, the 3rd message is printed. In this example, the 2nd
if-else construct is nested within the 1st if-else construct; more specifically it is nested in its “else
branch”.

Conjunction, disjunction and negation

Say you want to write a program that prints a message “working age” if the age of a person is
between 18 and 67. The relational operators seen above only have 2 operands left and right; to
establish within the age falls within the range, you must thus combine two different conditions.
For example:

if (age >= 18)
{

if (age <= 67)
{

System.out.println("working age");
}

}

This type of combination, called a logical conjunction, or “AND relation”, happens so often in
programs that most languages have a simplified notation; in Java this is noted “&&”:

if (age >= 18 && age <= 67)
{

System.out.println("working age");

}

Value of x Value of y Value of x && y

false N/A false
true false false
true true true

Similarly, say you want to offer a reduced price for people under 18 or above 67. For this you
need a logical disjunction, or “OR relation”. In Java, another operator exists for this and is noted
“||”:

3

if (age <= 18 || age >= 67)
{

System.out.println("reduced price");

}

Value of x Value of y Value of x || y

false false false
false true true
true N/A true

To complete this set of logical operators, programming languages almost always also provide
a general operator that “inverts” the truth value of a condition. This is called negation; in Java, this
is noted using an exclamation mark (“!”) followed by the condition to invert:

Example Equivalent to
!(x == y) x != y

!(x != y) x == y

!(x < y) x >= y

!(x && y) (!x) || (!y)

!(x || y) (!x) && (!y)

Value of x Value of !x

true false
false true

Important concepts

∙ conditional statement

∙ syntax and semantics of if ... else

∙ relational operators: ==, !=, <, >, <=, >=

∙ difference between “=” and “==”

∙ relational operators designed to work on numbers, in particular cannot use on strings

∙ nesting

∙ conjunction “&&”, disjunction “||”

∙ negation with “!”

Further reading

∙ Think Java, sections 4.1-4.5 (pp. 39-42), section 6.6 (pp 62-63)

4

∙ Programming in Java, sections 3.1.1 (pp. 67-68), 3.1.3 (pp. 71-73), 3.5 (pp. 96-104)

∙ Absolute Java, section 3.1 (pp. 100-106)

Copyright and licensing

Copyright c○ 2014, Raphael ‘kena’ Poss. Permission is granted to distribute, reuse and modify
this document according to the terms of the Creative Commons Attribution-ShareAlike 4.0 In-
ternational License. To view a copy of this license, visit http://creativecommons.org/licenses/
by-sa/4.0/.

5

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

	Relational operators
	Nested conditionals
	Conjunction, disjunction and negation
	Important concepts
	Further reading
	Copyright and licensing

